請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66222
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
dc.contributor.author | Tzuoh-Chyau Yeh | en |
dc.contributor.author | 葉作球 | zh_TW |
dc.date.accessioned | 2021-06-17T00:26:12Z | - |
dc.date.available | 2013-05-14 | |
dc.date.copyright | 2012-05-14 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-03-01 | |
dc.identifier.citation | [1] K. O. Hill, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett., vol. 32, 647 - 649, 1978.
[2] D. K. W. Lam and B. K. Garside, “Characterization of single-mode optical fiber filters,” Appl. Opt., vol. 20, pp. 440-445, 1981. [3] R. Kashyap, Fiber Bragg Gratings. Academic Press, 1999. [4] M. Yamada and K. Sakuda , “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt., vol. 26, pp. 3474-3478, August 1987. [5] Savo G. Glisic, Adaptive WCDMA Theory and Practice, John Wiley & Sons Ltd, pp. 43-296, 2003. [6] 葉作球、鄭石源, “光乙太網路之光纖鄰接模組,” 中華民國專利號碼TW M328576, 2008/03/11. [7] 葉作球、鄭玉鉅、鄭石源、曾伯達, “光纖光柵交換模組,” 中華民國專利號碼TW I320489, 2010/02/11. [8] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol., vol. 14, pp. 58-65, 1996. [9] IEEE Std. 802.3ae-, Part 3: “Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications,” 2002. [10] Corning SMF-28e Optical fiber, http://www.corning.com/docs/opticalfiber/CO9562.pdf [11] E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am., vol. 51, pp. 491-498, 1961. [12] H. A. Haus, Waves and Fields in Optoelectronics. Prentice-Hall, 1984. [13] D. Gloge, “Weaky guiding fibers,” Appl. Opt., vol. 10, pp. 2252-2258, 1971 [14] A. Yariv, Optical Electronics, 4th Ed. Holt, Rinehart and Winston, Inc., 1991 [15] ITU-T Recommendation G.652 [16] B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett., vol. 22, pp. 883-885, 1997. [17] K. O. Hill, B. Malo, F. Bilodeau, and D. C. Johnson, “Photosensitivity in optical fibers,”Annu. Rev. Mater. Sci., vol. 23: 125-157, 1993. [18] Andreas Othonos, Kyriacos Kalli, David Pureur and Alain Mugnier, “Fibre Bragg Gratings,” Springer Berlin Heidelberg, pp. 189-269, 2006. [19] B. J. Eggleton. P. A. Krug, L. Poladian, and F. Ouellette, “long-periodic superstructure Bragg gratings in optical fibres,” Electron. Lett., vol. 30, pp. 1620-1622, 1994. [20] S A Vasil'ev¶ E M Dianov, A S Kurkov, O I Medvedkov, V N Protopopov, “long-period grating theory,” http://gratings.fo.gpi.ru/index.php?page=11, 2003. [21] S. Suzuki, H. Ito, Y. Takata, and H. Sakata, “Cladding-mode extraction from long-period fibre grating using self-aligned core-mode blocker, “Electron. Lett., vol. 43, pp. 23-24, 2007. [22] J. Bae, “Analysis for long-period fiber gratings using thermal kernel function,” Opt. Express, vol. 12, pp. 797-810, 2004. [23] T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A, vol. 14, pp. 1760-1773, 1997. [24] P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings, “J. Lightwave Technol., vol. 19, 1352-1365, Sep. 2001. [25] Pan Camel, http://commons.wikimedia.org/wiki/File:OrthogonalCodeTree.svg [26] 林多常、葉作球、劉玉琳、江衍旭、盧明寬、蔣博文,”全光乙太網路點對多點協議系統,” 中華民國專利號碼TW I239733, 2005/09/11. [27] Jack Baskin School of Engineering, UC Santa Cruz , “Optical fiber communication lecture 3 waveguide/fiber modes.” http://www.soe.ucsc.edu/classes/ee230/Spring04/Lecture%203.ppt#287,6,Mode Velocity and Polarization Degeneracy [28]Optiwave coporation., Optigating 4.2, 2003. [29] M. McCall, “On the Application of Coupled Mode Theory for Modeling fiber Bragg gratings,” J. Lightwave Technol., vol. 18, pp. 236- ,Feb. 2000. [30] R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, “Modelling of long-period fibre grating response to refractive higher than that of cladding,” Meas. Sci. Technol., vol. 12, pp. 1709–1713, 2001. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66222 | - |
dc.description.abstract | 單模光纖額外再加纖殼2 於纖殼1的外圍,可以變成多模光纖,這個功能可以增加新的應用例如設計新的長週期光纖光柵。其所需要的知識就是耦合模態理論與轉移矩陣的計算方法。因此可以發展出新的三層結構布拉格光纖光柵,與多波長之長週期光纖光柵帶斥濾波器。分碼多工應用在光纖通信也是可以,它的碼語可以對應到,寬的光波帶中的有限次波帶,成為光分碼多工的應用。它的應用很廣,而且有大頻寬與高速的特點,可以迎合未來光信號處理時代的需求。
1310奈米長的光波可以被雷射產生,且被耦合進單模光纖,應用於傳統光通信。事實上,單模光纖在1550奈米長附近的光波段,有最低傳送損失,受到電信業廣泛使用。因此從1300 到 1620奈米長的光波段,被用在現代光通信。這個光波段有超過40 terahertz可用頻寬。如何分波段充分使用,那是關心的議題。分波段使用波寬,符合光分碼多工編碼器的需求。利用使用者的數據資訊,去調變白光光源,再去經過光分碼多工編碼器,就完成建立擬實通道。白光光源取代窄波寬的雷射光源可以用在光分碼多工系統的發射端。 大信號頻寬與低損失,吸引光通信工程師研究多種光纖應用。例如光纖通信可動態調整密式分波多工與光學式分碼多工的頻寬使用的研究題目。光纖的信號處理技術,實現了上述構想。最近光纖光柵被發現,可以同時過濾多個不同波長的光波。許多更細的方法製成不同型式的光纖光柵,實現濾波功能。包括布拉格光柵、啁啾光柵、長週期光柵、高斯無足光柵、相移光柵與超結構光柵等。本論文將研究多波長濾波光纖光柵。其許多應用例如光分碼多工交換模組、光乙太光纖鄰接模組之全雙工與半雙工、分碼多工個人電腦主機板擴充槽接法等值得去製造使用。本文也先收集一些優良的分析例子去了解光纖光柵,研究長週期光纖光柵可以被設計出多波長濾波功能。本論文所提的單模光纖額外再加纖殼2 於纖殼1的外圍,這種革新的長週期多波長濾波光纖光柵用於光分碼多工 8X8 交換功能,在本論文將被提出充分討論與展現。 | zh_TW |
dc.description.abstract | A single-mode fiber becomes a multimode fiber when cladding2 is added outside cladding1. The addition of cladding2 supports new applications, such as new long-period fiber gratings. Coupled Mode Theory and Transfer Matrix are principal to design and simulation fiber gratings. Types fiber grating are useful in modern optical communication. CDMA codeword could be map to wavelengths. That’s why optical CDMA switching works. Large bandwidth and high speed switch rate are meet characters of future telecommunication network requirements.
Light with a wavelength of 1310 nm wavelength is generated by a laser, and is coupled into SMF for traditional optical fiber communication. The lowest loss wavelength band of the SMF, which is around 1550 nm, is favored for telecommunication. The band from 1300 to 1620 nm of wavelength is in fact used for modern optical fiber communication. A bandwidth over 40 THz is available utilized. The full use of a sectionalized band is an issue of concern. Sectionalized bands satisfy Optical Code Division Multiple Access requirements. A white light source is modulated by user data and passed through the OCDMA coder. The white light source replaces a laser which is a narrow-band light source, for CDMA systems. The huge signal bandwidth and low loss of optical fibers are of particular interest to optical communication engineers because of their potential importance in fiber optical applications. Studies of dynamic adjustable bandwidth and usage in each channel of a DWDM and OCDMA are advanced. Optical fiber signal process approaches can realize the optical fiber grating for filtering multiple wavelengths. Several methods can be utilized to make various gratings that can function as filters. These include Bragg gratings, chirped gratings, long-period gratings, Gaussian apodization gratings, phase-shift gratings, superstructure gratings and others. These are good for tailoring gratings with complicated superstructures. These investigate optical fiber grating for filtering multiple wavelengths. Step by step present to develop the long-period fiber grating multiple wavelength filters was described in this text. Examples are considered to help understand fiber gratings and LPFG can be used in the development of multiple-wavelength filters. The first on the world with LPFG which cladding2 is added outside cladding1 is made of single-mode fiber and application of OCDMA 8X8 switching is realized using multiple-wavelength filtering of LPFG, as well as CDMA Optical Ethernet Adjacent Fiber Module works with duplex and half duplex mode simultaneously and OCDMA Expansion Connector of PC mother board. They are described in appendixes in this thesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:26:12Z (GMT). No. of bitstreams: 1 ntu-101-P94942002-1.pdf: 1912452 bytes, checksum: 2e356882132d6b0a6a3c80c3ac6ad18c (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
第1章 簡介 1 1.1 動機 1 1.2 研究目標 3 1.3 章節介紹 4 第2章 用耦合模態理論與轉移矩陣分析光纖光柵 6 2.1 光纖與光纖光柵的現代光通信應用 6 2.2 利用單模光纖製作光纖光柵 7 2.3 單模光纖光柵的理論分析 10 2.1 耦合模態理論分析光纖光柵 14 2.2 利用耦合模態理論計算光纖光柵穿透波與反射波的量 14 2.3 光柵的功能 17 2.4 光柵的相位匹配 18 第3章 布拉格光纖光柵 20 3.1 布拉格光纖光柵的反射 20 3.2 布拉格光纖光柵的反射能量 21 3.3 超結構布拉格光纖光柵作為多波長濾波器 31 3.4 多波長布拉格式光纖光柵反射應用例子 33 第4章 長週期光纖光柵 36 4.1 長週期光纖光柵與第二層纖殼 36 4.2 長週期光纖光柵相關公式與其作用 37 4.3 光分碼多工的碼語與長週期光纖光柵編碼 54 第5章 結論 57 附錄 a A1. 光分碼多工交換模組 (OCDMA switching module) a A2. 點對多點光乙太網路規約(point to multiple point protocol for all optical Ethernet, P2MP) d A3. 光乙太光纖鄰接模組與應用(optical Ethernet adjacent fiber module, OEAFM) f A4. 光分碼多工之光乙太光纖鄰接模組之全雙工與半雙工(duplex and half duplex mode) h A5. 光纖到家之光纖光柵障礙查測(FTTH FBG monitor and trouble locate) j A6. 分碼多工個人電腦主機板擴充槽接法 (OCDMA expansion connector of PC mother board) l A7. 參考文件 n 圖目錄 Fig 1 光在單模光纖的傳播 9 Fig 2 單模光纖傳播常數 13 Fig 3 單模光纖光柵折射率分析(a)與單模光纖光柵相位分析(b)[4] 16 Fig 4 光纖光柵製造概念 18 Fig 5 布拉格式光纖光柵反射波應用於密式波長多工塞取功能 19 Fig 6 布拉格光纖光柵反射光譜 24 Fig 7 標準布拉格式光纖光柵反射光譜 25 Fig 8 標準布拉格式光纖光柵八分之一長度穿透光譜 26 Fig 9 布拉格式光纖光柵反應長度 27 Fig 10 單模光纖布拉格式光纖光柵穿透與反射光譜 27 Fig 11 布拉格式光纖光柵反射光譜 28 Fig 12 布拉格式光纖光柵穿透光譜 28 Fig 13 一般布拉格式光纖光柵結構 29 Fig 14 三層結構光纖式布拉格式光纖光柵結構 29 Fig 15 三層結構光纖式布拉格式光纖光柵反射光譜 29 Fig 16 三層結構光纖式布拉格式光纖光柵穿透光譜 30 Fig 17 空間傅氏光學超結構週期光柵轉換 32 Fig 18 超結構光纖光柵計算模式[4] 32 Fig 19 超結構布拉格式光纖光柵之結構 34 Fig 20 一個超結構布拉格式光纖光柵反射光譜 34 Fig 21 另一個超結構布拉格式光纖光柵反射光譜 35 Fig 22 纖殼模態的高階模態HE12, HE13, 與 HE16,在纖殼半徑的幅射電場振幅分佈圖[20] 41 Fig 23 由B參數導出HE1m (m= 1~ 7)模態(a),與長週期光感應折射率光柵傳輸係數光譜(b) [20]. 41 Fig 24 纖芯模態與纖殼模態[21] 42 Fig 25 纖殼模態HE1m 近場強度圖 m = 4 (a), 5 (b), 6 (c), 7 (d), 8 (e), 10 (f).[20] 42 Fig 26三層結構光纖長週期光纖光柵高階模態濾波穿透與反射光譜 43 Fig 27三層結構光纖長週期光纖光柵濾波穿透光譜 44 Fig 28三層結構光纖長週期光纖光柵濾波反射光譜 44 Fig 29三層結構光纖長週期光纖光柵濾波穿透與反射光譜 45 Fig 30 傳播 45 Fig 31 高斯輸入脈衝 46 Fig 32 高斯脈衝光譜 46 Fig 33 高斯脈衝反應光譜 47 Fig 34 光柵反應 47 Fig 35 三層結構光纖長週期光纖光柵結構 47 Fig 36 均勻間隔三層結構光纖長週期光纖光柵多波長穿透與反射光譜 48 Fig 37 三層結構光纖超結構長週期光纖光柵之結構 48 Fig 38 62模數三層結構光纖長週期光纖光柵多波長濾波穿透與反射光譜 49 Fig 39 3模數三層結構光纖長週期光纖光柵多波長濾波穿透與反射光譜 50 Fig 40 極佳的三層結構光纖長週期光纖光柵穿透與反射光譜 51 Fig 41 超結構長週期光纖光柵穿透與反射1&2光譜 52 Fig 42 超結構長週期光纖光柵穿透與反射1光譜 52 Fig 43 超結構長週期光纖光柵穿透與反射2光譜 53 Fig 44 超結構長週期光纖光柵穿透與反射1&2 組織結構 53 Fig 45 碼語樹 56 Fig 46三層結構光纖長週期光纖光柵濾波反應不足穿透與反射光譜 60 Fig 47三層結構光纖長週期光纖光柵濾波過度反應穿透與反射光譜 61 Fig A48 光分碼多工編碼器與解碼器 b Fig A49 8X8光分碼多工編碼器與解碼器 b Fig A50 8X8光分碼多工交換模組電路卡板 c Fig A51點對多點全光乙太網路 e Fig A52點對多點全光乙太網路規約時序圖 e Fig A53光乙太光纖鄰接模組 g Fig A54 光乙太光纖鄰接模組單線接線應用示意圖 g Fig A55光分碼多工之光乙太光纖鄰接模組全雙工與半雙工單線接線應用示意圖 i Fig A56光纖到家之光纖光柵障礙查測應用 k Fig A57光分碼多工個人電腦主機板擴充槽接法 m | |
dc.language.iso | zh-TW | |
dc.title | 光纖光柵與光交換模組應用 | zh_TW |
dc.title | Fiber Grating Filters and Optical Switching Module Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖顯奎(Shien-Kuei Liaw),邱奕鵬(Yih-Peng Chiou),曹恆偉(Hen-Wai Tsao) | |
dc.subject.keyword | 長週期光纖光柵,多波長濾波器,光分碼多工, | zh_TW |
dc.subject.keyword | long-period fiber grating,multi-wavelength filter,optical CDMA, | en |
dc.relation.page | 61 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-03-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。