Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖
dc.contributor.authorChih-Sheng Jaoen
dc.contributor.author饒智昇zh_TW
dc.date.accessioned2021-06-17T00:26:50Z-
dc.date.available2018-02-15
dc.date.copyright2012-02-21
dc.date.issued2012
dc.date.submitted2012-02-16
dc.identifier.citation1. Rittenhouse, D., Explanation of an optical deception. Transactions of the American Philosophical Society, 1786. 2: p. 37-42.
2. Loewen, E.G. and E. Popov, Diffraction gratings and applications. Vol. 58. 1997: CRC.
3. Rowland, H., Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes. The Observatory, 1882. 5: p. 224-228.
4. Wilson, S.J. and M.C. Hutley, The optical-properties of moth eye antireflection surfaces. Optica Acta, 1982. 29(7): p. 993-1009.
5. Enger, R.C. and S.K. Case, Optical-elements with ultrahigh spatial-frequency surface corrugations. Applied Optics, 1983. 22(20): p. 3220-3228.
6. Ono, Y., et al., Antireflection effect in ultrahigh spatial-frequency holographic relief gratings. Applied Optics, 1987. 26(6): p. 1142-1146.
7. Farn, M.W., Binary gratings with increased efficiency. Applied Optics, 1992. 31(22): p. 4453-4458.
8. Raguin, D.H. and G.M. Morris, Antireflection structured surfaces for the infrared spectral region. Applied Optics, 1993. 32(7): p. 1154-1167.
9. Yeh, P., New optical-model for wire grid polarizers. Optics Communications, 1978. 26(3): p. 289-292.
10. Cescato, L.H., E. Gluch, and N. Streibl, Holographic quarterwave plates. Applied Optics, 1990. 29(22): p. 3286-3290.
11. Flanders, D.C., Submicrometer periodicity gratings as artificial anisotropic dielectrics. Applied Physics Letters, 1983. 42(6): p. 492-494.
12. Stork, W., et al., Artificial distributed-index media fabricated by zero-order gratings. Optics Letters, 1991. 16(24): p. 1921-1923.
13. Chen, F.T. and H.G. Craighead, Diffractive phase elements based on 2-dimensional artificial dielectrics. Optics Letters, 1995. 20(2): p. 121-123.
14. Kroll, M., et al., Employing dielectric diffractive structures in solar cells - a numerical study. Physica Status Solidi a-Applications and Materials Science, 2008. 205(12): p. 2777-2795.
15. Marcet, Z., et al., A half wave retarder made of bilayer subwavelength metallic apertures. Applied Physics Letters, 2011. 98(15).
16. Kikuta, H., H. Toyota, and W.J. Yu, Optical elements with subwavelength structured surfaces. Optical Review, 2003. 10(2): p. 63-73.
17. Wood, R., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6, 1902. 4(21): p. 396-402.
18. OMPRS, L.R., III. Note on the remarkable case of diffraction spectra described by Prof. Wood. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1907. 14(79): p. 60-65.
19. Barnes, W.L., et al., Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Physical Review B, 1996. 54(9): p. 6227-6244.
20. Hessel, A. and A. Oliner, A new theory of Wood’s anomalies on optical gratings. Applied Optics, 1965. 4(10): p. 1275-1297.
21. Mashev, L. and E. Popov, Zero order anomaly of dielectric coated gratings. Optics Communications, 1985. 55(6): p. 377-380.
22. Cox, J.A., et al. Guided-mode grating resonant filters for VCSEL applications. in Diffractive and Holographic Device Technologies and Applications V, January 28, 1998 - January 29, 1998. San Jose, CA, United states.Proc. SPIE, 1998. 3291:p.70-76.
23. Magnusson, R. and S. Wang, New principle for optical filters. Applied Physics Letters, 1992. 61: p. 1022-1024.
24. Tibuleac, S., D. Wawro, and R. Magnusson. Resonant diffractive structures integrating waveguide-gratings on optical fiber endfaces. LEOS '99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting, 1999. 2:p.874-875.
25. Kikuta, H., et al. Refractive index sensor with a guided-mode resonant grating filter. in Optical Engineering for Sensing and Nanotechnology (ICOSN 2001), June 6, 2001 - June 8, 2001. 2001. Yokohama, Japan. Proc. SPIE, 2001. 4416:p219-222.
26. Cunningham, B., et al., Colorimetric resonant reflection as a direct biochemical assay technique. Sensors and Actuators, B: Chemical, 2002. 81(Compendex): p. 316-328.
27. Cunningham, B., et al., A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sensors and Actuators, B: Chemical, 2002. 85(Compendex): p. 219-226.
28. Magnusson, R., et al. Characteristics of resonant leaky-mode biosensors. in Nanosensing: Materials and Devices II, October 23, 2005 - October 26, 2005. 2005. Boston, MA, United states. Proc. SPIE, 2005. 6008:p.60080U_1-60080U_10
29. Biosystems, Inc. 'http://www.srubiosystems.com/Technology/index.htmlSRU '.
30. Gale, M.T., K. Knop, and R.H. Morf. Zero-order diffractive microstructures for security applications. Proc. SPIE, 1990. 1210:p.83-89.
31. Roman, J.E. and K.A. Winick, Wave-guide grating filters for dispersion compensation and pulse-compression. IEEE Journal of Quantum Electronics, 1993. 29(3): p. 975-982.
32. Vallius, T., P. Vahimaa, and J. Turunen, Pulse deformations at guided-mode resonance filters. Optics Express, 2002. 10(16): p. 840-843.
33. Nevière, M. and E. Popov, Light propagation in periodic media: differential theory and design. Vol. 81. 2003: CRC.
34. Tibuleac, S., et al., Dielectric frequency-selective structures incorporating waveguide gratings. IEEE Transactions on Microwave Theory and Techniques, 2000. 48(4): p. 553-561.
35. Arsenault, A.C., et al., Photonic-crystal full-colour displays. Nature Photonics, 2007. 1(8): p. 468-472.
36. Ye, Y., Y. Zhou, and L.S. Chen, Color filter based on a two-dimensional submicrometer metal grating. Applied Optics, 2009. 48(27): p. 5035-5039.
37. Wang, Q., et al., Colored image produced with guided-mode resonance filter array. Optics Letters, 2011. 36(23): p. 4698-4700.
38. Yoon, Y.-T., et al., Color filter incorporating a subwavelength patterned grating in poly silicon. Optics Express, 2008. 16(4): p. 2374-2380.
39. Kanamori, Y., M. Shimono, and K. Hane, Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates. Photonics Technology Letters, IEEE, 2006. 18(20): p. 2126-2128.
40. http://optics.hanyang.ac.kr/~shsong/Teaching-first%20page.htm.
41. Magnusson, R., et al. Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics. in Integrated Optics: Devices, Materials, and Technologies XIV, January 25, 2010 - January 27, 2010. San Francisco, CA, United states. Proc. SPIE, 2010. 7604:p.76040M_1-76040M_13.
42. Wawro, D., et al. Guided-mode resonance sensor system for early detection of ovarian cancer. in Optical Diagnostics and Sensing X: Toward Point-of-Care Diagnostics, January 25, 2010 - January 26, 2010. San Francisco, CA, United states. Proc. SPIE, 2010. 7572:p.75720D_1-75720D_6.
43. Jia, K., D. Zhang, and J. Ma, Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges. Sensors and Actuators B-Chemical, 2011. 156(1): p. 194-197.
44. Lin, S.-F., et al., A Guided Mode Resonance Aptasensor for Thrombin Detection. Sensors, 2011. 11(9): p. 8953-8965.
45. Magnusson, R., et al. Leaky-mode resonance photonics: an applications platform.Porc. SPIE, 2011. 8102:p.810202_1-810202_13
46. Gaylord, T.K. and M. Moharam, Analysis and applications of optical diffraction by gratings. Proceedings of the IEEE, 1985. 73(5): p. 894-937.
47. Moharam, M.G., et al., Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings - enhanced transmittance matrix approach. Journal of the Optical Society of America a-Optics Image Science and Vision, 1995. 12(5): p. 1077-1086.
48. Li, L.F., New formulation of the Fourier modal method for crossed surface-relief gratings. Journal of the Optical Society of America a-Optics Image Science and Vision, 1997. 14(10): p. 2758-2767.
49. Moharam, M.G., et al., Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America a-Optics Image Science and Vision, 1995. 12(5): p. 1068-1076.
50. Wang, S.S., et al., Guided-mode resonances in planar dielectric-layer diffraction gratings. Journal of the Optical Society of America a-Optics Image Science and Vision, 1990. 7(8): p. 1470-1474.
51. Magnusson, R. and S.S. Wang, New principle for optical filters. Applied Physics Letters, 1992. 61(9): p. 1022-1024.
52. Magnusson, R. and S. Wang, Optical guided-mode resonance filter. US Patent No.5216680, Jun. 1, 1993.
53. Wang, S. and R. Magnusson, Theory and applications of guided-mode resonance filters. Applied Optics, 1993. 32(14): p. 2606-2613.
54. Wang, S. and R. Magnusson, Multilayer waveguide-grating filters. Applied Optics, 1995. 34(14): p. 2414-2420.
55. Shin, D., et al. Thin-film multilayer optical filters containing diffractive elements and waveguides. in Optical Thin Films V: New Developments, July 30, 1997 - August 1, 1997. 1997. San diego, CA, United states. Proc. SPIE, 1997. 3133:p.273-286.
56. Haggans, C.W., L.F. Li, and R.K. Kostuk, Effective-medium theory of zeroth-order lamellar gratings in conical mountings. Journal of the Optical Society of America a-Optics Image Science and Vision, 1993. 10(10): p. 2217-2225.
57. Li, L., A Modal-analysis of lamellar diffraction gratings in conical mountings. Journal of Modern Optics, 1993. 40(4): p. 553-573.
58. Mait, J.N., D.W. Prather, and M.S. Mirotznik, Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory. Journal of the Optical Society of America a-Optics Image Science and Vision, 1999. 16(5): p. 1157-1167.
59. Kress, B. and P. Meyrueis, Digital Diffractive Optics: An introduction to planar diffractive optics and related technology. Digital Diffractive Optics: An introduction to planar diffractive optics and related technology, by B. Kress, P. Meyrueis, pp. 396. ISBN 0-471-98447-7. Wiley-VCH, October 2000., 2000. 1.
60. Sinzinger, S. and J. Jahns, Microoptics. 2003: Wiley Online Library.
61. Born, M., E. Wolf, and A.B. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 1999: Cambridge Univ Pr.
62. Kikuta, H., H. Yoshida, and K. Iwata, Ability and limitation of effective-medium theory for subwavelength gratings. Optical Review, 1995. 2(2): p. 92-99.
63. Macleod, H.A., Thin-film optical filters. 2001: Taylor & Francis.
64. Yariv, A. and P. Yeh, Optical waves in crystals. 1984: Wiley New York.
65. Yeh, P., Optical waves in layered media. Vol. 95. 1988: Wiley Online Library.
66. Herzig, H.P., Micro-optics: Elements, systems and applications. 1997: Taylor & Francis, London.
67. Lalanne, P. and J.P. Hugonin, High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms. Journal of the Optical Society of America a-Optics Image Science and Vision, 1998. 15(7): p. 1843-1851.
68. Rytov, S., Electromagnetic properties of a finely stratified medium. Sov. Phys. JETP, 1956. 2:p.466–475.
69. Abdulhalim, I., Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit. Applied Optics, 2007. 46(12): p. 2219-2228.
70. Kim, K.J. and J. VanderKooi, Rheological effect of zinc surfactant on the TESPT-silica mixture in NR and S-SBR compounds. International Polymer Processing, 2002. 17(3): p. 192-200.
71. Pani, S.K., et al., Direct measurement of sidewall roughness of polymeric optical waveguides. Applied Surface Science, 2005. 239(3-4): p. 445-450.
72. Muller, B., et al., Impact of nanometer-scale roughness on contact-angle hysteresis and globulin adsorption. Journal of Vacuum Science & Technology B, 2001. 19(5): p. 1715-1720.
73. Constantoudis, V., et al. Towards a complete description of line width roughness: A comparison of different methods for vertical and spatial LER and LWR analysis and CD variation. in Metrology, Inspection, and Process Control for Microlithography XVIII, Febrary 23, 2004 - Febrary 26, 2004. 2004. San Clara, CA, United states. Proc. SPIE, 2004. 5375: p.967-977.
74. Marcuse, D., Theory of dielectric optical waveguides. Quantum electronics--principles and applications. 1991, Boston: Academic Press.
75. Tsang, L., et al., Scattering of electromagnetic waves. 2001: Wiley Online Library.
76. Wait, J.R., Electromagnetic wave theory. 1985: Harper & Row, New York.
77. Ishimaru, A., Electromagnetic wave propagation, radiation, and scattering. 1991: Prentice Hall International, London.
78. Germer, T.A., Effect of line and trench profile variation on specular and diffuse reflectance from a periodic structure. Journal of the Optical Society of America A-Optics Image Science and Vision, 2007. 24(3): p. 696-701.
79. Gogolides, E., et al., A review of line edge roughness and surface nanotexture resulting from patterning processes. Microelectronic Engineering, 2006. 83(4-9): p. 1067-1072.
80. Constantoudis, V., et al., Line edge roughness and critical dimension variation: Fractal characterization and comparison using model functions. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2004. 22: p. 1974.
81. Ding, Y. and R. Magnusson, Resonant leaky-mode spectral-band engineering and device applications. Optics Express, 2004. 12(Compendex): p. 5661-5674.
82. Ding, Y. and R. Magnusson, Use of nondegenerate resonant leaky modes to fashion diverse optical spectra. Optics Express, 2004. 12: p. 1885-1891.
83. Mateus, C.F.R., et al., Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating. IEEE Photonics Technology Letters, 2004. 16: p. 518-520.
84. Wang, J.J., et al., Resonant grating filters as refractive index sensors for chemical and biological detections. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2005. 23: p. 3006-3010.
85. Lee, K.J., et al., Agarose-gel based guided-mode resonance humidity sensor. IEEE Sensors Journal, 2007. 7(3-4): p. 409-414.
86. Lee, K.J., et al., Optical filters fabricated in hybrimer media with soft lithography. Optics Letters, 2009. 34: p. 2510-2512.
87. Viheriala, J., et al., Large-area nanoperforated SiN membranes for optical and mechanical filtering. Microelectronic Engineering, 2010. 87(5-8): p. 1620-1622.
88. Wei, S.M. and L.F. Li, Measurement of photoresist grating profiles based on multiwavelength scatterometry and artificial neural network. Applied Optics, 2008. 47(13): p. 2524-2532.
89. ITRS, International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/2009ITRS/Home2009.htm, 2009.
90. Schuster, T., et al., Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry. Microelectronic Engineering, 2009. 86(4-6): p. 1029-1032.
91. Bergner, B.C., T.A. Germer, and T.J. Suleski, Effective medium approximations for modeling optical reflectance from gratings with rough edges. Journal of the Optical Society of America a-Optics Image Science and Vision, 2010. 27(5): p. 1083-1090.
92. Talneau, A., et al., Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances. Applied Optics, 2010. 49: p. 658-662.
93. Poutous, M.K., et al. Correlation of Fabrication Tolerances with the performance of Guided-Mode-Resonance Micro-optical components. in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, January 26, 2009 - January 28, 2009. 2009. San Jose, CA, United states.Proc. SPIE, 2009.7205:p 72050Y_1- 72050Y_9.
94. Prasad, T., V.L. Colvin, and D.M. Mittleman, The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy. Optics Express, 2007. 15: p. 16954-16965.
95. Lee, K.J., et al., Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth. IEEE Photonics Technology Letters, 2008. 20: p. 1857-1859.
96. Shin, D.H., et al., Thin-film optical filters with diffractive elements and waveguides. Optical Engineering, 1998. 37(9): p. 2634-2646.
97. Talneau, A., et al., Deeply-etched two-dimensional grating in a Ta2O5 guiding layer for very narrow spectral filtering. Microelectronic Engineering, 2010. 87: p. 1360-1362.
98. Barone, P.W., et al., Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials, 2005. 4(1): p. 86-U16.
99. Yu, C.X., et al., Mid-IR biosensor: Detection and fingerprinting of pathogens on gold island functionalized chalcogenide films. Analytical Chemistry, 2006. 78(8): p. 2500-2506.
100. Guo, L.J., X. Cheng, and C.F. Chou, Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano letters, 2004. 4(1): p. 69-73.
101. Ahn, S.H. and L.J. Guo, Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting. Acs Nano, 2009. 3(8): p. 2304-2310.
102. Chang, C.H., et al., High fidelity blazed grating replication using nanoimprint lithography. Journal of Vacuum Science & Technology B, 2004. 22(6): p. 3260-3264.
103. Kurashima, Y., et al., Fabrication of ultrasmooth mirrors by UV-nanoimprint. Japanese Journal of Applied Physics, 2008. 47(6): p. 5156-5159.
104. Jao, C.-S. and H.-Y. Lin, Ultrasensitive guided-mode resonance biosensors superimposed with vertical sidewall roughness. Applied Optics, 2011. 50(26): p. 5139-5148.
105. Huang, M., et al., Sub-wavelength nanofluidics in photonic crystal sensors. Optics Express, 2009. 17: p. 24224-24233.
106. Ganesh, N., I.D. Block, and B.T. Cunningham, Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio. Applied Physics Letters, 2006. 89(2):p. 023901_1-023901_3.
107. Block, I.D., L.L. Chan, and B.T. Cunningham, Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sensors and Actuators B-Chemical, 2006. 120(1): p. 187-193.
108. Kikuta, H., et al. High resolution refractive index sensor with a crossed guidcd-mode resonant grating. in Nanoengineering: Fabrication, Properties, Optics, and Devices II, August 3, 2005 - August 4, 2005. 2005. San Diego, CA, United states. Proc. SPIE, 2007. 5931: p. 59310N_1-59310N_6.
109. Wawro, D., et al. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings. Proc. SPIE, 2000. 3911:p.86-94.
110. Yaakobovitz, B., Y. Cohen, and Y. Tsur, Line edge roughness detection using deep UV light scatterometry. Microelectronic Engineering, 2007. 84: p. 619-625.
111. Shyu, D.-M., Y.-S. Ku, and N. Smith. Angular scatterometry for line-width roughness measurement. in Metrology, Inspection, and Process Control for Microlithography XXI, Febrary 26, 2007 - March 1, 2007. 2007. San Jose, CA, United states: Proc. SPIE, 2007. 6518: p. 65184G_1-65184G_10.
112. Torcal-Milla, F.J., I. Harder, and N. Lindlein, Effect of fabrication errors on the diffraction pattern produced by sawtooth gratings. Applied Optics, 2010. 49(9): p. 1599-1606.
113. Torcal-Milla, F.J., L.M. Sanchez-Brea, and E. Bernabeu, Diffraction of gratings with rough edges. Optics Express, 2008. 16(24): p. 19757-19769.
114. Ma, Y., H.J. Levinson, and T. Wallow. Line edge roughness impact on critical dimension variation. in Metrology, Inspection, and Process Control for Microlithography XXI, Febrary 26, 2007 - March 1, 2007. 2007. San Jose, CA, United states. Proc. SPIE, 2007. 6518: p. 651824_1-651824_12.
115. Tibuleac, S. and R. Magnusson, Narrow-linewidth bandpass filters with diffractive thin-film layers. Optics Letters, 2001. 26(9): p. 584-586.
116. Sun, T., et al., Single-material guided-mode resonance filter for TE waves under normal incidence. Chinese Optics Letters, 2010. 8(5): p. 447-448.
117. Shokooh-Saremi, M. and R. Magnusson, Particle swarm optimization and its application to the design of diffraction grating filters. Optics Letters, 2007. 32(8): p. 894-896.
118. Li, L. and L. Zeng, Measurement of duty cycles of photoresist grating masks made on top of multilayer dielectric stacks. Applied Optics, 2005. 44(21): p. 4494-4500.
119. Talneau, A., et al., Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances. Applied Optics, 2010. 49(4): p. 658-662.
120. Kazanskiy, N., P. Serafimovich, and S. Khonina, Harnessing the guided-mode resonance to design nanooptical transmission spectral filters. Optical Memory & Neural Networks, 2010. 19(4): p. 318-324.
121. Pietroy, D., O. Parriaux, and J.L. Stehle, Ellipsometric retrieval of the phenomenological parameters of a waveguide grating. Optics Express, 2009. 17(20): p. 18219-18228.
122. Gereige, I., et al., Recognition of diffraction-grating profile using a neural network classifier in optical scatterometry. Journal of the Optical Society of America A, 2008. 25(7): p. 1661-1667.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66239-
dc.description.abstract導模共振奈米光柵係近年來製造生物晶片的新興方法,開啟了新世代生醫感測發展的另一重要領域。為了確保其檢測之穩定性,可重複性,乃至量產重現性,在這篇論文中,我們的研究主要著眼於特定粗糙度對於導模共振奈米光柵分別在近紅外光及近紫外光波段操作下的影響。為此,本文所設計之導模共振奈米光柵不論是在近紅外光或近紫外光波段均擁有非常窄頻之反射式半高全寬光譜響應,以增強光柵表面感測的靈敏度;藉由待測生醫材料之被覆及粗糙度幾何分形之疊加,造成光柵結構折射率的微量變化,引起反射光譜共振峰值的飄移,達成生醫檢體濃度及粗糙度尺度的逆向推演與預測。
我們接著針對幾種特定光柵粗糙度(例如,隨機分佈,正弦分佈,矩形分佈,等效介質分佈等),以簡化之相關長度ξ及最大粗糙度之均方根值σ,從數學上具體描述粗糙度之功率譜密度函數,透過嚴格耦合波理論,量化導模共振奈米光柵因粗糙度所造成反射共振峰值的飄移量。
模擬結果令人驚訝的是,在近紅外光入射下,在某些特定ξ值中,垂直側壁粗糙度σ值即便高達 10 奈米,反射共振峰值依然不會飄移,因此在σ-ξ圖中所闡述之反射共振峰值產生帶隙狀條紋區域,我們把它類比於光子晶體中的能帶區域,並稱之為「類能隙」。換言之,若垂直側壁粗糙度之尺度,落在σ-ξ圖中之類能隙區域內,其副作用對於導模共振奈米光柵之檢測能力是微不足道的。因此,在奈米製程線寬邁向僅十幾奈米尺度的同時,如能將光柵之類能隙區域透過σ-ξ作有效控制,將使垂直側壁粗糙度公差具高度容忍範圍。惟獨表面粗糙度即便小於次奈米尺度,仍然對於導模共振奈米光柵造成顯著的共振峰值的飄移,甚至造成無效的光譜識別。
另外,為因應更短波長的近紫外光入射於更小線寬的光柵尺度,令其具有較大的檢測鑑別率,我們首先定義了製程窗口函數η,用於量化類能隙出現的概率。我們發現若要求η= 90%時,則σ的公差容忍範圍在近紫外光和近紅外光的情況下幾乎沒有太大差別。因此,在實務製程條件下,近紫外光入射毋須另外訂定更嚴格的製造公差極限。
未來,在奈米製程線寬邁向僅十幾奈米之尺度的同時,如能將光柵之類能隙區域作有效控制,將使垂直側壁粗糙度等製程公差,具有高度容忍範圍,以提昇元件製程良率。
zh_TW
dc.description.abstractNano-grating of guided-mode resonance (GMR) is a promising method to fabricate biosensors. To guarantee its stability, repeatability, and reproducibility of biosensors, in this dissertation, we present our investigations mainly on the effects of roughness on the guided-mode resonance (GMR) filters made of subwavelength grating for applications to ultrasensitive biosensors operated under near-infrared (near-IR) and near-ultraviolet (near-UV) illumination. We design the spectral full width at half maximum (FWHM) of the grating filter to be as narrow as possible in order to emphasize the enhanced surface-to-bulk sensitivity and highlight the roughness effects.
Several types of roughness (e.g., randomized, sinusoidal, rectangular, and effective medium) morphologies on the grating—in terms of the correlation length ξ and the root mean square of the maximum roughness deviation σ—cast in a power spectral density function were evaluated by rigorous coupled wave analysis (RCWA) to quantify the shifts in the reflective resonance peak wavelength value (PWV) of the grating filter.
Our simulations show that for specific ξ values under near-IR radiation, the PWVs remain constant even if σ of the vertical sidewall roughness (VSR) becomes as large as 10 nm; this indicates dramatic bandgap-like stripes, which are similar to the bandgaps observed in the band diagrams of photonic crystals. In other words, the effects of VSR on the GMR biosensor performance are insignificant when ξ is located at certain bandgap-like stripes; therefore, this type of roughness is highly tolerable even if the line width of the filter is decreased to only a few tens of nanometers. Sub-nanometer surface roughness, none the less, caused significant PWV shifts, leading to invalid spectral recognition. Under near-UV radiation, the parameter η of process window is also proposed to quantify the probability of the bandgap-like peak-value stripes that appeared. When η = 90%, the process window is narrower and almost the same for near-UV and near-IR cases. Therefore, there is less need to calibrate the PWV shift at the expense of a more severe fabrication limit especially under near-UV illumination.
Finally, as the line width in nanotechnology towards only a few tens of nanometers, the effective controlling of bandgap-like region will enable the larger tolerance limit of roughness, such as VSR to improve the production yield rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:26:50Z (GMT). No. of bitstreams: 1
ntu-101-D94941002-1.pdf: 3333603 bytes, checksum: bfb73c67c16a989af5ceeb2314c114f5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
Contents vii
LIST OF FIGURES x
Chapter 1 Introduction 1
1.1 History of Diffractive Grating 1
1.2 Development of Subwavlength Grating 1
1.3 Applications to Guided-Mode Resonance Grating 3
1.4 Overview of the Dissertation 6
Chapter 2 Theoretical Backgrounds 9
2.1 Rigorous Coupled Wave Analysis 10
2.2 Principles from RCWA to Guided-Mode Resonance 13
2.2.1 RCWA applied to Sinusoidal Modulated Grating 13
2.2.2 Weakly Modulated GMR Grating 16
2.3 Effective Medium Approximation 19
2.4 Physical Models of General Roughness 25
2.4.1 Discussions on Autocorrelation Function 27
Chapter 3 Near-IR Biosensing with Vertical Sidewall Roughness Effects 30
3.1 Abridgement 30
3.2 Motivation 31
3.3 Numerical Methods and Physical Models 34
3.3.1 About rigorous coupled wave analysis 34
3.3.2 Ultrasensitive guided-mode resonance biosensor design 35
3.3.3 Validation of ultrasensitive GMR biosensor 44
3.3.4 Characterization of VSR model along sidewalls of grating 47
3.4 Results and Discussion 50
3.4.1 Analysis of GMR biosensors superimposed with VSR 50
3.5 Remarks 61
Chapter 4 Near-IR Biosensing with Surface Morphological Effects 62
4.1 Abridgement 62
4.2 Background 62
4.3 Numerical Methods and Physical Models 65
4.3.1 About rigorous coupled-wave analysis 65
4.3.2 Near-IR GMR biosensor and surface roughness model 65
4.4 Results and Discussion 70
4.4.1 Analysis of near infrared biosensors superimposed with SR 70
4.5 Remarks 85
Chapter 5 Near-UV Biosensing with Vertical Sidewall Roughness Effects 86
5.1 Abridgement 86
5.2 Motivation 87
5.3 Numerical Methods and Physical Models 88
5.3.1 Design of nanoresonant grating for near-UV biosensing 88
5.3.2 Characterization of VSR model along sidewalls of grating 101
5.4 Results and Discussion 103
5.5 Remarks 108
Chapter 6 Conclusions and Future Work 110
6.1 Conclusions 110
6.2 Potential Future Work 111
6.2.1 From two-dimension to three-dimension 112
6.2.2 From ultra-narrowband to ultra-broadband 112
6.2.3 Optimization 112
6.2.4 Recognition 113
References 114
dc.language.isoen
dc.subject生物感測器zh_TW
dc.subject光譜共振峰值zh_TW
dc.subject粗糙度zh_TW
dc.subject奈米光柵zh_TW
dc.subject導模共振zh_TW
dc.subject製程窗口函數zh_TW
dc.subject功率頻譜密度函數zh_TW
dc.subject類能隙zh_TW
dc.subject半高全寬zh_TW
dc.subject嚴格耦合波理論zh_TW
dc.subjectprocess windowen
dc.subjectGMRen
dc.subjectnano-gratingen
dc.subjectbiosensoren
dc.subjectrigorous coupled wave analysisen
dc.subjectfull width at half maximumen
dc.subjectresonance peak wavelength valueen
dc.subjectvertical sidewall roughnessen
dc.subjectpower spectral density functionen
dc.subjectbandgap-likeen
dc.title導模共振奈米光柵於光學感測之應用及其公差分析zh_TW
dc.titleApplications of Guided-Mode Resonance Nano-Gratings for Optical Sensing and their Tolerance Analysisen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee徐巍峰,黃鼎偉,林正峰,林宏彝
dc.subject.keyword導模共振,奈米光柵,生物感測器,嚴格耦合波理論,半高全寬,光譜共振峰值,粗糙度,功率頻譜密度函數,類能隙,製程窗口函數,zh_TW
dc.subject.keywordGMR,nano-grating,biosensor,rigorous coupled wave analysis,full width at half maximum,resonance peak wavelength value,vertical sidewall roughness,power spectral density function,bandgap-like,process window,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2012-02-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved