請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66205完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇忠楨 | |
| dc.contributor.author | Kuang-Wei Yen | en |
| dc.contributor.author | 顏光瑋 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:25:35Z | - |
| dc.date.available | 2022-02-13 | |
| dc.date.copyright | 2020-02-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-11 | |
| dc.identifier.citation | 行政院農業委員會。2019。有機農產品生產規範-作物。Retrieved Dec. 23,2019(https://law.coa.gov.tw/glrsnewsout/LawContent.aspx?id=FL026522)
行政院環境保護署。2019a。重點事業廢棄物產出及清理流向統計年報(107年一般性污泥)。Retrieved Dec. 23,2019(https://waste.epa.gov.tw/prog/IndexFrame.asp?Func=5) 行政院環境保護署。2019b。107年重點事業廢棄物之處理方式統計年報(107年一般性污泥)。Retrieved Dec. 23,2019(https://waste.epa.gov.tw/prog/IndexFrame.asp?Func=5) 郭猛德、蕭庭訓、王政騰。2008。養豬三段式廢水與污泥處理技術。畜牧半月刊 81:5,頁 29-38。 國立編譯館。1987。水及廢水處理化學。初版。23-39,214-227。台北:茂昌。 Amini, M., H. Younesi, N. Bahramifar, A. A. Z. Lorestani, F. Ghorbani, A. Daneshi, and M. Sharifzadeh. 2008. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J. Hazard. Mater. 154(1-3):694-702. doi:10.1016/j.jhazmat.2007.10.114. Andreea, S.. 2013. Brewer’s yeast : an alternative for heavy metal biosorption from waste waters : a review. Proenviroment 6:457–464. Arvaniti, O. S. and Stasinakis, A. S. 2015. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci. Total Environ. 524:81-92. doi:10.1016/j.scitotenv.2015.04.023. Atlas, R. M. 2010. Handbook of microbiological media. 4th. CRC press, Washington, DC. Avery, S.V. and J. M. Tobin. 1992. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 58:3883–9. Badmus, M. A. O., T. O. K. Andu, and B. U. Anyata. 2006. Removal of heavy metal from industrial wastewater using hydrogen peroxide. Afr. J. Biotechnol. 6(3):238-242. Belkacem, M., M. Khodir, and S. Abdelkrim. 2008. Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination 228:245–254. doi:10.1016/j.desal.2007.10.013. Bleve, G., C. Lezzi, M. A. Chiriatti, I. D'Ostuni, M. Tristezza, D. Di Venere, L. Sergio, G. Mita, and F. Grieco. 2011. Selection of non-conventional yeasts and their use in immobilized form for the bioremediation of olive oil mill wastewaters. Bioresour. Technol. 102(2):982-989. Buijs, N. A., V. Siewers, and J. Nielsen. 2013. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. in Chem. Biol. 17(3):480-488. Chen, S. Y. and J. G. Lin. 2004. Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effects of sludge solids concentration. Chemosphere. 54(3):283-9. doi:10.1016/j.chemosphere.2003.08.009. Chou, Y. C. and J. J. Su. 2019. Biodiesel production by acid methanolysis of slaughterhouse sludge cake. Animals 9(12):1029. doi:10.3390/ani9121029. Dacera, D. D. M. and S. Babel. 2006. Use of citric acid for heavy metals extraction from contaminated sewage sludge for land application. Water Sci. Technol. 54(9):129-35. doi: 10.2166/wst.2006.764. Dacera, D. D. M. and S. Babel. 2008. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes. Bioresour. Technol. 99(6):1682-1689. doi:10.1016/j.biortech.2007.04.002. da Mota, I. de O., J. A. de Castro, R. de G. Casqueira, and A. G. de Oliveira Jr. 2015 . Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals. J. Mater. Res. Technol. 4:109–113. doi:10.1016/j.jmrt.2014.11.004. De Rossi, A., M. R. Rigon, M. Zaparoli, R. D. Braido, L. M. Colla, G. L. Dotto, and J. S. Piccin. 2018. Chromium(VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ. Sci. Pollut. Res. 25(19):19179-19186. doi:10.1007/s11356-018-2377-4. Dhankhar, R. and A. Hooda. 2011. Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 32:467–491. Di Palma, L. and R. Mecozzi. 2007. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. J. Hazard. Mater. 147(3):768-775. doi:10.1016/j.jhazmat.2007.01.072. EPA. 2009. Targeted national sewage sludge survey statistical analysis report. Report by U.S. Environmental Protection Agency office of Water. Washington, D.C. January 2009. Eide, D. 1997. Molecular biology of iron and zinc uptake in eukaryotes. Curr. Opin. Cell Biol. 9:573–7. Farhan, S. N. and A. A. Khadom. 2015. Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int. J. Ind. Chem. 6:119-130. doi:10.1007/s40090-015-0038-8. Febrianto, J., A. N. Kosasih, J. Sunarso, Y. H. Ju, H. Indraswati, and S. Ismadji. 2009. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J. Hazard. Mater. 162:616-645. doi:10.1016/j.jhazmat.2008.06.042. Ferreira, I. M. P. L. V. O., O. Pinho, E. Vieira, and J. G. Tavarela. 2010. Brewer's Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci. Tech. 21:77-84. doi: 10.1016/j.tifs.2009.10.008. Fomina, M. and G. M. Gadd. 2014. Biosorption: current perspectives on concept, definition and application. Bioresour. Technol. 160:3-14. Fytianos, K., E. Charantoni, and E. Voudrias. 1998. Leaching of heavy metals from municipal sewage sludge. Environ. Int. 24(4):467-475. doi:10.1016/S0160-4120(98)00026-9. Gadd, G. M. 2009. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 84:13–28. Ghorbani, F., H. Younesi, S. Mahmoud Ghasempouri, A. A. Zinatizadeh, M. Amini, and A. Daneshia. 2008. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J. 145(2):267-275. doi:10.1016/j.cej.2008.04.028. Göksungur, Y., S. Üren, and U. Güvenc. 2003. Biosorption of copper ions by caustic treated waste baker's yeast biomass. Turk. J. Biol. 27:23-29. Gutiérrez-Rivera, B., B. Ortiz-Muñiz, J. Gómez-Rodríguez, A. Cárdenas-Cágal, J. M. D. González, and M. G. Aguilar-Uscanga. 2015. Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renew. Energ. 74:399-405. Hadiani, M. R., K. K. Darani, N. Rahimifard, and H. Younesi. 2018. Biosorption of low concentration levels of lead (II) and cadmium (II) from aqueous solution by Saccharomyces cerevisiae: response surface methodology. Biocatal. Agric. Biotechnol. 15:25-34. Hammaini, A., F. González, A. Ballester, M. L. Blázquez, and J. A. Muñoz. 2007. Biosorption of heavy metals by activated sludge and their desorption characteristics. J. Environ. Manage. 84(4):419-426. He, M., W. Li, X. Liang, D. Wu, and G. Tian. 2009. Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Manage. 29(2):590-597. doi:10.1016/j.wasman.2008.07.005. Kapoor, A. and T. Viraraghavan. 1995. Fungi biosorption - an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53:195–206. Kapoor, A. and T. Viraraghavan. 1997. Fungi as biosorption. In: Wase D. A. J, editor. Biosorbents for Metal Ions. Taylor & Francis. London, UK. p. 67–85. Liu, N., J. Liao, Y. Yang, S. Luo, Q. Luo, A. An, Y. Duan, M. Liu, and Zhao. 2008. Biosorption of 241Am by Saccharomyces cerevisiae: preliminary investigation on mechanism. J. Radioanalytical Nucl. Chem. 275:173-180. Machado, M. D., S. Janssens, H. M. Soares, and E. V. Soares. 2009. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J. Appl. Microbiol. 106(6):1792-1804. doi: 10.1111/j.1365-2672.2009.04170.x. Malik, A. 2004. Metal bioremediation through growing cells. Environ. Int. 30:261– 278. Michalak, I., K. Chojnacka, and A. Witek-Krowiak. 2013. State of the art for the biosorption process—a review. Appl. Biochem. Biotechnol. 170:1389–1416. Ojima, Y., S. Kosako, M. Kihara, N. Miyoshi, K. Igarashi, and M. Azuma. 2019. Recovering metals from aqueous solutions by biosorption onto phosphorylated dry baker’s yeast. Sci. Rep. 9(1):225. doi:10.1038/s41598-018-36306-2. Özer, A. and D. Özer. 2003. Comparative study of the biosorption of lead (II), nickel (II) and chromium (VI) ions onto Saccharomyces cerevisiae: determination of biosorption heats. J. Hazard. Mater. 100:219-229. doi: 10.1016/s0304-3894(03)00109-2. Popenda, A. 2013. Effect of redox potential on heavy metals and arsenic behavior in dredged sediments. Desalin. Water Treat. 52:1-10. doi:10.1080/19443994.2014.887449. Ren, X., R. Yan, H. C. Wang, Y. Y. Kuo, K. J. Chae, I. S. Kim, Y. J. Park, and A. J. Wang. 2015. Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse. Waste Manage. 46:440-448. doi:10.1016/j.wasman.2015.07.021. Ririhena, S. A. J., A. D. Astuti, M. F. Fachrul, M. D. S. Silalahi, R. Hadisoebroto, and A. Rinanti. 2018. Biosorption of heavy metal copper (Cu2+) by Saccharomyces cerevisiae. Iop. Conf. Ser.: Earth Environ. Sci. 106:012090. doi:10.1088/1755-1315/106/1/012090. Sahuquillo, A., A. Rigol, and G. Rauret. 2003. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trend. Anal. Chem. 22(3):152-159. doi:10.1016/S0165-9936(03)00303-0. Saleem, M., H. Brim, S. Hussain, M. Arshad, M. B. Leigh, and Hassan-Zia-ul. 2008. Perspectives on microbial cell surface display in bioremediation. Biotech. Adv. 26(2):151-161. Seiple, T. E., A. M. Coleman, and R. L. Skaggs. 2017. Municipal wastewater sludge as a sustainable bioresource in the United States. J. Environ. Manage. 197:673-680. doi:10.1016/j.jenvman.2017.04.032. Shen, L., F. Wang, F. Wang, F. Cui, S. Zhang, H. Zheng, Y. Zhang, X. Liang, and S. Bi. 2012. Efficacy of yeast-derived recombinant hepatitis B vaccine after being used for 12 years in highly endemic areas in China. Vaccine 30(47):6623-6627. Soares, E. V., G. D. Coninck, F. Duarte, and H. M. V. M. Soares. 2002. Use of Saccharomyces cerevisiae for Cu2+ removal from solution: the advantages of using a flocculent strain. Biotechnol. Lett. 24:663–6. Sparks, D. L. 2003. Environmental soil chemistry. 1st ed. Acad. Press, Massachusetts, MA. Stehlik-Tomas, V., V. G. Zetic, D. Stanzer, S. Grba, and N. Vacic. 2004 . Zinc, copper and manganese enrichment in yeast Saccharomyces cerevisiae. Food Technol. Biotechnol. 42(2):115–120. Suh, J. H. and D. S. Kim. 2000. Effects of Hg2+ and cell conditions on Pb2+ accumulation by Saccharomyces cerevisae. Bioprocess. Eng. 23:327–9. Suzuki, K., M. Waki, T. Yasuda, Y. Fukumoto, K. Kuroda, T. Sakai, N. Suzuki, R. Suzuki, and K. Matsuba. 2010. Distribution of phosphorus, copper and zinc in activated sludge treatment process of swine wastewater. Bioresour. Technol. 101(23):9399-9404. doi: 10.1016/j.biortech.2010.07.014. Veeken, A. H. M. and H. V. M. Hamelers. 1999. Removal of heavy metals from sewage sludge by extraction with organic acids. Wat. Sci. Tech. 40(1):129-136. doi:10.2166/wst.1999.0029. Veglio, F. and F. Beolchini. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44:301–16. Volesky, B. 1990. Biosorption of Heavy Metals. 1st ed. CRC Press, Boca Raton, FL. Wang, H., L. Shen, and H. Wang. 2013. Technology research for the removal of heavy metals from municipal sludge. Appl. Mech. Mater. 295-298:1353-1358. doi:10.4028/www.scientific.net/amm.295-298.1353. Wang, J. L. 2000. Immobilization techniques for biocatalysts and water pollution control. Science press. Beijing. Wang, J. L. 2002. Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem. 37: 847–50. Wang, J. and C. Chen. 2006. Biosorption of heavy metals by Saccharomyces cerevisiae : a review. Biotechnol. Adv. 24:427-451. Wang, J. and C. Chen. 2009. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27:195-226. Wang, T., X. Zheng, X. Wang, X. Lu, and Y. Shen. 2017. Different biosorption mechanisms of uranium (VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J. Environ. Radioactiv. 167:92-99. Wang, Y. 2012. Optimization of cadmium, zinc and copper biosorption in an aqueous solution by saccharomyces cerevisiae. Int. J. Chem. 1:69-81. Willey, J., L. Sherwood, and C. J. Woolverton. 2017. Prescott's microbiology. 10th ed. McGraw-Hill, New York, US. Wu, C. H., C. Y. Kuo, and S. L. Lo. 2004. Removal of metals from industrial sludge by extraction with different acids. J. Environ. Sci. Heal. A. 39(8):2205-2219. Yuan, S., Z. Xi, Y. Jiang, J. Wan, C. Wu, Z. Zheng, and X. Lu. 2007. Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere 68(7):1289-1297. doi:10.1016/j.chemosphere.2007.01.046. Zaleckas, E., V. Paulauskas, and E. Sendžikienė. 2012. Fractionation of heavy metals in sewage sludge and their removal using low-molecular-weight organic acids. J. Environ. Eng. Landsc. 21(3):189-198. doi:10.3846/16486897.2012.695734. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66205 | - |
| dc.description.abstract | 國內目前現有的廢水處理設施所產生之畜牧污泥常含有高濃度的銅及鋅,並導致堆肥中累積許多銅及鋅。應用此富含銅與鋅之堆肥可能會造成土壤表面含過高的銅及鋅,也不符合現有的法規。
首先,將畜牧污泥自污泥重力濃縮槽取出後,以105oC烘乾、過篩後以不同濃度之醋酸(1N、2N及4N)同時添加搭配2 %之過氧化氫水溶液,在不同時間(4、24及48 小時)的處理下,探討對於銅及鋅之去除率的影響。而酸萃取過後混合液,會使用離心的方式將其分離出上清液與殘餘物的部分。結果顯示,在添加2 %之過氧化氫水溶液可顯著促進畜牧污泥中銅及鋅的去除效率(p < 0.01),且最佳處理條件為使用4 N醋酸在48小時的處理下,對於銅及鋅的去除率分別為40及70 %,然而使用2N醋酸搭配過氧化氫水溶液的處理24小時後,與使用4N醋酸處理的組別無差異,然成本相對來說較低,故後續試驗採用此方法。 接著第二部分,將上述酸萃取之上清液經過濾後,使用1N之氫氧化鈉調整pH值至4.5、5.0及5.5,研究酸鹼值對於酵母菌生物吸附之影響。在生物吸附中,會添加少量糖蜜作為酵母菌之可利用碳源,本次酵母菌生物吸附試驗處理時間皆為4小時。研究顯示,在pH值5.5的條件下,麵包酵母可吸附濾液中90 %的鋅離子以及50 %的銅離子。接著在相同的條件下,接種不同比例(2.5%、5%及10 %)之酵母菌菌量,發現酵母菌接種比例對於酵母菌生物吸附效率並無顯著影響。 總而言之,結合上述兩方法可達到減少以及回收畜牧污泥中的銅與鋅,透過本研究所建立之醋酸萃取法及酵母菌生物吸附法的整合平台,可作為後續回收畜牧污泥中銅與鋅的方法之一,增加污泥回歸土地資源化之可利用性。 | zh_TW |
| dc.description.abstract | High concentrations of zinc and copper are often found in bio-sludge of livestock wastewater treatment facility and cause high zinc and copper accumulation in compost. Applications of zinc- or copper-rich compost to the field can result in high zinc/copper residues in the surface soil and violate the limitation of zinc and copper for land applications.
The livestock bio-sludge was dried and treated with different concentrations of acetic acid (1N, 2N, and 4N). The acid-extracted sludge was then treated with or without addition of H2O2 during different time periods (4-, 24-, and 48-h) for investigating the efficiency of acid extraction of zinc and copper. The supernatant of the acid-extracted product was separated from the residues by centrifugation. Experimental results showed that the treatment set of the dried bio-sludge with 2% H2O2 significantly promoted the removal efficiency of zinc and copper from the bio-sludge (p < 0.01). Results showed that the best removal efficiency of copper and zinc from the bio-sludge was 40 and 70%, respectively, by 4N acetic acid in the 48-h group. The filtrated supernatant was adjusted to different pH values (i.e. 4.5, 5.0, and 5.5) with 1N NaOH for exploring the effects of acidity and alkalinity in the filtrate, containing the extracted zinc and copper, on the following bio-absorption by baker’s yeast. The molasses was added into the filtrate and used as the available carbon source to support the yeast’s growth during 4-h time course experiments for bio-absorption of the copper and zinc from the filtrate. Results of the study revealed that the removal efficiency of zinc from the filtrate was more than 90% by baker’s yeast, while of copper was about 50% at pH=5.5 and reaction time of 4 h. In summary, combination of these two approaches is expected to reduce and recycle the heavy metal in livestock sludge. The use of acetic acid with hydrogen peroxide can extract copper and zinc from the sludge. However, the use of 2N acetic acid with hydrogen peroxide solution under a 24-h time period can achieve the same effect by using 4N acetic acid. The yeast has the ability to absorb both copper and zinc in the filtrate at pH = 5.5. Hopefully, the achievement of this study can be applied to develop a machinery platform for recycling zinc and copper from livestock bio-sludge. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:25:35Z (GMT). No. of bitstreams: 1 ntu-109-R06626026-1.pdf: 5851871 bytes, checksum: 6c2ff711c77aa5bd75acaf18503258ee (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv 圖目錄 viii 表目錄 x 第壹章、 研究動機及目的 1 第貳章、 文獻回顧 2 一、 污泥 2 (一) 污泥及其處理系統 2 (二) 污泥污染物 2 (三) 國內外污泥處理方式 3 二、 酸萃取法 5 (一) 酸萃取之原理 5 (二) 有機酸萃取之特點 5 (三) 有機酸萃取之種類 6 (四) 影響酸萃取之因子 9 (五) 使用酸萃取處理重金屬之相關文獻探討 13 三、 生物吸附法 14 (一) 生物吸附之定義 14 (二) 生物吸附的種類 15 (三) 酵母菌之介紹與應用 16 (四) 麵包酵母菌(Saccharomyces cerevisiae)生物吸附的優勢 17 (五) 酵母菌生物吸附的種類 18 (六) 影響酵母菌生物吸附之因子 19 (七) 生物吸附之機制 22 (八) 使用酵母菌生物吸附處理廢水之相關文獻探討 23 第參章、 材料與方法 25 一、 醋酸搭配過氧化氫萃取污泥中銅及鋅試驗 25 (一) 污泥的收集與製備 25 (二) 試驗設計 25 (三) 統計分析 25 (四) 醋酸萃取實驗流程 26 (五) 火焰式原子吸收光譜法 26 (六) pH值之檢測 27 (七) 電導度(Electric Conductivity)之檢測 28 (八) 離子層析儀(Ion Chromatography)之分析 28 二、 酵母菌生物吸附試驗 28 (一) 酵母菌的來源以及培養 28 (二) 試驗設計 29 (三) 統計分析 29 (四) 酵母菌生物吸附法實驗流程 30 (五) 酵母濃度(乾重)之檢測 30 (六) 化學需氧量(Chemical Oxygen Demand, COD)之檢測 31 (七) 生化需氧量(Biochemical Oxygen Demand, BOD5)之檢測 33 三、 實驗設計圖 35 第肆章、 結果與討論 37 一、 醋酸搭配過氧化氫萃取污泥中銅及鋅試驗結果 37 (一) 重力濃縮槽污泥成分分析 37 (二) 不同濃度醋酸搭配過氧化氫於不同處理時間萃取污泥中銅及鋅試驗-銅 38 (三) 不同濃度醋酸搭配過氧化氫於不同處理時間萃取污泥中銅及鋅試驗-鋅 43 (四) 不同濃度醋酸搭配過氧化氫於不同時間處理污泥中銅及鋅試驗 48 (五) 影響醋酸搭配過氧化氫萃取污泥中銅及鋅之因子 53 二、 酵母菌生物吸附試驗 58 (一) 原料基本性質分析 58 (二) pH改變對於酵母菌生物吸附之影響 58 (三) 不同初始接種生物吸附劑比例對於酵母菌生物吸附之影響 63 (四) 影響酵母菌生物吸附之因子 66 (五) 與各文獻結果比較與討論 67 三、 質量平衡(Mass balance) 70 四、 成本評估 72 第伍章、 結論與未來研究方向 73 第陸章、 參考文獻 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 銅 | zh_TW |
| dc.subject | 污泥 | zh_TW |
| dc.subject | 鋅 | zh_TW |
| dc.subject | 酵母菌 | zh_TW |
| dc.subject | 醋酸萃取 | zh_TW |
| dc.subject | 生物吸附 | zh_TW |
| dc.subject | copper | en |
| dc.subject | livestock sludge | en |
| dc.subject | acetic acid extraction | en |
| dc.subject | baker’s yeast | en |
| dc.subject | bio-sorption | en |
| dc.subject | zinc | en |
| dc.title | 應用醋酸萃取法與酵母菌生物吸附法回收畜牧污泥中銅及鋅之研究 | zh_TW |
| dc.title | Recovery of copper and zinc from the livestock bio-sludge with acetic acid extraction and biosorption by baker’s yeast | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉志忠,周楚洋 | |
| dc.subject.keyword | 污泥,醋酸萃取,酵母菌,生物吸附,銅,鋅, | zh_TW |
| dc.subject.keyword | livestock sludge,acetic acid extraction,baker’s yeast,bio-sorption,zinc,copper, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202000423 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 5.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
