Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝旭亮(Hsu-Liang Hsieh)
dc.contributor.authorYu-An Chenen
dc.contributor.author陳語安zh_TW
dc.date.accessioned2021-06-17T00:23:07Z-
dc.date.available2014-07-18
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-06-03
dc.identifier.citationAl-Sady, B., Ni, W., Kircher, S., Schafer, E., and Quail, P.H. (2006). Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell. 23: 439-446.
Barnes, S.A., Nishizawa, N.K., Quaggio, R.B., Whitelam, G.C., and Chua, N.H. (1996). Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8: 601-615.
Boter, M., Ruiz-Rivero, O., Abdeen, A., and Prat, S. (2004). Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 18: 1577-1591.
Bracha-Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S., and Ohad, N. (2004). Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J. 40: 419-427.
Browse, J., and Howe, G.A. (2008). New weapons and a rapid response against insect attack. Plant Physiol. 146: 832-838.
Cerrudo, I., Keller, M.M., Cargnel, M.D., Demkura, P.V., de Wit, M., Patitucci, M.S., Pierik, R., Pieterse, C.M., and Ballare, C.L. (2012). Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol. 158: 2042-2052.
Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W., and Wei, N. (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10: 673-683.
Cheminant, S., Wild, M., Bouvier, F., Pelletier, S., Renou, J.P., Erhardt, M., Hayes, S., Terry, M.J., Genschik, P., and Achard, P. (2011). DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis. Plant Cell 23: 1849-1860.
Chen, I.C., Huang, I.C., Liu, M.J., Wang, Z.G., Chung, S.S., and Hsieh, H.L. (2007). Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol. 143: 1189-1202.
Chen, Q., Sun, J., Zhai, Q., Zhou, W., Qi, L., Xu, L., Wang, B., Chen, R., Jiang, H., Qi, J., Li, X., Palme, K., and Li, C.(2011). The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23: 3335-3352.
Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 362: 1120-1131.
Clough, R.C., and Vierstra, R.D. (1997). Phytochrome degradation. Plant Cell Environ. 20: 713-721.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Cluis, C.P., Mouchel, C.F., and Hardtke, C.S. (2004). The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J. 38: 332-347.
Deng, X.W., Caspar, T., and Quail, P.H. (1991). cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 5: 1172-1182.
Devoto, A., Ellis, C., Magusin, A., Chang, H.S., Chilcott, C., Zhu, T., and Turner, J.G. (2005). Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol. Biol. 58: 497-513.
Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32: 457-466.
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225-2245.
Ellis, C., and Turner, J.G. (2002). A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215: 549-556.
Feys, B., Benedetti, C.E., Penfold, C.N., and Turner, J.G. (1994). Arabidopsis Mutants Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Resistant to a Bacterial Pathogen. Plant Cell 6: 751-759.
Franklin, K.A., and Quail, P.H. (2010). Phytochrome functions in Arabidopsis development. J. Exp. Bot. 61: 11-24.
Gangappa, S.N., Prasad, V.B., and Chattopadhyay, S. (2010). Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis. Plant Physiol. 154: 1210-1219.
Hou, X., Lee, L.Y., Xia, K., Yan, Y., and Yu, H. (2010). DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19: 884-894.
Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14:1958-1970.
Hua, Z., and Vierstra, R.D. (2011). The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol. 62: 299-334.
Kami, C., Lorrain, S., Hornitschek, P., and Fankhauser, C. (2010). Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91: 29-66.
Kendrick, R.E., and Nagatani, A. (1991). Phytochrome mutants. Plant J. 1: 133-139.
Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19: 731-749.
Lu, Q., Tang, X., Tian, G., Wang, F., Liu, K., Nguyen, V., Kohalmi, S.E., Keller, W.A., Tsang, E.W., Harada, J.J., Rothstein, S.J., and Cui, Y. (2010). Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J. 61: 259-270.
Moreno, J.E., Tao, Y., Chory, J., and Ballare, C.L. (2009). Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc. Natl. Acad. Sci. U S A 106: 4935-4940.
O'Connor, T.R., Dyreson, C., and Wyrick, J.J. (2005). Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21: 4411-4413.
Ohad, N., Shichrur, K., and Yalovsky, S. (2007). The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation. Plant Physiol. 145: 1090-1099.
Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11: 2983-2995.
Pauwels, L., Inze, D., and Goossens, A. (2009). Jasmonate-inducible gene: What does it mean? Trends Plant Sci. 14: 87-91.
Pokhilko, A., Ramos, J.A., Holtan, H., Maszle, D.R., Khanna, R., and Millar, A.J. (2011). Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis. J. Theor. Biol. 270: 31-41.
Porra, R.J., Thompson, W.A., and Kriedemann, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: 384–394.
Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., and Xie, D. (2011). The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23: 1795-1814.
Rausenberger, J., Tscheuschler, A., Nordmeier, W., Wust, F., Timmer, J., Schafer, E., Fleck, C., and Hiltbrunner, A. (2011). Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light. Cell 146: 813-825.
Robson, F., Okamoto, H., Patrick, E., Harris, S.R., Wasternack, C., Brearley, C., and Turner, J.G. (2010). Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22: 1143-1160.
Rojo, E., Titarenko, E., Leon, J., Berger, S., Vancanneyt, G., and Sanchez-Serrano, J.J. (1998). Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana. Plant J. 13:153-165.
Serino, G., and Deng, X.W. (2003). The COP9 signalosome: regulating plant development through the control of proteolysis. Annu. Rev. Plant Biol. 54: 165-182.
Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., Browse, J., He, S.Y., Rizo, J., Howe, G.A., and Zheng, N. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-405.
Staswick, P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117-2127.
Staswick, P.E., Tiryaki, I., and Rowe, M.L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405-1415.
Suza, W.P., and Staswick, P.E. (2008). The role of JAR1 in Jasmonoyl-L: -isoleucine production during Arabidopsis wound response. Planta 227: 1221-1232.
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J.(2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661-665.
Thomma, B.P., Eggermont, K., Penninckx, I.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P., and Broekaert, W.F. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. U S A 95: 15107-15111.
Ulijasz, A.T., Cornilescu, G., Cornilescu, C.C., Zhang, J., Rivera, M., Markley, J.L., and Vierstra, R.D. (2010). Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 463: 250-254.
Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., and Kudla, J. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40: 428-438.
Wang, J.G., Chen, C.H., Chien, C.T., and Hsieh, H.L. (2011). FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Plant Physiol. 156: 631-646.
Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100: 681-697.
Weller, J.L., Hecht, V., Vander Schoor, J.K., Davidson, S.E., and Ross, J.J. (2009). Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell 21: 800-813.
Yadav, V., Mallappa, C., Gangappa, S.N., Bhatia, S., and Chattopadhyay, S. (2005). A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17: 1953-1966.
Zhai, Q., Li, C.B., Zheng, W., Wu, X., Zhao, J., Zhou, G., Jiang, H., Sun, J., Lou, Y., and Li, C. (2007). Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol. 48: 1061-1071.
Zhang, Y., Liu, Z., Liu, R., Hao, H., and Bi, Y. (2011). Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner. Plant Signal. Behav. 6: 632-634.
Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., and Guo, H. (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc. Natl. Acad. Sci. U S A 106: 21431-21436.
Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.M., To, T.K., Li, W., Zhang, X., Yu, Q., Dong, Z., Chen, W.Q., Seki, M., Zhou, J.M., and Guo, H. (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. U S A 108: 12539-12544.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66136-
dc.description.abstract阿拉伯芥中 FAR-RED INSENSIVIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1)與 CORONATINE INSENSITIVE 1 (COI1)是茉莉酸訊息傳遞中兩個正 向調控因子。FIN219/JAR1 催化茉莉酸鍵結上異亮氨酸,而形成具有生理活性的 茉莉酸衍生物,此衍生物為SFCCOI1與JASMONATE-ZIM-DOMAIN PROTEINs (JAZs)結合的配合體,進而促成茉莉酸訊息傳遞抑制者 JAZs 降解。近期的文 獻指出 FIN219 與 COI1 都參與遠紅光訊息傳遞,此研究立基於釐清倆者在遠紅 光訊息傳遞以及茉莉酸訊息傳遞中的調控關係。我們發現 FIN219 與 COI1 在調 控不稔性以及對遠紅光的敏感性上,有加成性的效果;但 FIN219 大量表現造成 的短下胚軸性狀會被 COI1 大量表現抑制。以大腸桿菌表現倆者蛋白質的方式與 酵母菌雙雜合實驗的結果都顯示倆者可互相結合;在阿拉伯芥的原生質體中,倆 者共同坐落在細胞核內。藉由篩選極研究各種大量表現 FLAG-COI1 的轉殖株, 因而發現茉莉酸的感知及訊息傳遞會促進 COI1 的累積,但是 FIN219 卻對此有 抑制的效果。在遠紅光下,COI1 大量表現可以抑制 fin219-2 突變株具有較長下 胚軸的性狀;此外,外加茉莉酸後,倆者可以透過獨立於彼此的方式,促成 HY5 的累積。在以上實驗中,我們呈現 FIN219 與 COI1 在遠紅光及茉莉酸訊息傳導 中相互調控的關係,顯示出訊息傳導中調校與交互作用的現象。zh_TW
dc.description.abstractIn Arabidopsis, FAR-RED INSENSIVIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) and CORONATINE INSENSITIVE 1 (COI1) are positive regulators in jasmonate (JA) signaling. FIN219/JAR1 catalyzes the synthesis of JA-isoleucine (JA-Ile), which is a bioactive conjugate of JA that promotes the binding of SFCCOI1 and JASMONATE-ZIM-DOMAIN PROTEINs (JAZs). This binding results in the degradation of JA signaling repressors JAZs by 26S proteasome. Recent publications indicate that both FIN219 and COI1 are involved in phytochrome A mediated high irradiance response during seedling de-etiolation. This study aimed to elucidate the relation of FIN219 and COI1 in FR light and JA signaling. We found that FIN219 and COI1 synergistically regulate fertility and FR light sensitivity. However, COI1 overexpression may suppress the effect of FIN219 overexpression on hypocotyl growth by post-transcriptional regulation. The results of pull-down and yeast two-hybrid assays suggest that FIN219 and COI1 may interact. We also showed both proteins can co-localize in the nuclei of Arabidopsis protoplasts. By generating FLAG-COI1 overexpression plants, we showed that JA perception/signaling promotes COI1 accumulation, whereas FIN219 represses this phenomenon. In FR light, COI1 overexpression suppressed fin219-2 long-hypocotyl phenotype. Both FIN219 and COI1 contribute to HY5 accumulation upon JA activation in FR light, which FIN219 and COI1 may exert their function synergistically. Taken together, the regulatory relationship of FIN219 and COI1 is fine-tuningly modulated and has a crosstalk between FR light and JA signalings.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:23:07Z (GMT). No. of bitstreams: 1
ntu-101-R98b42011-1.pdf: 29333932 bytes, checksum: d597ebf2219881f66d2e68f2af3999b2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsINTRODUCTION 1
Light, Photoreceptors, and Phytochromes 1
Seedling De-etiolation and PhyA Signaling 1
HY5 and COP1 2
FIN219/JAR1 and COP1 3
JA Signaling 4
Crosstalk Between Light and JA Signaling 5
MATERIALS AND METHODS 6
Plant Materials 6
Plasmid Constructions and Transgenic Plants 6
Plant Growth Conditions 7
Total Genomic DNA Isolation for Genomic PCR 7
Genotyping of coi1-16 8
RNA Extraction, DNase Treatment, and Reverse Transcription 8
Yeast Two-Hybrid Assays 9
Protoplast Transfection and BiFC Analysis 9
Total Protein Isolation and Western Blotting 10
Chlorophyll Extraction and Quantification 10
Measurement of Hypocotyl and Roots 10
Statistic Analysis 10
RESULTS 11
FIN219 and COI1 synergistically regulate fertility and FR light sensitivity. 11
COI1 may negatively regulate FIN219 functions under FR light 12
Ectopic expression of COI1 results in the suppression of FIN219 overexpressor phenotype in the dark. 13
Yeast two-hybrid assays reveal that C terminus of FIN219 interacts with COI1, and the interactions are not enhanced by JA or MeJA. 15
COI1-GFP was localized in the nucleus when transiently expressed in the protoplast. 16
FIN219 may have a negative role in the regulation of COI1 levels in response to MeJA or coronatine. 17
COI1 overexpression in fin219-2 complements long-hypocotyl phenotype in FR light. 17
35S::FLAG-COI1 complements coi1-16 phenotype in a quantity-dependent manner. 18
There is a G-box related binding site of MYC2 in the promoter region of HY5. 19
Seedlings grown in the medium supplemented with MeJA can accumulate more chlorophyll after transfer from FR light to white light. 20
DISCUSSION 21
FIN219 is regulated by COI1 in pGR::FIN219 transgenic lines. 22
FR light signaling in pGR::FIN219 transgenic plants: a combinatory effect of FIN219 and COI1-mediated JA signaling. 23
FLAG-COI1 level is affected by JA perception/signaling. 24
JA signaling increases HY5 level in FR light. 25
FIGURES 28
Figure 1. coi1-16 and fin219-2 are insensitive to FR light inhibition of hypocotyl elongation. 28
Figure 2. coi1-16 fin219-2 double mutants exhibit more severe defects in fertility and FR light sensitivity. 29
Figure 3. coi1-16 mutation has little effects on DEX treated pGR::FIN219 lines. 30
Figure 4. COI1 suppresses FIN219 accumulation in pGR::FIN219 transgenic line treated with DEX. 31
Figure 5. COI1 overexpression suppresses FIN219 overexpressor phenotype in the dark. 32
Figure 6. MG132 or MG115 treatment dose not restore FIN219 level in transgenic lines. 33
Figure 7. Ectopic expression of COI1 results in the suppression of FIN219 overexpressor phenotype in the dark and FR light. 34
Figure 8. Ectopic expression of COI1 suppresses FIN219 accumulation in FIN219 overexpressor under darkness and FR light. 35
Figure 9. FIN219 transcript levels in FIN219 overexpressors were suppressed by ectopic expression of COI1. 36
Figure 10. FIN219 interact with COI1 in yeast two-hybrid assay. 37
Figure 11. COI1-GFP localized in the nucleus and COI1 may co-localize with FIN219 in the nucleus. 38
Figure 12. COI1 overexpression suppresses fin219-2 long hypocotyl phenotype in FR light. FLAG-COI1 levels increase in response to MeJA and COR treatment in 35S::FLAG-COI1 /fin219-2 transgenic lines. 39
Figure 13. FIN219 suppresses FLAG-COI1 accumulation under the treatments of MeJA and COR. 40
Figure 14. FLAG-COI1 complements coi1-16 phenotypes. 41
Figure 15. FLAG-COI1 complements long hypocotyl phenotype of coi1-16 in FR light. 42
Figure 16. HY5 may be regulated by MYC2. 43
Figure 17. Treatment of MeJA accelerates chlorophyll synthesis in seedlings transferred from or FR light to white light. 44
Figure 18. Proposed model of regulation between FIN219 and COI1, and crosstalk between JA signaling and light signaling. 45
REFERENCES 46
APPENDIX 51
I. One-step yeast transformation for R919 51
II. Clones and constructs 52
III. qPCR primers and informations 53
dc.language.isoen
dc.title阿拉伯芥中 FIN219 與 COI1 的交互作用在遠紅光與茉莉酸訊息傳遞中的功能性研究zh_TW
dc.titleFunctional Studies of the Effects of FIN219 and COI1 Interaction on Far-Red Light and Jasmonic Acid Signaling in Arabidopsis thalianaen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳素幸(Shu-Hsing Wu),鄭石通(Shih-Tong Jeng),鄭秋萍(Chiu-Ping Cheng),張英?(Ing-Feng Chang)
dc.subject.keyword阿拉伯芥,光型態發生,茉莉酸,遠紅光,交互作用,zh_TW
dc.subject.keywordArabidopsis,photomorphogenesis,jasmonate,far-red light,interaction,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2012-06-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
28.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved