Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66193
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林正芳
dc.contributor.authorSheng-Fu Yangen
dc.contributor.author楊昇府zh_TW
dc.date.accessioned2021-06-17T00:25:06Z-
dc.date.available2013-06-27
dc.date.copyright2012-06-27
dc.date.issued2012
dc.date.submitted2012-04-02
dc.identifier.citationAbegglen, C., Joss, A., McArdell, C.S., Fink, G., Schlüsener, M.P., Ternes, T.A., Siegrist, H., 2009. The fate of selected micropollutants in a single-house MBR. Water Research 43 (7), 2036-2046.
Aboul-Kassim, T.A.T., Simoneit, B.R.T., 2001. Pollutant-Solid Phase Interactions: Mechanism, Chemistry and Modeling. Springer-Verlag, Berlin Heidelberg, 129-132.
Alexy, R., Kumpel, T., Kummerer, K., 2004. Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 57 (6), 505-512.
Batt, A.L., Kim, S., Aga, D.S., 2007. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 68 (3), 428–435.
Birkett, J. W., Lester, J. N., 2003. Endocrine disrupters in wastewater and sludge treatment processes. Lewis publishers.
Blacioglu, I.A., Otker, M., 2003. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50 (1), 85-95.
Boxall, A.B.A., Kolpin, D.W., Halling-Sorensen, B., Tolls, J., 2003. Peer Reviewed: Are veterinary medicines causing environmental risks? Environmental Science and Technology 37 (15), 286A-294A.
Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., Mawhinney, D.B., 2006. Occurrence of antibiotics in hospital, residential, and dairy, effluent, municipal waste water, and the Rio Grande in New Mexico. Science of the Total Environment 366 (2-3), 772–783.
Cabello, F.C., 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology 8 (7), 1137-1144.
Campagnolo, E.R., Johnson, K.R., Karpati, A., 2002. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Science of the Total Environment 299 (1-3), 89-95.
Carballa, M., Omil, F., Lema, J.M., 2007a. Calculation methods to perform mass balances of micropollutants in sewage treatment plants, application to pharmaceutical and personal care products (PPCPs). Environmental Science and Technology 41 (3), 884–890.
Carballa, M., Omil, F., Ternes, T., Lema, J.M., 2007b. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research 41 (10), 2139-2150.
Clara, M., Strenn, B., Saracevic, E., Kreuzinger, N., 2004. Adsorption of bisphenol-A, 17 β-estradiole and 17 α-ethinylestradiole to sewage sludge. Chemosphere 56 (4), 843-851.
Conrad, A., Cadoret, A., Corteel, P., Leroy, P., Block, J.C., 2006. Adsorption/desorption of linear alkylbenzenesulfonate (LAS) and azoproteins by/from activated sludge flocs. Chemosphere. 62 (1) 53-60.
Demain, A.L., 1999. Pharmaceutically active secondary metabolites of microorganism. Applied Microbiology Biotechnology 52 (4), 455-463.
Diaz-Cruz, M.S., Alda, M.J.L., Barcelo, D., 2003. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends in analytical chemistry 22 (6), 340-351.
Göbel, A., Thomsen, A., McArdell, C.S., Alder, A.C., Giger, W., Theib N., Löffler, D., Ternes, T.A., 2005a. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. Journal of Chromatography A 1085 (2), 179–189.
Göbel, A., Thomsen, A., Christa, S., 2005b. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science and Technology 39 (11), 3981-3989.
Gaspar, A., Andrasi, M., Kardos, S., 2002. Application of capillary zone electrophoresis to the analysis and to a stability study of cephalosporins. Journal of Chromatography B 775 (2), 239-246.
Golet, E.M., Alder, A.C., Hartmann, A., 2001. Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid - phase extraction and liquid chromatography with fluorescence detection. Analytical Chemistry 73 (15), 3632-3638.
Golet, E.M., Strehler, A., Alder, A.C., Giger, W., 2002. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Analytical Chemistry 74 (21), 5455-5462.
Golet, E.M., Xifra, I., Siegrist, H., 2003. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environment Science and Technology 37 (15), 3243-3249.
Gros, M., Petrovic M., Ginebreda, A., Barcelo, D., 2010. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment international 36 (1), 15-26.
Guellil, A., Thomas, F., Block, F.C., Bersillon, J.L., Ginestet, P., 2001. Transfer of organic matter between wastewater and activated sludge flocs. Water Research 35 (1), 143-150.
Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P.F., Ingerslev, F., Holten Lützhøt, H.C., Jørgensen, S.E., 1998. Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere 36 (2), 357-393.
Hardman, D.J., 1991. Biotranformation of halogenated compounds. Critical reviews in biotechnology 11 (1), 1-40.
Heberer, T., 2002. Occurrence, fate and removal of pharmaceutical residues in the aquatic environment:a review in recent research data. Toxicology Letters 131 (1-2), 5-17.
Hernando, M.D., Mezcua, M., Fernandez-Alba, A. R., Barcel, D., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69 (2), 334-342.
Hirsch, R., Ternes, T., Haberer, K., Kratz K.L., 1999. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment 225 (1-2), 109-118.
Huang, C.H., Renew, J.E., Smeby, K.L., 2011. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. Water Resources Update 120 (1), 30-40.
Ingerslev, F., Hallimg-Sorensen, B., 2000. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry 19 (10), 2467-2473.
Ingerslev, F., Torang, L., Loke, M.L., 2001. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44 (4), 865-872.
Jones-Leep, T.L., Stevens, R., 2007. Pharmaceuticals and personal care products in biosolids/sewage sludge: the interface between analytical chemistry and regulation. Analytical and bioanalytical chemistry 387 (4), 1173-1183.
Jones, O.A.H., Lester, J.N., Voulvoulis, N., 2005. Human pharmaceutical in wastewater treatment process. Critical Reviews in Environmental Science and Technology 35 (4), 401-427.
Kan, C.A., Petz, M., 2000. Residues of veterinary drugs in eggs and their distribution between yolk and white. Journal of Agricultural and Food Chemistry48 (12), 6397-6403.
Karthikeyan, K.G., Meyer, M.T., 2006. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment 361 (1-3), 196–207.
Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2009. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research 43 (2), 363-380.
Keiding, K., Nielsen, P.H., 1997. Desorption of organic macromolecules from activated sludge: effect of ionic composition. Water Research 31 (7), 1665-1672.
Kim, S., Eichhorn, P., Jensen, J.N., Weber, A.S., Aga, D.S., 2005. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environmental Science and Technology 39, 5816-5823.
Kinney, C.A., Furlong, E.T., Zaugg, S.D., Burkhardt, M.R., Werner, S.L., Cahill, J.D., Jorgensen, G.R., 2006. Survey of organic wastewater contaminants in biosolids destined for land application. Environmental Science and Technology 40 (23), 7207-7215.
Kummerer, K., Al-Ahmad, A., Mersch-Sundermann, V., 2000. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40 (7), 701-710.
Kummerer, K., 2009. Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75 (4), 417-434.
Lalumera, G.M., Calamari, D., Galli, P., 2004. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere 54 (5), 661-668.
Langford, K.H., Scrimshaw, M.D., Birkett, J.W., Lester, J.N., 2005. The partitioning of alkylphenolic surfactants and polybrominated diphenyl ether flame retardants in activated sludge batch tests. Chemosphere 61 (9), 1221-1230.
Laspidou, C.S., Rittman, B.E., 2002. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research 36 (11), 2711-2720.
Leahy, J.G., Colwell, R.R., 1990. Microbial-degradation of hydrocarbons in the environment. Microbiology and molecular biology reviews 54 (3), 305-315.
Lin, A.Y.C., Tsai, Y.T, 2009a. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment 407 (12), 3793-3802.
Lin, A.Y.C., Yu, T.H., Lateef, S.K., 2009b. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous materials 167 (1-3), 1163-1169.
Lin, A.Y.-C., Yu, T.-H., Lin, C.-F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74 (1), 131-141.
Li, B., Zhang, T., 2010. Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environmental Science and Technology 44 (9), 3468-3473.
Loffler, D., Ternes, T.A., 2003. Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1021 (1-2), 133-144.
Matthijs, E., De Henau, H., 1985. Adsorption and desorption of LAS. Tenside Detergents 22 (6), 299-304.
Mcardell, C.S., Molnar, E., Suter, M.J., 2003. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environmental Science and Technology 37 (24), 5479-5486.
Meng, F., Shi, B., Yang, F., 2007. Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors. Bioprocess and Biosystems Engineering 30 (5), 359-367.
Miege, C., Choubert, J.M., Ribeiro, L., Eusebe, M., Coquery, M., 2008. Removal efficiency of pharmaceuticals and personal care products with varying wastewater treatment processes and operating conditions-conception of a database and first results. Water Science and Technology 57 (1), 49-56.
Mikkelsen, L.H., Keiding, K., 2002. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Research 36 (10), 2451-2462.
Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N., Takada, H., 2007. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research 41 (19), 4373-4382.
Nieto, A., Borrull, F., Pocurull, E., Marce, R.M., 2010. Occurrence of pharmaceuticals and hormones in sewage sludge. Environment Toxicology and Chemistry 29 (7), 1484-1489.
Ng, K.K., Lin, C.F., Panchangam, S.C., Hong, P.K.A., Yang, P.Y., 2011. Reduced Membrane Fouling in a Novel Bio-Entrapped Membrane Reactor for Treatment of Food and Beverage Processing Wastewater, Water Research 45 (14), 4269-4278.
Pérez, S., Eichhorn, P., Aga, D.S., 2005. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environmental Toxicology and Chemistry 24 (6), 1361-1367.
Plosz, B.G., Leknes, H., Thomas, K.V., 2010. Impacts of Competitive Inhibition, Parent Compound Formation and Partitioning Behavior on the Removal of Antibiotics in Municipal Wastewater Treatment. Environmental Science and Technology 44 (2), 734-742.
Qiang, Z., Adams, C., 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research 38 (12), 2874-2890.
Rabolle, M., Spliid, N.H., 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere. 40 (7) 715-722.
Reverte, S., Borrull, F., Pocurull, E., 2003. Determination of antibiotic compounds in water by solid-phase extraction-high-performance liquid chromatography-(electrospray) mass spectrometry. Journal of Chromatography A 1010 (2), 225-232.
Richardson, B.J., Lam, P.K.S., Martin, M., 2005. Emerging Chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Marine Pollution Bulletin 50 (9), 913-920.
Rysz, M., Alvarez, P.J.J., 2004. Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments. Water Research 38 (17), 3705-3712.
Sacher, F., Lange, F.T., Brauch, H.J., Blankenhorn, I., 2001. Pharmaceuticals in groundwater analytical methods and results of a monitoring program in baden- wurttemberg, Germany. Journal of Chromatography A 938 (1-2), 199-210.
Sakurai, H., Ishimitsu, T., 1980. Microionization constants of sulphonamides. Talanta 27 (3), 293-298.
Sarmah, A. K., Meyer, M. T., Boxall, A. B. A., 2006. A global perspective on the use, sales, exposure pathway, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65, 725-759.
Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M., 2003. Environmental Organic Chemistry. John Wiley & Sons Publishers, Hoboken, NJ, 254-256.
Senta, I., Terzic, S., Ahel, M., 2008. Simultaneous Determination of Sulfonamides, Fluoroquinolones, Macrolides and Trimethoprim in Wastewater and River Water by LC-Tandem-MS. Chromatographia 68 (9-10), 747-758.
Suzuki, Y., Maruyama, T., 2006. Fate of nature estrogens in bath mixing experiments using municipal sewage and activated sludge. Water research 40 (5), 1061-1069.
Ternes, T.A., Andersen, H., Gilberg, D., Bonerz, M., 2002. Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Analytical chemistry 74 (14), 3498-3504.
Ternes, T.A., Hermann, N., Bonerz, M., Knacker, T., Siegrist, H., Joss, A., 2004. A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water research 38 (19), 4075-4084.
Thiele, S., 2000. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long- term differently fertilized loess chernozem. Journal of Plant Nutrition and Soil Science 163 (6), 589-594.
Thiele-Bruhn, S., 2003. Pharmaceutical antibiotic compounds in soils - a review. Journal of Plant Nutrition and Soil Science 166 (2), 145-167.
Urase, T., Kikuta, T., 2005. Sorption and biodegradation of 17β-estradiol by acclimated activated sludge under anaerobic conditions. Water Research 39 (7), 1289-1300.
Wang, L., Govind, R., Dobbs, R.A., 1993. Sorption of toxic organic compounds on wastewater solids: mechanism and modeling. Environmental Science and Technology 27 (1), 152-158.
Wollenberger, L., Halling-Sorensen B., Kusk, K.O., 2000. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40 (7), 723-730.
Xu, K., Harper Jr, W.F., Zhao, D., 2008. 17α-Ethinylestradiol sorption to activated sludge biomass: Thermodynamic properties and reaction mechanisms. Water Research 42 (12), 3146-3152.
Xu, W., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z. Li, J., 2007. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research 41 (19), 4526-4534.
Yang, P.Y., Su, R., Kim, S.J., 2003. EMMC process for combined removal of organics, nitrogen and an odor producing substance. Journal of Environmental Management 69 (4), 381-389.
Yang, S., Cha, J., Carlson, K., 2004. Quantitative determination of trace concentrations of tetracycline and sulfonamide antibiotics in surface water using solid-phase extraction and liquid chromatography/ion trap tandem mass spectrometry. Rapid Communications in Mass Spectrometry 18 (18), 2131-2145.
Yang, S., Cha J., Carlson, K., 2005. Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A 1097 (1-2), 40-53.
Yang, S.F., Lin, C.F., 2009. Distribution of antibiotics in municipal sewage sludge, The 3rd IWA-ASPIRE Conference Oct. 18-22, Taipei, Taiwan.
Yang, S.F., Lin, C.F., Lin, A.Y.C., Hong, P.K.A., 2011. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions. Water Research 45 (11), 3389-3397.
Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., Fanelli, R., 2010. Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials 179 (1-3), 1042-1048.
鐘裕仁、李永清,(2000)。環境樣品固相萃取技術,中興顧問社,台北。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66193-
dc.description.abstract抗生素在世界上被廣泛用來治療人類及動物的疾病。抗生素經食用後大部份仍會以原化學成份或其代謝物經由尿液及糞便而排出體外,經由污水下水道傳送至都市污水處理廠。到目前為止,磺胺劑類抗生素和活性污泥處理程序之間的行為反應、生物降解、生物吸附和脫附等移除機制很少被量化和探討。因此,3種常出現在都市污水處理廠進流水、放流水和活性污泥的磺胺劑類抗生素包括sulfamethoxazole (SMX)、sulfamonomethoxine (SMM)和sulfadimethoxine (SDM)被選擇用來研究抗生素和活性污泥之間的生物吸附、脫附和生物降解。研究目標在定義磺胺劑類抗生素在液相和固相之間的分佈情形、隨著時間濃度變化趨勢和上述移除機制對移除抗生素所作的貢獻,同時也針對抗生素在都市污水處理廠污泥的分佈情形進行調查。
抗生素在都市污水處理廠污泥的分佈情形調查結果顯示,penicillins類抗生素遠低於儀器定量極限,這可能是因為penicillins類抗生素在水中易水解所造成。Sulfonamides、macrolides和tetracyclines類抗生素在污泥的濃度值介於2.56-56.6 μg/kg。
在添加疊氮化鈉生物活性抑制劑探討生物降解、生物吸附和脫附的實驗結果顯示,活性污泥主要是藉由生物吸附和生物降解機制來移除抗生素。在一開始的12小時可能是由於反應系統內生物易分解的基質和抗生素氧化產生競爭,使得生物降解作用被抑制。去活性污泥對於磺胺劑類抗生素吸附親合力依序為SDM>SMM>SMX。在反應系統混合溶液pH為6.8時,帶負電磺胺劑類抗生素是主要的優勢物種,使得被活性污泥的吸附程度變低。當常數n值接近1,Freundlich等溫曲線轉變為線性等溫曲線,相當適合用來描述等溫吸脫附行為。SMX、SMM和SDM分配係數(Kd)分別為28.6 ± 1.9、55.7 ± 2.2和110.0 ± 4.6 mL/g。被污泥吸附的磺胺劑類抗生素是可逆的,脫附完成後固相污泥SMX、SMM和SDM佔原添加濃度100 µg/L的比例分別為0.9%、1.6%和5.2%。
除了添加抑制劑之外,進一步運用超音波溶劑萃取方法來萃取和量化固相活性污泥磺胺劑類抗生素濃度,探討和解釋生物降解和生物吸附。實驗結果顯示三種磺胺劑類抗生素在和活性污泥接觸11 – 13天後就會完全被移除。吸附平衡在實驗一開始的幾個小時就達到,緊接著1–3天為遲滯期,之後生物降解完全啟動,在接著10天做為主要移除機制。藉由量測液相濃度隨著時間變化趨勢和依據生物降解與生物吸附所推導動力模式所作的線性回歸分析,得到在活性污泥濃度為2.56 g/L 時,SDM、SMX和SMM零階速率常數分別為8.1、7.9和7.7 µg/L/d。
抗生素存在於都市污水處理廠污泥,被污泥吸附的抗生素是可逆,如果沒有進一步的處理程序來移除污泥的抗生素,那麼它將會進入自然環境,當污泥再利用作為土壤改良劑時,應注意抗生素在環境流佈可能引起的環境效應。經由實驗所求得的反應動力參數指出,傳統都市污水處理廠所提供水力停留時間(6 h),只足夠活性污泥處理程序從廢水移除將近2 µg/L的磺胺劑類抗生素。
zh_TW
dc.description.abstractAntibiotic were used widespread to protect humans and animals from illness and infection, throughout the world. The parent compound or their metabolites will be excreted by human beings and enter waste water treatment plants (WWTPs) through sewer system. To date, little has been quantified for the interactions, biodegradation and sorption, of sulfonamide antibiotics with activated sludge. Hence, three frequently occurring sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM) were selected to study sorption/desorption and biodegradation of antibiotics by the activated sludge process. Our objectives were to determine the distribution of sulfonamides in the aqueous and solid phases, the concentration changes of the compounds in both phases over time, and the sorption and biodegradation mechanisms contributed by the activated sludge for removal of the compounds. The distribution of antibiotics in municipal sewage sludge was also investigated in this research.
The results of distribution of antibiotics in WWTPs activated and digested sludge showed the concentrations of penicillins in sewage sludge samples were found to be well below the limit of quantification (LOQ). This may be perhaps due penicillins prefer to hydrolyze in the water and are degraded to different products. Average concentrations of sulfamethoxazole, sulfamethazine, sulfamonomethoxine, sulfadimethoxine, erythromycin-H2O, tylosin, tetracycline, oxytetracycline and chlortetracycline in sewage sludge ranged between 2.56 and 56.6 μg/kg of dry weight.
Experimental results in the presence of activated sludge with and without being subjected to NaN3 biocide showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM>SMM>SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (Kd) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 µg/L.
In addition to apply biocide, an ultrasonic solvent extraction method was employed to quantify and delineate biosorption and biodegradation of three sulfonamide antibiotics in this work. All sulfonamides were removed completely over 11 – 13 d. Sorptive equilibrium was established well within the first few hours, followed by a lag period of 1-3 days before biodegradation was to deplete the antibiotic compounds linearly in the ensuing 10 days. Apparent zeroth-order rate constants were obtained by regression analysis of measured aqueous concentration vs. time profiles to a kinetic model accounting for sorption and biodegradation; they were 8.1, 7.9, and 7.7 µg/L/d for SDM, SMX, and SMM, respectively, at activated sludge concentration of 2.56 g/L.
The results obtained in this study illustrate: 1. the sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass; 2. the existence of antibiotics in municipal sewage sludge and the importance of concern about distribution of antibiotics in the environment when sewage sludge is reutilized in land application; 3. the measured kinetics implied that with typical hydraulic retention time (e.g. 6 h) provided by WWTP the removal of sulfonamide compounds from the wastewater during the activated sludge process would approximate 2 µg/L.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:25:06Z (GMT). No. of bitstreams: 1
ntu-101-D95541006-1.pdf: 3084778 bytes, checksum: 7bae6321cf4f1afd6f0a24cde386b45b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅵ
圖目錄 Ⅹ
表目錄 ⅩⅠV
第一章 前 言 3
1.1研究緣起 3
1.2研究目的及內容 3
第二章 文獻回顧 3
2.1藥品和個人護理用品 3
2.2抗生素 3
2.3磺胺類抗生素藥物 3
2.4環境中抗生素主要污染來源 3
2.5抗生素於環境的宿命 3
2.6抗生素對人類健康威脅 3
2.7抗生素於環境殘留的潛在問題 3
2.8化學物質於污水處理廠處理程序的吸附和生物降解 3
2.8.1生物吸附作用 3
2.8.2生物降解作用 3
2.9有機物的吸附及分配理論 3
2.10冷凍乾燥 3
2.11超音波溶劑萃取 3
2.12固相萃取 3
第三章 研究方法 3
3.1研究架構 3
3.2都市污水處理廠污泥抗生素分佈情況調查 3
3.2.1樣品採集及前處理 3
3.2.2超音波溶劑萃取 3
3.2.3固相萃取 3
3.2.4 HPLC-MS/MS分析液相和污泥抗生素含量 3
3.2.5檢測方法確效之回收率測試 3
3.2.6檢測方法確效之偵測極限 3
3.2.7污泥樣品之基本性質分析 3
3.3抗生素與添加抑制劑的活性污泥之間的反應行為探討 3
3.3.1實驗用活性污泥 3
3.3.2吸附動力及平衡試驗 3
3.3.3等溫吸附平衡實驗 3
3.3.4脫附動力及平衡試驗 3
3.3.5等溫脫附平衡實驗 3
3.3.6生物吸附及生物降解之質量平衡 3
3.4抗生素與活性污泥之間的反應行為探討 3
3.4.1生物降解試驗 3
3.4.2生物吸附及生物降解之質量平衡 3
3.4.3生物吸附及生物降解之反應動力方程式 3
3.5數據計算與分析 3
3.6研究材料與設備 3
3.6.1 研究藥品與試劑 3
3.6.2研究設備: 3
3.7分析方法: 3
3.7.1分析儀器主要組成裝置 3
3.7.2儀器分析條件 3
第四章 結果與討論 3
4.1回收率測試 3
4.2方法偵測極限和定量極限 3
4.3都市污水處理廠污泥抗生素分佈檢測結果 3
4.3.1磺胺劑類抗生素 3
4.3.2乙內醯胺類抗生素 3
4.3.3四環素類抗生素 3
4.3.4巨環素類抗生素 3
4.4添加抑制劑探討磺胺劑類抗生素的生物降解、吸附和脫附 3
4.4.1生物降解反應動力實驗 3
4.4.2吸附動力實驗 3
4.4.3脫附動力實驗 3
4.5磺胺劑類抗生素與污泥的等溫吸附和脫附探討 3
4.5.1吸/脫附平衡 3
4.5.2等溫吸附曲線 3
4.5.3等溫脫附曲線 3
4.6超音波萃取污泥探討磺胺劑類抗生素的生物降解和生物吸附 3
4.6.1兩天生物降解和生物吸附 3
4.6.2兩週生物降解和生物吸附 3
4.7直接萃取污泥和使用去活性污泥定義抗生素吸附量的差異 3
4.8動力模式 3
4.9生物降解對於磺胺劑類抗生素移除作用探討 3
第五章 結論與建議 3
5.1結論 3
5.2建議 3
參考文獻 3

圖 目 錄
圖2.1抗生素與PPCPs的相對關係 3
圖2.2抗生素的來源及分佈 3
圖2.3污水處理廠處理程序流程圖 3
圖3.1研究架構 3
圖3.2活性污泥無添加抑制劑之反應機制 3
圖3.3活性污泥添加抑制劑之反應機制 3
圖3.4都市污水處理廠污泥抗生素分析流程圖 3
圖3.5都市污水處理廠污泥抗生素分析各步驟參數設定 3
圖3.6冷凍乾燥機 3
圖3.7都市污水處理廠活性污泥冷凍乾燥去除水份後的外觀 3
圖3.8超音波萃取裝置 3
圖3.9污泥樣品萃取液進行固相萃取 3
圖3.10液相層析串聯質譜儀 3
圖3.11抗生素於活性和去活性污泥系統反應實驗 3
圖3.12活性污泥培養和馴化設計流程圖 3
圖3.13吸附動力反應實驗步驟 3
圖3.14可程式恆溫恆濕試驗機 3
圖3.15等溫吸附平衡實驗步驟 3
圖3.16脫附動力反應實驗步驟 3
圖3.17等溫脫附平衡實驗步驟 3
圖3.18抗生素於活性污泥系統反應實驗 3
圖3.19生物降解實驗反應器系統配置規劃 3
圖3.20生物降解2天反應動力實驗步驟 3
圖3.21生物降解14天反應動力實驗步驟 3
圖4.1磺胺劑類抗生素於都市污水處理廠活性污泥和消化污泥的分 佈情形(DH: 迪化污水處理廠;BL: 八里污水處理廠;AP: 安平污水處理廠;AS:活性污泥;DS:消化污泥) 3
圖4.2乙內醯胺類抗生素於都市污水處理廠活性污泥和消化污泥的分佈情形(DH: 迪化污水處理廠;BL: 八里污水處理廠;AP: 安平污水處理廠;AS:活性污泥;DS:消化污泥) 3
圖4.3四環素類抗生素於都市污水處理廠活性污泥和消化污泥的分佈情形(DH: 迪化污水處理廠;BL: 八里污水處理廠;AP: 安平污水處理廠;AS:活性污泥;DS:消化污泥) 3
圖4.4巨環素類抗生素於都市污水處理廠活性污泥和消化污泥的分佈情形(DH: 迪化污水處理廠;BL: 八里污水處理廠;AP: 安平污水處理廠;AS:活性污泥;DS:消化污泥) 3
圖4.5批次式生物降解實驗平台 3
圖4.6磺胺劑類抗生素(Sulfamethoxazole)於活性污泥(圓型,●)和去活性污泥(正方型,■)混合溶液,在不同接觸時間下的濃度變化趨勢;三角型(▲)為磺胺劑類抗生素因生物降解所造成的濃度變化 3
圖4.7磺胺劑類抗生素(Sulfamonomethoxine)於活性污泥和去活性污泥混合溶液,在不同接觸時間下的濃度變化趨勢 3
圖4.8磺胺劑類抗生素(Sulfadimethoxine)於活性污泥和去活性污泥混合溶液,在不同接觸時間下的濃度變化趨勢 3
圖4.9磺胺劑類抗生素帶正電、負電和中性物種型式 3
圖4.10磺胺劑類抗生素於去活性污泥混合溶液,吸附平衡後在不同反應時間脫附量的變化(操作條件:活性污泥添加疊氮化鈉、溫度 25 oC、pH 6.8、活性污泥濃度2.56 g/L、磺胺劑類抗生素原始添加濃度100 μg/L) 3
圖4.11吸附平衡、脫附平衡後於污泥SMX磺胺劑類抗生素濃度值和脫附於混合溶液抗生素濃度值相對於原添加抗生素濃度的百分比 3
圖4.12吸附平衡、脫附平衡後於污泥SMM磺胺劑類抗生素濃度值和脫附於混合溶液抗生素濃度值相對於原添加抗生素濃度的百分比 3
圖4.13吸附平衡、脫附平衡後於污泥SDM磺胺劑類抗生素濃度值和脫附於混合溶液抗生素濃度值相對於原添加抗生素濃度的百分比 3
圖4.14磺胺劑類抗生素和去活性污泥線性等溫吸附曲線 3
圖4.15磺胺劑類抗生素和去活性污泥線性等溫脫附曲線 3
圖4.16磺胺劑類抗生素(Sulfamethoxazole) 2天活性污泥生物降解反應動力實驗過程,液相(■)和固相(●)的濃度變化趨勢,三角型(▲)為相對應接觸時間,液相和固相磺胺劑類抗生素濃度的加總 3
圖4.17磺胺劑類抗生素(Sulfamonomethoxine) 2天活性污泥生物降解反應動力實驗過程,液相(■)和固相(●)的濃度變化趨勢,三角型(▲)為相對應接觸時間,液相和固相磺胺劑類抗生素濃度的加總 3
圖4.18磺胺劑類抗生素(Sulfadimethoxine) 2天活性污泥生物降解反應動力實驗過程,液相(■)和固相(●)的濃度變化趨勢,三角型(▲)為相對應接觸時間,液相和固相磺胺劑類抗生素濃度的加總 3
圖4.19磺胺劑類抗生素(Sulfamethoxazole)14天活性污泥生物降解反應動力實驗過程,液相(■)和固相(●)的濃度變化趨勢,三角型(▲)為相對應接觸時間,液相和固相磺胺劑類抗生素濃度的加總 3
圖4.20磺胺劑類抗生素(Sulfamonomethoxine) 14天活性污泥生物降解反應動力實驗過程,液相(■)和固相(●)的濃度變化趨勢,三角型(▲)為相對應接觸時間,液相和固相磺胺劑類抗生素濃度的加總 3
圖4.21磺胺劑類抗生素(Sulfadimethoxine) 14天活性污泥生物降解反應動力實驗過程,液相(■)和固相(●)的濃度變化趨勢,三角型(▲)為相對應接觸時間,液相和固相磺胺劑類抗生素濃度的加總 3
圖4.22以Pseudo-zero-order 方程式解析磺胺劑類抗生素於批次活性污泥系統之動力曲線 3
圖4.23以Pseudo-first-order 方程式解析磺胺劑類抗生素於批次活性污泥系統之動力曲線 3
圖4.24磺胺劑類抗生素(Sulfamethoxazole)於活性污泥實驗系統,14天接觸時間,累積生物降解移除量變化趨勢(生物降解移除量等於添加抗生素濃度減去液相和固相抗生素濃度) 3
圖4.25磺胺劑類抗生素(Sulfamonomethoxine)於活性污泥實驗系統,14天接觸時間,累積生物降解移除量變化趨勢(生物降解移除量等於添加抗生素濃度減去液相和固相抗生素濃度) 3
圖4.26磺胺劑類抗生素(Sulfadimethoxine)於活性污泥實驗系統,14天接觸時間,累積生物降解移除量變化趨勢(生物降解移除量等於添加抗生素濃度減去液相和固相抗生素濃度) 3

表 目 錄
表2.1磺胺類抗生素主要種類及結構 3
表2.2進行吸/脫附和生物降解實驗時所選定的磺胺類抗生素的分子結構、化學藥品註冊號碼和物理化學特性 3
表2.3抗生素於環境分佈情形 3
表2.4都市污水處理廠進流水和放流水磺胺劑類抗生素分佈情形 3
表2.5都市污水處理廠污泥抗生素分佈情形 3
表2.6磺胺劑類抗生素之擬一階生物降解反應動力相關參數彙整 3
表2.7活性污泥與化學物質之間的行為探討 3
表3.1合成廢水化主要學成份組成 3
表3.2液相層析時移動相梯度沖提條件 3
表3.3MS/MS系統操作參數 3
表3.4目標化合物之MRM離子對及質譜參數 3
表4.1污泥樣品添加100 μg/L抗生素標準品之回收率 3
表4.2不同抗生素標準品濃度(10及100 μg/L)於污泥樣品之回收率 3
表4.3污泥抗生素化合物之方法偵測極限和定量極限 3
表4.4線性模式和Freundlich模式回歸所獲得的相關係數(R2)、Kf、1/n和分配係數(Kd) 3
表4.5直接萃取活性污泥和使用去活性污泥抗生素吸附量的差異 3
表4.6磺胺劑類抗生素零階、一階速率常數、半衰期和線性迴歸係數 3
dc.language.isozh-TW
dc.title活性污泥吸/脫附和生物降解磺胺劑類抗生素之研究zh_TW
dc.titleSorption/Desorption and Biodegradation of Sulfonamide Antibiotics by Activated Sludgeen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee李俊福,吳忠信,林郁真,馬鴻文,康佩群
dc.subject.keyword抗生素,生物吸附,脫附,生物降解,活性污泥,zh_TW
dc.subject.keywordAntibiotics,sorption,desorption,biodegradation,activated sludge,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2012-04-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved