Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66135
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張?仁
dc.contributor.authorWen-Hsuan Yangen
dc.contributor.author楊文瑄zh_TW
dc.date.accessioned2021-06-17T00:23:03Z-
dc.date.available2012-06-27
dc.date.copyright2012-06-27
dc.date.issued2012
dc.date.submitted2012-06-04
dc.identifier.citation[1] J. Fan, X. Yang, W. Wang, W. H. Wood, 3rd, K. G. Becker, and M. Gorospe, 'Global analysis of stress-regulated mRNA turnover by using cDNA arrays,' Proc Natl Acad Sci U S A, vol. 99, pp. 10611-6, Aug 6 2002.
[2] K. S. Khabar, 'The AU-rich transcriptome: more than interferons and cytokines, and its role in disease,' Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, vol. 25, pp. 1-10, Jan 2005.
[3] B. Y. Brewer, J. Malicka, P. J. Blackshear, and G. M. Wilson, 'RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of Au-rich MRNA-destabilizing motifs,' J Biol Chem, vol. 279, pp. 27870-7, Jul 2 2004.
[4] G. Laroia, R. Cuesta, G. Brewer, and R. J. Schneider, 'Control of mRNA decay by heat shock-ubiquitin-proteasome pathway,' Science, vol. 284, pp. 499-502, Apr 16 1999.
[5] Y. Seko, S. Cole, W. Kasprzak, B. A. Shapiro, and J. A. Ragheb, 'The role of cytokine mRNA stability in the pathogenesis of autoimmune disease,' Autoimmunity Reviews, vol. 5, pp. 299-305, 2006.
[6] C. von Roretz and I. E. Gallouzi, 'Decoding ARE-mediated decay: is microRNA part of the equation?,' The Journal of cell biology, vol. 181, pp. 189-94, Apr 21 2008.
[7] C. Y. Chen and A. B. Shyu, 'AU-rich elements: characterization and importance in mRNA degradation,' Trends Biochem Sci, vol. 20, pp. 465-70, Nov 1995.
[8] E. Yang, E. van Nimwegen, M. Zavolan, N. Rajewsky, M. Schroeder, M. Magnasco, and J. E. Darnell, Jr., 'Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes,' Genome research, vol. 13, pp. 1863-72, Aug 2003.
[9] F. Cairrao, A. S. Halees, K. S. A. Khabar, D. Morello, and N. Vanzo, 'AU-Rich Elements Regulate Drosophila Gene Expression,' Molecular and Cellular Biology, vol. 29, pp. 2636-2643, 2009.
[10] T. Bakheet, 'ARED 3.0: the large and diverse AU-rich transcriptome,' Nucleic Acids Research, vol. 34, pp. D111-D114, 2006.
[11] M. Spasic, C. C. Friedel, J. Schott, J. Kreth, K. Leppek, S. Hofmann, S. Ozgur, and G. Stoecklin, 'Genome-wide assessment of AU-rich elements by the AREScore algorithm,' PLoS Genetics, vol. 8, p. e1002433, Jan 2012.
[12] P. J. Blackshear, R. S. Phillips, S. Ghosh, S. B. Ramos, E. K. Richfield, and W. S. Lai, 'Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the Tristetraprolin family of CCCH tandem zinc finger proteins,' Biol Reprod, vol. 73, pp. 297-307, Aug 2005.
[13] P. J. Blackshear, W. S. Lai, E. A. Kennington, G. Brewer, G. M. Wilson, X. Guan, and P. Zhou, 'Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates,' J Biol Chem, vol. 278, pp. 19947-55, May 30 2003.
[14] M. T. Worthington, J. W. Pelo, M. A. Sachedina, J. L. Applegate, K. O. Arseneau, and T. T. Pizarro, 'RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein,' The Journal of biological chemistry, vol. 277, pp. 48558-64, Dec 13 2002.
[15] W. S. Lai, E. Carballo, J. R. Strum, E. A. Kennington, R. S. Phillips, and P. J. Blackshear, 'Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA,' Molecular and Cellular Biology, vol. 19, pp. 4311-23, Jun 1999.
[16] E. Carballo, W. S. Lai, and P. J. Blackshear, 'Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability,' Blood, vol. 95, pp. 1891-9, Mar 15 2000.
[17] C. Y. Chen, R. Gherzi, S. E. Ong, E. L. Chan, R. Raijmakers, G. J. Pruijn, G. Stoecklin, C. Moroni, M. Mann, and M. Karin, 'AU binding proteins recruit the exosome to degrade ARE-containing mRNAs,' cell, vol. 107, pp. 451-64, Nov 16 2001.
[18] A. Schwede, L. Ellis, J. Luther, M. Carrington, G. Stoecklin, and C. Clayton, 'A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells,' Nucleic Acids Research, vol. 36, pp. 3374-88, Jun 2008.
[19] A. Yamashita, T. C. Chang, Y. Yamashita, W. Zhu, Z. Zhong, C. Y. Chen, and A. B. Shyu, 'Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover,' Nature structural & molecular biology, vol. 12, pp. 1054-63, Dec 2005.
[20] R. Parker and H. Song, 'The enzymes and control of eukaryotic mRNA turnover,' Nature structural & molecular biology, vol. 11, pp. 121-7, Feb 2004.
[21] J. Lykke-Andersen and E. Wagner, 'Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1,' Genes Dev, vol. 19, pp. 351-61, Feb 1 2005.
[22] T. M. Franks and J. Lykke-Andersen, 'TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements,' Genes & development, vol. 21, pp. 719-35, Mar 15 2007.
[23] M. Fenger-Gron, C. Fillman, B. Norrild, and J. Lykke-Andersen, 'Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping,' Molecular cell, vol. 20, pp. 905-15, Dec 22 2005.
[24] H. H. Hau, R. J. Walsh, R. L. Ogilvie, D. A. Williams, C. S. Reilly, and P. R. Bohjanen, 'Tristetraprolin recruits functional mRNA decay complexes to ARE sequences,' J Cell Biochem, vol. 100, pp. 1477-92, Apr 15 2007.
[25] W. S. Lai, E. A. Kennington, and P. J. Blackshear, 'Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease,' Mol Cell Biol, vol. 23, pp. 3798-812, Jun 2003.
[26] S. Sanduja, F. F. Blanco, and D. A. Dixon, 'The roles of TTP and BRF proteins in regulated mRNA decay,' Wiley Interdisciplinary Reviews: RNA, vol. 2, pp. 42-57, 2011.
[27] B. C. Varnum, R. W. Lim, V. P. Sukhatme, and H. R. Herschman, 'Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate,' Oncogene, vol. 4, pp. 119-20, Jan 1989.
[28] W. S. Lai, M. J. Thompson, and P. J. Blackshear, 'Characteristics of the Intron Involvement in the Mitogen-induced Expression of Zfp-36,' Journal of Biological Chemistry, vol. 273, pp. 506-517, January 2, 1998 1998.
[29] H. Cao, M. A. Kelly, F. Kari, H. D. Dawson, J. F. Urban, Jr., S. Coves, A. M. Roussel, and R. A. Anderson, 'Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats,' Journal of inflammation, vol. 4, p. 1, 2007.
[30] H. Cao, M. Polansky, and R. Anderson, 'Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes,' Archives of Biochemistry and Biophysics, vol. 459, pp. 214-222, 2007.
[31] K. Ogawa, F. Chen, Y. J. Kim, and Y. Chen, 'Transcriptional regulation of tristetraprolin by transforming growth factor-beta in human T cells,' The Journal of biological chemistry, vol. 278, pp. 30373-81, Aug 8 2003.
[32] K. Smoak and J. A. Cidlowski, 'Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling,' Molecular and Cellular Biology, vol. 26, pp. 9126-35, Dec 2006.
[33] W. S. Lai, D. J. Stumpo, and P. J. Blackshear, 'Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein,' The Journal of biological chemistry, vol. 265, pp. 16556-63, Sep 25 1990.
[34] H. Cao, J. F. Urban, Jr., and R. A. Anderson, 'Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes,' Obesity (Silver Spring), vol. 16, pp. 1208-18, Jun 2008.
[35] N. Y. Lin, C. T. Lin, and C. J. Chang, 'Modulation of immediate early gene expression by tristetraprolin in the differentiation of 3T3-L1 cells,' Biochem Biophys Res Commun, vol. 365, pp. 69-74, Jan 4 2008.
[36] E. Carballo, W. S. Lai, and P. J. Blackshear, 'Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin,' Science, vol. 281, pp. 1001-5, Aug 14 1998.
[37] R. L. Ogilvie, M. Abelson, H. H. Hau, I. Vlasova, P. J. Blackshear, and P. R. Bohjanen, 'Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay,' Journal of immunology, vol. 174, pp. 953-61, Jan 15 2005.
[38] T. J. Horner, W. S. Lai, D. J. Stumpo, and P. J. Blackshear, 'Stimulation of polo-like kinase 3 mRNA decay by tristetraprolin,' Mol Cell Biol, vol. 29, pp. 1999-2010, Apr 2009.
[39] K. Essafi-Benkhadir, C. Onesto, E. Stebe, C. Moroni, and G. Pages, 'Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation,' Mol Biol Cell, vol. 18, pp. 4648-58, Nov 2007.
[40] C. W. Kim, H. K. Kim, M. T. Vo, H. H. Lee, H. J. Kim, Y. J. Min, W. J. Cho, and J. W. Park, 'Tristetraprolin controls the stability of cIAP2 mRNA through binding to the 3'UTR of cIAP2 mRNA,' Biochemical and Biophysical Research Communications, vol. 400, pp. 46-52, Sep 10 2010.
[41] H. Sandler and G. Stoecklin, 'Control of mRNA decay by phosphorylation of tristetraprolin,' Biochemical Society transactions, vol. 36, pp. 491-6, Jun 2008.
[42] T. W. Kim, S. Yim, B. J. Choi, Y. Jang, J. J. Lee, B. H. Sohn, H. S. Yoo, Y. I. Yeom, and K. C. Park, 'Tristetraprolin regulates the stability of HIF-1alpha mRNA during prolonged hypoxia,' Biochemical and biophysical research communications, vol. 391, pp. 963-8, Jan 1 2010.
[43] S. A. Brooks, J. E. Connolly, and W. F. Rigby, 'The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway,' J Immunol, vol. 172, pp. 7263-71, Jun 15 2004.
[44] J. A. Carman and S. G. Nadler, 'Direct association of tristetraprolin with the nucleoporin CAN/Nup214,' Biochemical and biophysical research communications, vol. 315, pp. 445-9, Mar 5 2004.
[45] C. A. Chrestensen, M. J. Schroeder, J. Shabanowitz, D. F. Hunt, J. W. Pelo, M. T. Worthington, and T. W. Sturgill, 'MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding,' J Biol Chem, vol. 279, pp. 10176-84, Mar 12 2004.
[46] K. R. Mahtani, M. Brook, J. L. E. Dean, G. Sully, J. Saklatvala, and A. R. Clark, 'Mitogen-Activated Protein Kinase p38 Controls the Expression and Posttranslational Modification of Tristetraprolin, a Regulator of Tumor Necrosis Factor Alpha mRNA Stability,' Molecular and Cellular Biology, vol. 21, pp. 6461-6469, 2001.
[47] H. Cao, F. Dzineku, and P. J. Blackshear, 'Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-alpha mRNA and serve as a substrate for mitogen-activated protein kinases,' Archives of Biochemistry and Biophysics, vol. 412, pp. 106-20, Apr 1 2003.
[48] L. Sun, G. Stoecklin, S. Van Way, V. Hinkovska-Galcheva, R. F. Guo, P. Anderson, and T. P. Shanley, 'Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA,' J Biol Chem, vol. 282, pp. 3766-77, Feb 9 2007.
[49] W. F. Rigby, K. Roy, J. Collins, S. Rigby, J. E. Connolly, D. B. Bloch, and S. A. Brooks, 'Structure/function analysis of tristetraprolin (TTP): p38 stress-activated protein kinase and lipopolysaccharide stimulation do not alter TTP function,' Journal of immunology, vol. 174, pp. 7883-93, Jun 15 2005.
[50] B. A. Johnson, J. R. Stehn, M. B. Yaffe, and T. K. Blackwell, 'Cytoplasmic localization of tristetraprolin involves 14-3-3-dependent and -independent mechanisms,' THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, pp. 18029-36, May 17 2002.
[51] E. Hitti, T. Iakovleva, M. Brook, S. Deppenmeier, A. D. Gruber, D. Radzioch, A. R. Clark, P. J. Blackshear, A. Kotlyarov, and M. Gaestel, 'Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element,' Mol Cell Biol, vol. 26, pp. 2399-407, Mar 2006.
[52] E. Carballo, H. Cao, W. S. Lai, E. A. Kennington, D. Campbell, and P. J. Blackshear, 'Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway,' The Journal of biological chemistry, vol. 276, pp. 42580-7, Nov 9 2001.
[53] H. Cao, 'Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications,' Biochemistry, vol. 43, pp. 13724-38, Nov 2 2004.
[54] C. Mackintosh, 'Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes,' The Biochemical journal, vol. 381, pp. 329-42, Jul 15 2004.
[55] G. Stoecklin, T. Stubbs, N. Kedersha, S. Wax, W. F. Rigby, T. K. Blackwell, and P. Anderson, 'MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay,' Embo J, vol. 23, pp. 1313-24, Mar 24 2004.
[56] M. Marderosian, A. Sharma, A. P. Funk, R. Vartanian, J. Masri, O. D. Jo, and J. F. Gera, 'Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling,' Oncogene, vol. 25, pp. 6277-6290, 2006.
[57] M. Brook, C. R. Tchen, T. Santalucia, J. McIlrath, J. S. Arthur, J. Saklatvala, and A. R. Clark, 'Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways,' Mol Cell Biol, vol. 26, pp. 2408-18, Mar 2006.
[58] Q. Jing, S. Huang, S. Guth, T. Zarubin, A. Motoyama, J. Chen, F. Di Padova, S. C. Lin, H. Gram, and J. Han, 'Involvement of microRNA in AU-rich element-mediated mRNA instability,' cell, vol. 120, pp. 623-34, Mar 11 2005.
[59] G. A. Taylor, E. Carballo, D. M. Lee, W. S. Lai, M. J. Thompson, D. D. Patel, D. I. Schenkman, G. S. Gilkeson, H. E. Broxmeyer, B. F. Haynes, and P. J. Blackshear, 'A Pathogenetic Role for TNFα in the Syndrome of Cachexia, Arthritis, and Autoimmunity Resulting from Tristetraprolin (TTP) Deficiency,' Immunity, vol. 4, pp. 445-454, 1996.
[60] L. Bouchard, A. Tchernof, Y. Deshaies, S. Marceau, O. Lescelleur, S. Biron, and M. C. Vohl, 'ZFP36: a promising candidate gene for obesity-related metabolic complications identified by converging genomics,' Obesity surgery, vol. 17, pp. 372-82, Mar 2007.
[61] N. Al-Souhibani, W. Al-Ahmadi, J. E. Hesketh, P. J. Blackshear, and K. S. Khabar, 'The RNA-binding zinc-finger protein tristetraprolin regulates AU-rich mRNAs involved in breast cancer-related processes,' Oncogene, vol. 29, pp. 4205-15, Jul 22 2010.
[62] S. E. Brennan, Y. Kuwano, N. Alkharouf, P. J. Blackshear, M. Gorospe, and G. M. Wilson, 'The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis,' Cancer Research, vol. 69, pp. 5168-76, Jun 15 2009.
[63] L. E. Young, S. Sanduja, K. Bemis–Standoli, E. A. Pena, R. L. Price, and D. A. Dixon, 'The mRNA Binding Proteins HuR and Tristetraprolin Regulate Cyclooxygenase 2 Expression During Colon Carcinogenesis,' Gastroenterology, vol. 136, pp. 1669-1679, 2009.
[64] B. A. Johnson and T. K. Blackwell, 'Multiple tristetraprolin sequence domains required to induce apoptosis and modulate responses to TNFalpha through distinct pathways,' Oncogene, vol. 21, pp. 4237-46, Jun 20 2002.
[65] B. A. Johnson, M. Geha, and T. K. Blackwell, 'Similar but distinct effects of the tristetraprolin/TIS11 immediate-early proteins on cell survival,' Oncogene, vol. 19, pp. 1657-64, Mar 23 2000.
[66] G. Stoecklin, B. Gross, X. F. Ming, and C. Moroni, 'A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA,' Oncogene, vol. 22, pp. 3554-61, Jun 5 2003.
[67] B. C. Varnum, Q. F. Ma, T. H. Chi, B. Fletcher, and H. R. Herschman, 'The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat,' Molecular and Cellular Biology, vol. 11, pp. 1754-8, Mar 1991.
[68] G. Stoecklin, S. A. Tenenbaum, T. Mayo, S. V. Chittur, A. D. George, T. E. Baroni, P. J. Blackshear, and P. Anderson, 'Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin,' J Biol Chem, vol. 283, pp. 11689-99, Apr 25 2008.
[69] D. J. Hodson, M. L. Janas, A. Galloway, S. E. Bell, S. Andrews, C. M. Li, R. Pannell, C. W. Siebel, H. R. MacDonald, K. De Keersmaecker, A. A. Ferrando, G. Grutz, and M. Turner, 'Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia,' Nature Immunology, vol. 11, pp. 717-724, 2010.
[70] M. Schmidlin, M. Lu, S. A. Leuenberger, G. Stoecklin, M. Mallaun, B. Gross, R. Gherzi, D. Hess, B. A. Hemmings, and C. Moroni, 'The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B,' The EMBO Journal, vol. 23, pp. 4760-9, Dec 8 2004.
[71] D. Benjamin, M. Schmidlin, L. Min, B. Gross, and C. Moroni, 'BRF1 Protein Turnover and mRNA Decay Activity Are Regulated by Protein Kinase B at the Same Phosphorylation Sites,' Molecular and Cellular Biology, vol. 26, pp. 9497-9507, 2006.
[72] S. Maitra, C. F. Chou, C. A. Luber, K. Y. Lee, M. Mann, and C. Y. Chen, 'The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2,' RNA, vol. 14, pp. 950-9, May 2008.
[73] K.-F. Storch, O. Lipan, I. Leykin, N. Viswanathan, F. C. Davis, W. H. Wong, and C. J. Weitz, 'Extensive and divergent circadian gene expression in liver and heart,' Nature, vol. 417, pp. 78-83, 2002.
[74] S. Panda, M. P. Antoch, B. H. Miller, A. I. Su, A. B. Schook, M. Straume, P. G. Schultz, S. A. Kay, J. S. Takahashi, and J. B. Hogenesch, 'Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock,' cell, vol. 109, pp. 307-320, 2002.
[75] D. Wegmüller, I. Raineri, B. Gross, E. J. Oakeley, and C. Moroni, 'A Cassette System to Study Embryonic Stem Cell Differentiation by Inducible RNA Interference,' Stem Cells, vol. 25, pp. 1178-1185, 2007.
[76] A. Desroches-Castan, N. Cherradi, J. J. Feige, and D. Ciais, 'A novel function of Tis11b/BRF1 as a regulator of Dll4 mRNA 3'-end processing,' Molecular Biology of the Cell, vol. 22, pp. 3625-3633, 2011.
[77] D. J. Stumpo, N. A. Byrd, R. S. Phillips, S. Ghosh, R. R. Maronpot, T. Castranio, E. N. Meyers, Y. Mishina, and P. J. Blackshear, 'Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family,' Mol Cell Biol, vol. 24, pp. 6445-55, Jul 2004.
[78] B. P. Hudson, M. A. Martinez-Yamout, H. J. Dyson, and P. E. Wright, 'Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d,' Nature Structural & Molecular Biology, vol. 11, pp. 257-264, 2004.
[79] B. R. Morgan and F. Massi, 'A computational study of RNA binding and specificity in the tandem zinc finger domain of TIS11d,' Protein science : a publication of the Protein Society, vol. 19, pp. 1222-34, Jun 2010.
[80] D. M. Carrick and P. J. Blackshear, 'Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines,' Arch Biochem Biophys, vol. 462, pp. 278-85, Jun 15 2007.
[81] Iwanaga, 'Mutation in the RNA binding protein TIS11D/ZFP36L2 is associated with the pathogenesis of acute leukemia,' International Journal of Oncology, vol. 38, 2010.
[82] S. B. Ramos, D. J. Stumpo, E. A. Kennington, R. S. Phillips, C. B. Bock, F. Ribeiro-Neto, and P. J. Blackshear, 'The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development,' Development, vol. 131, pp. 4883-93, Oct 2004.
[83] Q. Ma, D. Wadleigh, T. Chi, and H. Herschman, 'The Drosophila TIS11 homologue encodes a developmentally controlled gene,' Oncogene, vol. 9, pp. 3329-34, Nov 1994.
[84] A. Lauwers, L. Twyffels, R. Soin, C. Wauquier, V. Kruys, and C. Gueydan, 'Post-transcriptional Regulation of Genes Encoding Anti-microbial Peptides in Drosophila,' Journal of Biological Chemistry, vol. 284, pp. 8973-8983, 2009.
[85] Y. Wei, Q. Xiao, T. Zhang, Z. Mou, J. You, and W. J. Ma, 'Differential regulation of mRNA stability controls the transient expression of genes encoding Drosophila antimicrobial peptide with distinct immune response characteristics,' Nucleic Acids Research, vol. 37, pp. 6550-6561, 2009.
[86] J. Jemc and I. Rebay, 'The Eyes Absent Family of Phosphotyrosine Phosphatases: Properties and Roles in Developmental Regulation of Transcription,' Annual Review of Biochemistry, vol. 76, pp. 513-538, 2007.
[87] N. M. Bonini, W. M. Leiserson, and S. Benzer, 'Multiple roles of the eyes absent gene in Drosophila,' Developmental Biology, vol. 196, pp. 42-57, Apr 1 1998.
[88] P. X. Xu, I. Woo, H. Her, D. R. Beier, and R. L. Maas, 'Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode,' Development, vol. 124, pp. 219-231, January 1, 1997 1997.
[89] F. Pignoni, B. Hu, K. H. Zavitz, J. Xiao, P. A. Garrity, and S. L. Zipursky, 'The Eye-Specification Proteins So and Eya Form a Complex and Regulate Multiple Steps in Drosophila Eye Development,' cell, vol. 91, pp. 881-891, 1997.
[90] Q. T. Bui, J. E. Zimmerman, H. Liu, and N. M. Bonini, 'Molecular Analysis of Drosophila eyes absent Mutants Reveals Features of the Conserved Eya Domain,' Genetics, vol. 155, pp. 709-720, 2000.
[91] J. P. Rayapureddi, C. Kattamuri, B. D. Steinmetz, B. J. Frankfort, E. J. Ostrin, G. Mardon, and R. S. Hegde, 'Eyes absent represents a class of protein tyrosine phosphatases,' Nature, vol. 426, pp. 295-8, Nov 20 2003.
[92] C. L. Salzer, Y. Elias, and J. P. Kumar, 'The Retinal Determination Gene eyes absent Is Regulated by the EGF Receptor Pathway Throughout Development in Drosophila,' Genetics, vol. 184, pp. 185-197, 2009.
[93] P. J. Cook, B. G. Ju, F. Telese, X. Wang, C. K. Glass, and M. G. Rosenfeld, 'Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions,' Nature, vol. 458, pp. 591-596, 2009.
[94] J. Fullgrabe, N. Hajji, and B. Joseph, 'Cracking the death code: apoptosis-related histone modifications,' Cell Death and Differentiation, vol. 17, pp. 1238-43, Aug 2010.
[95] J. P. Madigan, H. L. Chotkowski, and R. L. Glaser, 'DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis,' Nucleic acids research, vol. 30, pp. 3698-705, Sep 1 2002.
[96] Y. Okabe, T. Sano, and S. Nagata, 'Regulation of the innate immune response by threonine-phosphatase of Eyes absent,' Nature, vol. 460, pp. 520-524, 2009.
[97] W. Xiong, N. M. Dabbouseh, and I. Rebay, 'Interactions with the Abelson Tyrosine Kinase Reveal Compartmentalization of Eyes Absent Function between Nucleus and Cytoplasm,' Developmental Cell, vol. 16, pp. 271-279, 2009.
[98] N. M. Bonini, W. M. Leiserson, and S. Benzer, 'The eyes absent gene: genetic control of cell survival and differentiation in the deceloping drosophila eye,' cell, vol. 72, pp. 379-395, 1993.
[99] N. M. Bonini, Q. T. Bui, G. L. Gray-Board, and J. M. Warrick, 'The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates,' Development, vol. 124, pp. 4819-26, Dec 1997.
[100] R. N. Pandey, R. Rani, E. J. Yeo, M. Spencer, S. Hu, R. A. Lang, and R. S. Hegde, 'The Eyes Absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells,' Oncogene, vol. 29, pp. 3715-3722, 2010.
[101] S. M. Farabaugh, D. S. Micalizzi, P. Jedlicka, R. Zhao, and H. L. Ford, 'Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties,' Oncogene, Jun 27 2011.
[102] Y. Fuchs and H. Steller, 'Programmed cell death in animal development and disease,' cell, vol. 147, pp. 742-58, Nov 11 2011.
[103] D. A. Primrose, S. Chaudhry, A. G. Johnson, A. Hrdlicka, A. Schindler, D. Tran, and E. Foley, 'Interactions of DNR1 with the apoptotic machinery of Drosophila melanogaster,' Journal of Cell Science, vol. 120, pp. 1189-99, Apr 1 2007.
[104] L. Dorstyn, S. Read, D. Cakouros, J. R. Huh, B. A. Hay, and S. Kumar, 'The role of cytochrome c in caspase activation in Drosophila melanogaster cells,' The Journal of cell biology, vol. 156, pp. 1089-98, Mar 18 2002.
[105] B. A. Hay and M. Guo, 'Caspase-dependent cell death in Drosophila,' Annual review of cell and developmental biology, vol. 22, pp. 623-50, 2006.
[106] L. Quinn, M. Coombe, K. Mills, T. Daish, P. Colussi, S. Kumar, and H. Richardson, 'Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions,' EMBO J, vol. 22, pp. 3568-3579, 2003.
[107] B. A. Hay, D. A. Wassarman, and G. M. Rubin, 'Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death,' cell, vol. 83, pp. 1253-62, Dec 29 1995.
[108] A. G. Uren, M. Pakusch, C. J. Hawkins, K. L. Puls, and D. L. Vaux, 'Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors,' Proceedings of the National Academy of Sciences of the United States of America, vol. 93, pp. 4974-8, May 14 1996.
[109] S. Y. Vernooy, V. Chow, J. Su, K. Verbrugghe, J. Yang, S. Cole, M. R. Olson, and B. A. Hay, 'Drosophila Bruce can potently suppress Rpr- and Grim-dependent but not Hid-dependent cell death,' Current biology : CB, vol. 12, pp. 1164-8, Jul 9 2002.
[110] H. Steller, 'Regulation of apoptosis in Drosophila,' Cell Death and Differentiation, vol. 15, pp. 1132-1138, 2008.
[111] A. Bergmann, M. Tugentman, B.-Z. Shilo, and H. Steller, 'Regulation of Cell Number by MAPK-Dependent Control of Apoptosis: A Mechanism for Trophic Survival Signaling,' Developmental Cell, vol. 2, pp. 159-170, 2002.
[112] J. Brennecke, D. R. Hipfner, A. Stark, R. B. Russell, and S. M. Cohen, 'bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila,' cell, vol. 113, pp. 25-36, 2003.
[113] G. S. Hotamisligil, 'Inflammation and metabolic disorders,' Nature, vol. 444, pp. 860-7, Dec 14 2006.
[114] H. Tilg and A. R. Moschen, 'Adipocytokines: mediators linking adipose tissue, inflammation and immunity,' Nature reviews. Immunology, vol. 6, pp. 772-83, Oct 2006.
[115] N.-Y. Lin, C.-T. Lin, Y.-L. Chen, and C.-J. Chang, 'Regulation of tristetraprolin during differentiation of 3T3-L1 preadipocytes,' FEBS Journal, vol. 274, pp. 867-878, 2007.
[116] H. Green and O. Kehinde, 'An established pre-adipose cell line and its differentiation in culture,' cell, vol. 1, pp. 113-116, 1974.
[117] S. R. Farmer, 'Transcriptional control of adipocyte formation,' Cell Metab, vol. 4, pp. 263-73, Oct 2006.
[118] J. M. Ntambi and Y.-C. Kim, 'Adipocyte Differentiation and Gene Expression,' the journal of nutrition, vol. 130, pp. 3122S-3126S, 2000.
[119] M. D. Lane, Q.-Q. Tang, and M.-S. Jiang, 'Role of the CCAAT Enhancer Binding Proteins (C/EBPs) in Adipocyte Differentiation,' Biochemical and Biophysical Research Communications, vol. 266, pp. 677-683, 1999.
[120] E. D. Rosen and B. M. Spiegelman, 'Molecular regulation of adipogenesis,' Annual review of cell and developmental biology, vol. 16, pp. 145-71, 2000.
[121] Q. Q. Tang and M. D. Lane, 'Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation,' Genes & development, vol. 13, pp. 2231-41, Sep 1 1999.
[122] O. A. MacDougald and M. D. Lane, 'Transcriptional Regulation of Gene Expression During Adipocyte Differentiation,' Annual Review of Biochemistry, vol. 64, pp. 345-373, 1995.
[123] Q.-Q. Tang, T. C. Otto, and M. D. Lane, 'Mitotic clonal expansion: A synchronous process required for adipogenesis,' Proceedings of the National Academy of Sciences, vol. 100, pp. 44-49, 2003.
[124] J. Zhang, 'Selective disruption of PPAR 2 impairs the development of adipose tissue and insulin sensitivity,' Proceedings of the National Academy of Sciences, vol. 101, pp. 10703-10708, 2004.
[125] E. Hu, P. Tontonoz, and B. M. Spiegelman, 'Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha,' Proceedings of the National Academy of Sciences of the United States of America, vol. 92, pp. 9856-60, Oct 10 1995.
[126] P. Tontonoz, E. Hu, and B. M. Spiegelman, 'Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor,' cell, vol. 79, pp. 1147-56, Dec 30 1994.
[127] Y. Barak, M. C. Nelson, E. S. Ong, Y. Z. Jones, P. Ruiz-Lozano, K. R. Chien, A. Koder, and R. M. Evans, 'PPAR gamma is required for placental, cardiac, and adipose tissue development,' Molecular cell, vol. 4, pp. 585-95, Oct 1999.
[128] H. Sakaue, W. Ogawa, T. Nakamura, T. Mori, K. Nakamura, and M. Kasuga, 'Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation,' The Journal of biological chemistry, vol. 279, pp. 39951-7, Sep 17 2004.
[129] M. Cargnello and P. P. Roux, 'Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases,' Microbiology and Molecular Biology Reviews, vol. 75, pp. 50-83, 2011.
[130] P. Coulombe and S. Meloche, 'Atypical mitogen-activated protein kinases: Structure, regulation and functions,' Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1773, pp. 1376-1387, 2007.
[131] D. M. Owens and S. M. Keyse, 'Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases,' Oncogene, vol. 26, pp. 3203-3213, 2007.
[132] L. B. Ray and T. W. Sturgill, 'Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo,' Proceedings of the National Academy of Sciences of the United States of America, vol. 85, pp. 3753-7, Jun 1988.
[133] J. A. Cooper, D. F. Bowen-Pope, E. Raines, R. Ross, and T. Hunter, 'Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins,' cell, vol. 31, pp. 263-73, Nov 1982.
[134] R. H. Chen, C. Sarnecki, and J. Blenis, 'Nuclear localization and regulation of erk- and rsk-encoded protein kinases,' Molecular and Cellular Biology, vol. 12, pp. 915-27, Mar 1992.
[135] F. Bost, M. Aouadi, L. Caron, and B. Binétruy, 'The role of MAPKs in adipocyte differentiation and obesity,' Biochimie, vol. 87, pp. 51-56, 2005.
[136] J. Hu, S. K. Roy, P. S. Shapiro, S. R. Rodig, S. P. Reddy, L. C. Platanias, R. D. Schreiber, and D. V. Kalvakolanu, 'ERK1 and ERK2 activate CCAAAT/enhancer-binding protein-beta-dependent gene transcription in response to interferon-gamma,' The Journal of biological chemistry, vol. 276, pp. 287-97, Jan 5 2001.
[137] R. Ben-Levy, S. Hooper, R. Wilson, H. F. Paterson, and C. J. Marshall, 'Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2,' Current biology : CB, vol. 8, pp. 1049-57, Sep 24 1998.
[138] J. Raingeaud, S. Gupta, J. S. Rogers, M. Dickens, J. Han, R. J. Ulevitch, and R. J. Davis, 'Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine,' THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, pp. 7420-6, Mar 31 1995.
[139] A.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66135-
dc.description.abstract訊息核醣核酸 (mRNA)在細胞內受到嚴密調控。其中一種轉錄後調控是透過降解相關因子結合到位於mRNA三端未轉譯區 (3' untranslated region, 3'UTR)上的多腺嘌呤及尿嘧啶序列 (AU-rich element, ARE)來促進降解。TTP (tristetraprolin)家族蛋白可以透過鋅指區域 (tandem CCCH zinc finger)結合到ARE,造成mRNA易被降解。其在老鼠內有四個成員:分別是TTP,ZFP36L1,ZFP36L2和ZFP36L3;而在果蠅只有一個:DTIS11。為了探討TTP家族蛋白的功能作用,我們分別利用果蠅細胞及老鼠前脂肪細胞來研究。第一部分,發現TTP的新標的mRNA:eyes absent (eya)。利用核醣核酸交互作用沉降試驗 (RNA pull-down)以及螢光素酶報導基因分析 (luciferase reporter assay),發現DTIS11會利用鋅指區域結合到eya mRNA並造成其降解。同時也發現表現DTIS11會降低細胞存活率。相同的結論我們也在人類乳癌細胞 (MCF7)得到: TTP可以使得eya homologue 2 (EYA2) mRNA降解並影響到細胞存活率,這可能是由於細胞凋亡。在第二部分的實驗,發現ZFP36L1和ZFP36L2對調節脂肪細胞分化可能扮演不同時期調控的角色。類似TTP的作用,ZFP36L1和ZFP36L2都可以結合到去磷酸酶Mkp-1 mRNA 3'UTR上並造成其去穩定性。利用慢病毒載體 (lentiviral vector)方式來抑制ZFP36L1或ZFP36L2表現,發現唯有抑制ZFP36L1會造成一些極早期基因 (immediate early genes)的核醣核酸表現量上升,其中包括Mkp-1 mRNA,同時並發現ERK活性降低以及抑制脂肪分化。於是我們提出TTP家族蛋白會在不同時期相互調控Mkp-1 mRNA進而影響到脂肪分化。綜合上述,本研究結果指出TTP家族蛋白會透過調控不同的標的訊息核醣核酸來影響到細胞的活性或是脂肪細胞的分化。zh_TW
dc.description.abstractThe turnover of AU-rich element (ARE)-containing mRNAs is post-transcriptionally regulated by one or more RNA-binding proteins, such as tristetraprolin (TTP) family proteins. In rodent, there are four proteins belonging to TTP family: TTP (TIS11, ZFP36), ZFP36L1 (TIS11b, BRF-1), ZFP36L2 (TIS11d, BRF-2), and ZFP36L3. In Drosophila, only one TTP family protein has been reported (DTIS11). TTP family proteins have two tandem CCCH zinc finger (TZF) domains that bind to ARE of target mRNAs and then cause the mRNAs to be destabilized by recruitment of 5' and 3' mRNA degradation complexes. To identify their mRNA targets and the functional effect of TTP family proteins, the overexpression and knockdown were performed in Drosophila cells and mouse preadipocytes, respectively. The eyes absent (eya) transcript is one of many ARE-containing mRNAs in Drosophila. RNA pull-down and luciferase reporter analyses demonstrated that the DTIS11 RNA-binding domain is required for DTIS11 to bind the eya 3' UTR and reduce levels of eya mRNA. Moreover, ectopic expression of DTIS11 in Drosophila Schneider 2 (S2) cells decreased levels of eya mRNA and reduced cell viability. Consistent with these results, TTP proteins overexpressed in MCF7 human breast cancer cells were associated with eya homologue 2 (EYA2) mRNA, and caused a decrease in EYA2 mRNA stability and cell viability which may be caused by apoptosis. Our results demonstrated that eya mRNA is a novel target of TTP protein. In the second part of the thesis, the functional analyses of ZFP36L1 and ZFP36L2 in regulating mitogen-activated protein kinase (MAPK) phosphatase-1 (Mkp-1) mRNA and adipogenesis were investigated. Physical RNA pull-down and functional luciferase assays revealed that ZFP36L1 and ZFP36L2 bound to the 3' untranslated region (UTR) of Mkp-1 mRNA and downregulated Mkp-1 3'UTR-mediated luciferase activity. Knockdown of ZFP36L1, but not ZFP36L2, increased basal levels of immediate early genes including Mkp-1 mRNA and decreased ERK activation. We also found that knockdown of constitutive expression of ZFP36L1 and ZFP36L2 would inhibit and slightly enhance differentiation of mouse 3T3-L1 preadipocyte, respectively. These results suggested ZFP36L1 and ZFP36L2 may regulate the expression of ARE-containing mRNA and thus adipogenesis differently. Collectively, our findings indicate that TTP family proteins modulate cell viability or cell differentiation through destabilizing some mRNA targets.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:23:03Z (GMT). No. of bitstreams: 1
ntu-101-R99b46010-1.pdf: 11714278 bytes, checksum: bacb169c7aed918d62ec069dd1868611 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
ABBREVIATIONS ix
LIST OF FIGURES xi
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 AU-rich element mediated mRNA decay 1
1.2 Tristetraprolin (TTP) family proteins 2
1.2.1 Tristetraprolin (TTP) 3
1.2.2 ZFP36-Like-1 (ZFP36L1) and ZFP36-Like-2 (ZFP36L2) 6
1.2.3 Drosophila TTP (DTIS11) 7
1.3 mRNA targets and function of TTP family in Drosophila 8
1.3.1 Eyes absent (Eya) 8
1.3.2 Apoptosis 11
1.4 mRNA targets and function of TTP family in 3T3-L1 preadipocytes 13
1.4.1 Pre-adipocyte differentiation 14
1.4.2 Mitogen-activated protein kinase (MAPK) pathways 16
1.4.3 Mitogen-activated protein kinase phosphatase-1 (MKP-1) 18
1.5 Experimental rationale 19
Chapter 2 Materials and Methods 21
2.1 Plasmid constructs 21
2.2 Expression and purification of recombinant protein 22
2.3 Cell culture and transfection 24
2.4 Preparation of cell extracts 25
2.5 Calf intestinal alkaline phosphatase (CIP) assay 25
2.6 Western blotting analysis and antibodies 25
2.7 RNA pull-down analysis 26
2.8 Transfection and luciferase reporter analysis 27
2.9 RNA isolation and reverse-transcription 28
2.10 Semiquantitative PCR 29
2.11 Real-time PCR 30
2.12 RNA half-life 30
2.13 Lentivirus production and knockdown genes in 3T3-L1 cells 30
2.14 MTS assay 31
2.15 Oil red O staining 31
2.16 Immunofluorescence and confocal microscopy 32
2.17 Statistics 33
Chapter 3 Results 34
3.1 Drosophila eyes absent is a novel mRNA target of DTIS11 34
3.1.1 Alignments of amino acid sequences between Drosophila and mouse TTP family members 34
3.1.2 DTIS11 has similar RNA-binding activity as mouse TTP family proteins 34
3.1.3 Preparation and purification of GST-DTIS11 35
3.1.4 eyes absent mRNA is a possible target of TTP proteins 35
3.1.5 Physical and functional interactions between DTIS11 and eya 3'UTR 36
3.1.6 Overexpression of DTIS11 in S2 cells inhibits cell viability 37
3.1.7 TTP family proteins downregulate hEYA2 mRNA expression, hEYA2 mRNA stability and cell viability in MCF7 cells 38
3.1.8 Overexpression of TTP correlates with apoptosis 38
3.2 Functional analysis of ZFP36L1 and ZFP36L2 during differentiation of 3T3-L1 preadipocytes 40
3.2.1 Analysis of ZFP36L1, ZFP36L2, and TTP expression profiles during 3T3-L1 early differentiation 40
3.2.2 ZFP36L1 and ZFP36L2 bind to Mkp-1 AREs and negatively regulate Mkp-1 mRNA expression 41
3.2.3 shRNA-mediated knockdown of ZFP36L1 or ZFP36L2 in 3T3-L1 cells 42
3.2.4 Knockdown of ZFP36L1 increases basal level and stability of Mkp-1 mRNA and reduces downstream ERK activity 42
3.2.5 The function and regulation of ZFP36L1 during differentiation inductions 43
3.2.6 Biological function of ZFP36L1 and ZFP36L2 in adipogenesis 44
Chapter 4 Discussion 46
4.1 Drosophila eyes absent is a novel mRNA target of DTIS11 46
4.2 Functional analysis of ZFP36L1 and ZFP36L2 during differentiation of 3T3-L1 preadipocytes 50
Chapter 5 Figures 54
Chapter 6 Tables 82
REFERENCES 84
LIST OF POSTERS AND PUBLICATION 100
dc.language.isoen
dc.subject鋅指蛋白36zh_TW
dc.subject眼缺陷基因zh_TW
dc.subject去磷酸&#37238zh_TW
dc.subject轉譯後調控機制zh_TW
dc.subject鋅指蛋白36類型1zh_TW
dc.subjectpost-transcriptional regulationen
dc.subjectZFP36L1en
dc.subjectMAPK phosphatase-1 (MKP-1)en
dc.subjecteyes absent (eya)en
dc.subjecttristetraprolin (TTP)en
dc.titleTTP 家族蛋白在果蠅細胞與老鼠前脂肪細胞的標的RNA和功能分析zh_TW
dc.titleIdentification of mRNA targets and functional characterization of tristetraprolin (TTP) family proteins in Drosophila and mouse preadipocytesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂勝春,張茂山,李玉梅
dc.subject.keyword轉譯後調控機制,鋅指蛋白36,眼缺陷基因,去磷酸&#37238,鋅指蛋白36類型1,zh_TW
dc.subject.keywordpost-transcriptional regulation,tristetraprolin (TTP),eyes absent (eya),MAPK phosphatase-1 (MKP-1),ZFP36L1,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2012-06-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
11.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved