Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66153
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊榮輝
dc.contributor.authorYi-Chen Linen
dc.contributor.author林怡岑zh_TW
dc.date.accessioned2021-06-17T00:23:43Z-
dc.date.available2022-05-17
dc.date.copyright2012-06-27
dc.date.issued2012
dc.date.submitted2012-05-22
dc.identifier.citation莊榮輝 (1985) 水稻蔗糖合成酶之研究
國立台灣大學農業化學研究所博士論文
陳茂盛 (1989) 甘藷澱粉磷解酶及beta-澱粉酶之免疫化學研究
國立台灣大學農業化學研究所博士論文
陳家裕 (1995) 甘藷 H 型澱粉磷解酶的純化及性質研究
國立台灣大學農業化學研究所碩士論文
陳翰民 (1997) 甘藷塊根澱粉磷解酶構造與功能之研究
國立台灣大學農業化學研究所博士論文
吳其真 (1998) 甘藷澱粉磷解酶之生化及免疫學研究
國立台灣大學農業化學研究所碩士論文
張世宗 (1999) 甘藷塊根 Chaperonin 及 Proteasome 之分離與性質研究
國立台灣大學農業化學研究所博士論文
吳建興 (2000) 裂殖性酵母菌中植物螯合素合成脢的分離與性質研究
國立台灣大學農業化學研究所博士論文
林珮君 (2000) 甘藷澱粉磷解酶在澱粉代謝之角色探討
國立台灣大學農業化學研究所碩士論文
陳安娜 (2001) 甘藷澱粉磷解酶降解路徑的探討-與proteasome的結合關係
國立台灣大學農業化學研究所碩士論文
林怡岑 (2003) 甘藷塊根澱粉磷解酶與Proteasome之結合與降解關係
國立台灣大學農業化學研究所碩士論文
楊光華 (2005) 甘藷塊根澱粉磷解酶激酶之純化與性質分析
國立台灣大學微生物與生化學研究所博士論文
周宜旻 (2005) 甘藷塊根澱粉磷解酶之蛋白質交互作用
國立台灣大學微生物與生化學研究所碩士論文
曾光靖 (2005) 磷酸化修飾對甘藷塊根 L 型澱粉磷解脢之影響
國立台灣大學微生物與生化學研究所碩士論文
葉昭圻 (2005) 甘藷塊根澱粉磷解酶高溫下階段式降解之探討
國立台灣大學微生物與生化學研究所碩士論文
吳裕仁 (2006) 綠竹筍生長過程蛋白質體變化及其抗體庫之建立
國立台灣大學微生物與生化學研究所博士論文
張瓊尹 (2007) 甘藷澱粉磷解酶重組蛋白之表現與活性分析
國立台灣大學微生物與生化學研究所碩士論文
蔡和成 (2008) 綠竹筍生長過程差異性蛋白質體及其抗體庫之建立
國立台灣大學微生物與生化學研究所碩士論文
謝瑩貞 (2010) 澱粉磷解酶與 D-酵素的交互作用與在植物代謝的可能角色
國立台灣大學微生物與生化學研究所碩士論文
Aguilar RC, Wendland B (2003) Ubiquitin: not just for proteasomes anymore. Curr Opin Cell Biol 15: 184-190
Albrecht T, Koch A, Lode A, Greve B, Schneider-Mergener J, Steup M (2001) Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: expression analysis and immunochemical characterization. Planta 213: 602-613
Asher G, Tsvetkov P, Kahana C, Shaul Y (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 19: 316-321
Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86: 349-352
Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54: 207-233
Ballut L, Petit F, Mouzeyar S, Le Gall O, Candresse T, Schmid P, Nicolas P, Badaoui S (2003) Biochemical identification of proteasome-associated endonuclease activity in sunflower. Biochim Biophys Acta 1645: 30-39
Baugh JM, Viktorova EG, Pilipenko EV (2009) Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J Mol Biol 386: 814-827
Baun LC, Palmiano EP, Perez CM, Juliano BO (1970) Enzymes of starch metabolism in the developing rice grain. Plant Physiol 46: 429-434
Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova, II, Maeda A, Zhu J, Na HM, Mastroberardino PG, Sparvero LJ, Amoscato AA, Chu CT, Greenamyre JT, Kagan VE (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284: 15951-15969
Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62: 204-229
Boyer CD, Preiss J (1979) Properties of Citrate-stimulated Starch Synthesis Catalyzed by Starch Synthase I of Developing Maize Kernels. Plant Physiol 64: 1039-1042
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
Brisson N, Giroux H, Zollinger M, Camirand A, Simard C (1989) Maturation and subcellular compartmentation of potato starch phosphorylase. Plant Cell 1: 559-566
Brown CR, Chiang HL (2009) A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation. Commun Integr Biol 2: 177-183
Bulteau AL, Verbeke P, Petropoulos I, Chaffotte AF, Friguet B (2001) Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro. J Biol Chem 276: 45662-45668
Camirand A, St-Pierre B, Marineau C, Brisson N (1990) Occurrence of a copia-like transposable element in one of the introns of the potato starch phosphorylase gene. Mol Gen Genet 224: 33-39
Chang SC, Lin PC, Chen HM, Wu JS, Juang RH (2000) The isolation and characterization of Chaperonin 60 from sweet potato roots - Involvement of the chaperonins in starch biosynthesis. Botanical Bulletin of Academia Sinica 41: 105-111
Chen HM, Chang SC, Wu CC, Cuo TS, Wu JS, Juang RH (2002) Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiol Plant 114: 506-515
Chen ZJ, Parent L, Maniatis T (1996) Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84: 853-862
Chia T, Thorneycroft D, Chapple A, Messerli G, Chen J, Zeeman SC, Smith SM, Smith AM (2004) A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J 37: 853-863
Ciechanover A, DiGiuseppe JA, Bercovich B, Orian A, Richter JD, Schwartz AL, Brodeur GM (1991) Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc Natl Acad Sci U S A 88: 139-143
Clough RC, Jordan-Beebe ET, Lohman KN, Marita JM, Walker JM, Gatz C, Vierstra RD (1999) Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation. Plant J 17: 155-167
Colleoni C, Dauvill e D, Mouille G, Bul on A, Gallant D, Bouchet B, Morell M, Samuel M, Delrue B, d'Hulst C, Bliard C, Nuzillard JM, Ball S (1999a) Genetic and biochemical evidence for the involvement of alpha-1,4 glucanotransferases in amylopectin synthesis. Plant Physiol 120: 993-1004
Colleoni C, Dauvill e D, Mouille G, Morell M, Samuel M, Slomiany MC, Li nard L, Wattebled F, d'Hulst C, Ball S (1999b) Biochemical characterization of the chlamydomonas reinhardtii alpha-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiol 120: 1005-1014
Conaway RC, Brower CS, Conaway JW (2002) Emerging roles of ubiquitin in transcription regulation. Science 296: 1254-1258
Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65: 801-847
Critchley JH, Zeeman SC, Takaha T, Smith AM, Smith SM (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J 26: 89-100
Dauvillee D, Chochois V, Steup M, Haebel S, Eckermann N, Ritte G, Ral JP, Colleoni C, Hicks G, Wattebled F, Deschamps P, d'Hulst C, Lienard L, Cournac L, Putaux JL, Dupeyre D, Ball SG (2006) Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48: 274-285
DeMartino GN, McGuire MJ, Reckelhoff JF, McCullough ML, Croall DE (1989) ATP-dependent mechanisms for protein degradation in mammalian cells. Revis Biol Celular 20: 181-196
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351-361
Dinges JR, Colleoni C, James MG, Myers AM (2003) Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell 15: 666-680
Dinges JR, Colleoni C, Myers AM, James MG (2001) Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects. Plant Physiol 125: 1406-1418
Dubiel W, Ferrell K, Rechsteiner M (1995) Subunits of the regulatory complex of the 26S protease. Mol Biol Rep 21: 27-34
Duwenig E, Steup M, Kossmann J (1997) Induction of genes encoding plastidic phosphorylase from spinach (Spinacia oleracea L.) and potato (Solanum tuberosum L.) by exogenously supplied carbohydrates in excised leaf discs. Planta 203: 111-120
Fettke J, Eckermann N, Tiessen A, Geigenberger P, Steup M (2005) Identification, subcellular localization and biochemical characterization of water-soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L.: distinct SHG reside in the cytosol and in the apoplast. Plant J 43: 568-585
Fettke J, Nunes-Nesi A, Alpers J, Szkop M, Fernie AR, Steup M (2008) Alterations in cytosolic glucose-phosphate metabolism affect structural features and biochemical properties of starch-related heteroglycans. Plant Physiol 148: 1614-1629
Fiscella M, Ullrich SJ, Zambrano N, Shields MT, Lin D, Lees-Miller SP, Anderson CW, Mercer WE, Appella E (1993) Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8: 1519-1528
Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci U S A 99: 11519-11524
Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373-428
Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94: 615-623
Hanes CS (1940a) The breakdown and synthesis of starch by an enzyme system from pea seeds. Proceedings of the Royal Society of London Series B-Biological Sciences 128: 421-450
Hanes CS (1940b) The reversible formation of starch from glucose-1-phosphate catalysed by potato phosphorylase. Proceedings of the Royal Society of London Series B-Biological Sciences 129: 174-208
Hardin SC, Huber SC (2004) Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. Plant Physiol Biochem 42: 197-208
Hardin SC, Tang GQ, Scholz A, Holtgraewe D, Winter H, Huber SC (2003) Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J 35: 588-603
Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C, Wolf DH (1991) Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10: 555-562
Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL (2004) Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 279: 49138-49150
Ichihara A, Tanaka K (1995) Roles of proteasomes in cell growth. Mol Biol Rep 21: 49-52
James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7: 417-429
Juang RH, Chang YD, Sung HY, Su JC (1984) Oven-drying method for polyacrylamide gel slab packed in cellophane sandwich. Anal Biochem 141: 348-350
Kakefuda G, Duke SH (1989) Characterization of Pea Chloroplast D-Enzyme (4-alpha-d-Glucanotransferase). Plant Physiol 91: 136-143
Kossmann J, Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Biochem Mol Biol 35: 141-196
Kumar A, Sanwal GG (1987) Dissociation constants & thermodynamic data of starch phosphorylase from banana (Musa paradisiaca) leaves using affinity horizontal polyacrylamide slab gel electrophoresis. Indian J Biochem Biophys 24: 70-73
Kurepa J, Toh EA, Smalle JA (2008) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J 53: 102-114
Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M (2002) Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol 43: 1073-1085
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685
Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW (2007) Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 26: 831-842
Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q, Qin J, Tsai SY, Tsai MJ, O'Malley BW (2006) The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell 124: 381-392
Lin YC, Chen HM, Chou IM, Chen AN, Chen CP, Young GH, Lin CT, Cheng CH, Chang SC, Juang RH (2012) Plastidial starch phosphorylase in sweet potato roots is proteolytically modified by protein-protein interaction with the 20S proteasome. PLoS One
Liu TT, Shannon JC (1981) Measurement of metabolites associated with nonaqueously isolated starch granules from immature Zea mays L. endosperm. Plant Physiol 67: 525-529
Lloyd JR, Blennow A, Burhenne K, Kossmann J (2004) Repression of a novel isoform of disproportionating enzyme (stDPE2) in potato leads to inhibition of starch degradation in leaves but not tubers stored at low temperature. Plant Physiol 134: 1347-1354
Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268: 533-539
Lu Y, Sharkey TD (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218: 466-473
Lu Y, Sharkey TD (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ 29: 353-366
Maki CG, Huibregtse JM, Howley PM (1996) In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res 56: 2649-2654
Mingo-Castel AM, Young RE, Smith OE (1976) Kinetin-induced tuberization of potato in vitro: on the mode of action of kinetin. Plant Cell Physiol 17: 557-570
Moreno S, Tandecarz JS (1996) Analysis of primer independent phosphorylase activity in potato plants: high levels of activity in sink organs and sucrose-dependent activity in cultured stem explants. Cell Mol Biol 42: 637-643
Mori H, Tanizawa K, Fukui T (1993) A chimeric alpha-glucan phosphorylase of plant type L and H isozymes. Functional role of 78-residue insertion in type L isozyme. J Biol Chem 268: 5574-5581
Mu HH, Yu Y, Wasserman BP, Carman GM (2001) Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase. Arch Biochem Biophys 388: 155-164
Myers AM, Morell MK, James MG, Ball SG (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol 122: 989-997
Mykles DL, Haire MF (1991) Sodium dodecyl sulfate and heat induce two distinct forms of lobster muscle multicatalytic proteinase: the heat-activated form degrades myofibrillar proteins. Arch Biochem Biophys 288: 543-551
Newgard CB, Hwang PK, Fletterick RJ (1989) The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol 24: 69-99
Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127: 459-472
Ohdan T, Francisco PB, Jr., Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56: 3229-3244
Orlowski M, Wilk S (2003) Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 415: 1-5
Ozaki M, Fujinami K, Tanaka K, Amemiya Y, Sato T, Ogura N, Nakagawa H (1992) Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem 267: 21678-21684
Peat S, Whelan WJ, Rees WR (1953) D-enzyme: a disproportionating enzyme in potato juice. Nature 172: 158
Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269: 7709-7718
Rathore RS, Garg N, Garg S, Kumar A (2009) Starch phosphorylase: role in starch metabolism and biotechnological applications. Crit Rev Biotechnol 29: 214-224
Religa TL, Sprangers R, Kay LE (2010) Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328: 98-102
Ren L, Emery D, Kaboord B, Chang E, Qoronfleh MW (2003) Improved immunomatrix methods to detect protein:protein interactions. J Biochem Biophys Methods 57: 143-157
Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003) Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 34: 753-767
Rivett AJ (1993) Characterization of proteasomes isolated from rat liver. Enzyme Protein 47: 210-219
Rivett AJ, Skilton HE, Rowe AJ, Eperon IC, Sweeney ST (1991) Components of the multicatalytic proteinase complex. Biomed Biochim Acta 50: 447-450
Rubenstein EM, Hochstrasser M (2010) Redundancy and variation in the ubiquitin-mediated proteolytic targeting of a transcription factor. Cell Cycle 9: 4282-4285
Rubin DM, Finley D (1995) Proteolysis. The proteasome: a protein-degrading organelle? Curr Biol 5: 854-858
Saitoh F, Araki T (2010) Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation. J Neurosci 30: 1204-1212
Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK, Okita TW, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y (2008) Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20: 1833-1849
Schnell JD, Hicke L (2003) Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278: 35857-35860
Schupp N, Ziegler P (2004) The relation of starch phosphorylases to starch metabolism in wheat. Plant Cell Physiol 45: 1471-1484
Schwartz M (1965) Biochemical and Genetic Aspects of Maltose Metabolism in Escherichia Coli K12. C R Hebd Seances Acad Sci 260: 2613-2616
Schwartz M (1967a) Existence in Escherichia coli K12 of a common regulation of the biosynthesis of bacteriophage receptors and maltose metabolism. Ann Inst Pasteur (Paris) 113: 685-704
Schwartz M (1967b) Phenotypic expression and genetic localization of mutations affecting maltose metabolism in Escherichia coli K12. Ann Inst Pasteur (Paris) 112: 673-698
Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268: 579-582
Seo BS, Kim S, Scott MP, Singletary GW, Wong KS, James MG, Myers AM (2002) Functional interactions between heterologously expressed starch-branching enzymes of maize and the glycogen synthases of Brewer's yeast. Plant Physiol 128: 1189-1199
Sisson TH, Castor CW (1990) An improved method for immobilizing IgG antibodies on protein A-agarose. J Immunol Methods 127: 215-220
Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55: 555-590
Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56: 73-98
Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN (1988) Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336: 215-221
St-pierre B, Brisson N (1995) Induction of the plastidic starch-phosphorylase gene in potato storage sink tissue - effect of sucrose and evidence for coordinated regulation of phosphorylase and starch biosynthetic genes. Planta 195: 339-344
Sullivan JA, Shirasu K, Deng XW (2003) The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4: 948-958
Takaha T, Smith SM (1999) The functions of 4-alpha-glucanotransferases and their use for the production of cyclic glucans. Biotechnol Genet Eng Rev 16: 257-280
Takaha T, Yanase M, Okada S, Smith SM (1993) Disproportionating enzyme (4-alpha-glucanotransferase; EC 2.4.1.25) of potato. Purification, molecular cloning, and potential role in starch metabolism. J Biol Chem 268: 1391-1396
Takaha T, Yanase M, Takata H, Okada S, Smith SM (1996) Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J Biol Chem 271: 2902-2908
Takaha T, Yanase M, Takata H, Okada S, Smith SM (1998) Cyclic glucans produced by the intramolecular transglycosylation activity of potato D-enzyme on amylopectin. Biochem Biophys Res Commun 247: 493-497
Tang GQ, Hardin SC, Dewey R, Huber SC (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J 34: 77-93
Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16: 694-708
Tsvetkov P, Reuven N, Prives C, Shaul Y (2009) Susceptibility of p53 unstructured N terminus to 20 S proteasomal degradation programs the stress response. J Biol Chem 284: 26234-26242
Van Berkel J, Conrads-Strauch J, Steup M (1991) Glucan-phosphorylase forms in cotyledons of Pisum sativum L.: Localization, developmental change, in-vitro translation, and processing. Planta 185: 432-439
Venkaiah B, Kumar A (1991) Predicted secondary structure of glycogen phosphorylase from Escherichia coli as deduced using Chou-Fasman analysis. Indian J Pathol Microbiol 34: 270-275
Vierstra RD (1996) Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32: 275-302
Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8: 135-142
Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10: 385-397
Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169-178
Young GH, Chen HM, Lin CT, Tseng KC, Wu JS, Juang RH (2006) Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots. Planta 223: 468-478
Yu Y, Mu HH, Wasserman BP, Carman GM (2001) Identification of the maize amyloplast stromal 112-kD protein as a plastidic starch phosphorylase. Plant Physiol 125: 351-359
Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstan H, Haldimann P, Bechtold N, Smith AM, Smith SM (2004) Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol 135: 849-858
Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 274: 26008-26014
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66153-
dc.description.abstract蛋白質的轉譯後修飾調控了許多重要的生理機制。早期研究顯示質體型澱粉磷解酶 (L-SP) 可能受到蛋白質降解性後修飾作用所調控。本實驗室在純化L-SP的過程中,發現一高分子量、且具有L-SP活性之色帶 (簡稱HX)。本論文進一步利用免疫共沉澱與免疫螢光組織定位等方法,證明HX由L-SP與20S proteasome所組成。並且在45°C熱處理下,HX會立即消失,可觀察到L-SP隨著熱處理的時間增加,發生階段性降解的現象,這個降解作用可隨著20 proteasome的活性受到proteasome專一性抑制劑 (MG132) 的抑制,而減緩L-SP之降解,顯示20S proteasome可能參與此降解作用。以酵素動力學分析降解前後L-SP之生化性質差異,發現降解後的L-SP對於Glc-1-P的親和力下降,進而降低澱粉合成方向的活性。因此我們推測20S proteasome可能會受到熱逆境的刺激,進而以降解機制修飾L-SP,來調控L-SP催化方向之活性。
另一方面,以L-SP單株抗體進行免疫共沉澱時,意外地發現一個分子量約65 kDa的蛋白質可能也與L-SP互相結合;經LC-MS/MS定序,此蛋白質為DPE1 (D-enzyme, disproportionating enzyme, 4-alpha-glucanotransferase; EC 2.4.1.25)。DPE1催化可逆性的 alpha-1,4鏈結葡聚醣之裂解與轉移反應,改變寡糖之鏈長分布。過去的研究顯示,在E coli中,malQ (DPE1同源基因) 和malP (L-SP同源基因) 位於相同的malA操作組,故推測兩者有類似的功能,可能共同作用。進一步,本論文以二維電泳 (native PAGE/SDS-PAGE)、GST pull-down assay、以及FRET-confocal microscopy為工具,證明L-SP與DPE1互相結合,形成蛋白質複合體 (SP-DPE complexes)。此外,膠體過濾法與二維電泳之結果顯示,SP-DPE complexes可能是由四個L-SP單元體與四個DPE1單元體,結合為一個分子量約為700 kDa之蛋白質複合體。以酵素動力學比較SP-DPE complexes與DPE1之間的差異,顯示SP-DPE complexes對於麥芽三糖 (maltotriose) 具有較高的親和力,而對於麥芽四糖 (maltotetraose) 則有較高的催化效率;而在SP-DPE complexes的酵素催化作用中,則觀察到基質快速轉移的現象。另外SP-DPE complexes在直徑15-20 mm大小之甘藷塊根中含量最多,顯示其與澱粉快速累積有重要的關聯性。這部份的結果顯示,在甘藷塊根的造粉體中,L-SP與DPE1可能形成蛋白質複合體,以幫助澱粉的快速累積,其生理作用可能扮演有效地回收再利用短鏈麥芽寡糖,或直接作用在短鏈分支之澱粉結構中,正確決定澱粉的結構。
zh_TW
dc.description.abstractPost-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidal starch phosphorylase (L-SP) may be regulated by proteolytic modification. During the purification of L-SP from sweet potato roots, an unknown high molecular weight complex (HX) showing L-SP activity was constantly observed. Its mobility was significantly slower than the typical L-SP on native PAGE. We utilized mass spectrometry, coimmunoprecipitation, Ouchterlony double immunodiffusion, two-dimensional gel electrophoresis, and confocal microscopy as tools to demonstrate that HX was composed of L-SP and the 20S proteasome. Furthermore, we found that the amount of HX decreased immediately after 45°C heat treatment, which caused stepwise degradation of L-SP in a time-dependent mode. This degradation process was strongly inhibited by MG132, suggesting that the 20S proteasome might be involved in L-SP degradation. In addition, kinetic studies indicated that the proteolytic modification of L-SP caused it to decrease the binding affinity toward Glc-1-P and subsequently reduced its starch-synthesizing activity. This work demonstrates the role of the 20S proteasome as a regulator of L-SP activity, which may be controlled by stressful condition.
On the other hand, immunoprecipitation experiments with L-SP mAbs showed that another protein might associate with L-SP. This protein was identified as DPE1 (D-enzyme, disproportionating enzyme, 4-alpha-glucanotransferase; EC 2.4.1.25) by LC/MS/MS. DPE1 catalyses the cleavage and transfer reactions involving alpha-1,4 linked glucans and alters the chain length distribution of oligosaccharides. Previous studies suggested that DPE1 might work in conjunction with L-SP. Furthermore, we utilized 2-DE (native PAGE/SDS-PAGE), GST pull-down assay, and confocal microscopy as tools to demonstrate that L-SP might interact with DPE1, suggesting that these enzymes may form protein complexes (SP-DPE complexes). The results from gel-filtration chromatography and 2-DE (native PAGE/SDS-PAGE) indicated that SP-DPE complexes might be composed of four L-SP subunits and four DPE1 subunits with molecular weight around 700 kDa. In addition, protein complex forms of DPE1 showed a higher affinity toward maltotriose and a higher catalytic activity toward maltotetraose than DPE1 monomers. The efficient passage of the product of one enzyme to the next enzyme in SP-DPE complexes was also be observed. Moreover, the protein levels of SP-DPE complexes were shown to become higher in the middle stage of sweet potato root development where starch accumulated fast. These results suggest that SP-DPE complexes may either efficiently recycle short chain malto-oligosaccharides to produce Glc-1-P for starch synthesis, or may specifically edit short-chain amylopectin, thus resulting in the formation of correct starch structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:23:43Z (GMT). No. of bitstreams: 1
ntu-101-D94b47203-1.pdf: 5292175 bytes, checksum: a629e0b0058d651d10acd58c23710029 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 iii
中文摘要 v
英文摘要 vii
第一章 緒論 1
1.1 澱粉磷解酶 4
1.1.1 澱粉磷解酶之生理功能 7
1.1.2 L型澱粉磷解酶可受到磷酸化修飾 9
1.1.3 磷酸化可能導致澱粉磷解酶經由proteasome路徑降解 11
1.1.4 澱粉磷解酶可能與其他蛋白質形成蛋白質複合體 13
1.2 Ubiquitin/26S Proteasome路徑 15
1.2.1 26S proteasome之基本構造 16
1.2.2 20S proteasome之組成與結構 17
1.2.3 20S proteasome之生化性質 18
1.2.4 19S調節蛋白質之組成與功能 18
1.2.5 Ubiquitin-conjugating system 19
1.2.6 E3 ubiquitin ligases 20
1.3 DPE1 21
1.3.1 DPE1之生理角色 21
1.3.2 DPE1與L-SP 22
1.4 研究動機 24
第二章 材料與方法 27
2.1 實驗材料與藥品試劑 27
2.2 蛋白質定量與酵素活性分析 27
2.3 電泳分析、CBR染色、電泳轉印與免疫染色 27
2.4 2-DE膠體電泳 28
2.5 L-SP與DPE1電泳活性染色法 28
2.6 膠片乾燥法及護貝 29
2.7 甘藷塊根L-SP、20S proteasome以及L-SP高分子量複合體之純化 29
2.8 多源傳統性抗體與單株抗體之製備 30
2.9 免疫沉澱法 31
2.10 膠體內蛋白酶水解與LC/MS/MS分析 31
2.11 甘藷塊根DPE1之選殖 32
2.12 GST Pull-Down Assay 32
2.13 免疫螢光染色 32
2.14 甘藷塊根切片之45°C熱處理 33
2.15 蛋白解體降解試驗 34
2.16 螢光共振能量轉移 (FRET) 34
2.17 以HPLC測定短鏈麥芽寡糖 35
第三章 結果與討論 37
3.1 L-SP受到20S蛋白解體之降解性調控 38
3.1.1 製備20S proteasome傳統性血清 38
3.1.2 以膠體過濾法分析甘藷塊根粗抽萃取蛋白質 40
3.1.3 免疫共沉澱 (Coimmunoprecipitation) 41
3.1.4 L-SP與20S proteasome共存於甘藷塊根之造粉體中 43
3.1.5 45°C熱處理會加速L-SP之降解反應 45
3.1.6 L-SP的降解受到蛋白解體抑制劑的抑制 49
3.1.7 降解修飾後的L-SP對於Glc-1-P的親和力較低 51
3.1.8 L-SP降解性修飾之可能生理角色 52
3.2 澱粉磷解酶與DPE1在澱粉代謝中之交互作用 53
3.2.1 免疫共沉澱實驗 53
3.2.2 製備DPE1單株抗體 56
3.2.3 L-SP高分子量活性色帶以2-DE觀察及LC-MS/MS鑑定 60
3.2.4 L-SP高分子量活性色帶中含有DPE1活性 63
3.2.5 以DPE1單株抗體進行免疫共沉澱 68
3.2.6 GST pull-down assay 72
3.2.7 FRET 76
3.2.8 觀察不同生長時期甘藷塊根中SP-DPE complex的表現與分佈 78
3.2.9 探討SP-DPE complex與L-SP + DPE1對於酵素催化機制之差異 83
3.2.10 探討SP-DPE complex之可能結構 90
3.2.11 SP-DPE complex之可能生理角色 91
3.3 何種原因導致L-SP形成高分子量複合體? 93
3.3.1 L-SP高分子量活性色帶經CIAP處理後之活性變化 93
3.3.2 利用2DE觀察L-SP是否有轉譯後修飾現象 95
第四章 總結 97
參考文獻 101
問答錄 109
附錄 113
dc.language.isozh-TW
dc.title甘藷塊根質體型澱粉磷解酶所形成之蛋白質複合體之鑑定與功能研究zh_TW
dc.titleIdentification and Functional Study of Plastidial Starch Phosphorylase Interacting Protein Complexes in Sweet Potato Rootsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳翰民,楊健志,吳裕仁,張世宗
dc.subject.keyword澱粉磷解&#37238,蛋白質複合體,甘藷塊根,zh_TW
dc.subject.keywordStarch Phosphorylase,Protein Complexes,Sweet Potato Roots,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2012-05-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
5.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved