請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6611完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩燁 | |
| dc.contributor.author | Wei-Lin Luo | en |
| dc.contributor.author | 羅瑋霖 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:15:15Z | - |
| dc.date.available | 2014-08-15 | |
| dc.date.available | 2021-05-17T09:15:15Z | - |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-13 | |
| dc.identifier.citation | Aguzzi A, Sigurdson C, Heikenwalder M (2007) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol-Mech 3: 11-40
Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214: 764-766 Alper T, Haig DA, Clarke MC (1966) The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 22: 278-284 Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223-230 Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277: 21140-21148 Bendheim PE, Brown HR, Rudelli RD, Scala LJ, Goller NL, Wen GY, Kascsak RJ, Cashman NR, Bolton DC (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42: 149 Bocharova OV, Breydo L, Parfenov AS, Salnikov VV, Baskakov IV (2005) In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J Mol Biol 346: 645-659 Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave K-A, Weis J, Aguzzi A (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13: 310-318 Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390: 684-687 Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock CJ (1997) Transmissions to mice indicate that `new variant' CJD is caused by the BSE agent. Nature 389: 498-501 Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73: 1339-1347 Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp H-P, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356: 577-582 Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41: 3991-4001 Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121: 195-206 Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443: 803-810 Chaudhary YS, Manna SK, Mazumdar S, Khushalani D (2008) Protein encapsulation into mesoporous silica hosts. Micropor Mesopor Mat 109: 535-541 Cobb NJ, Apetri AC, Surewicz WK (2008) Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. J Biol Chem 283: 34704-34711 Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A 104: 18946-18951 Cobb NJ, Surewicz WK (2009) Prion diseases and their biochemical mechanisms. Biochemistry 48: 2574-2585 Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24: 519-550 Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR, Jefferys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370: 295-297 Cooke JA, Brown LJ (2011) Distance measurements by continuous wave EPR spectroscopy to monitor protein folding. Methods Mol Biol 752: 73-96 Criado JR, Sanchez-Alavez M, Conti B, Giacchino JL, Wills DN, Henriksen SJ, Race R, Manson JC, Chesebro B, Oldstone MBA (2005) Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis 19: 255-265 Cuille J, Chelle P-L (1939) Transmission experimental de la tremblante chez la chevre. C R Acad Sci 208: 1058-1060 Davies P, Brown DR (2008) The chemistry of copper binding to PrP: is there sufficient evidence to elucidate a role for copper in protein function? Biochem J 410: 237-244 DeMarco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci U S A 101: 2293-2298 Frare E, Mossuto MF, Polverino de Laureto P, Dumoulin M, Dobson CM, Fontana A (2006) Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J Mol Biol 361: 551-561 Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209: 794-796 Gibbs CJ, Jr., Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, Matthews WB (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161: 388-389 Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Evidence for assembly of prions with left-handed β-helices into trimers. Proc Natl Acad Sci U S A 101: 8342-8347 Griffith JS (1967) Self-replication and scrapie. Nature 215: 1043-1044 Hadlow WJ (1959) Scrapie and Kuru. Lancet ii: 289-290 Hafner-Bratkovic I, Bester R, Pristovsek P, Gaedtke L, Veranic P, Gaspersic J, Mancek-Keber M, Avbelj M, Polymenidou M, Julius C, Aguzzi A, Vorberg I, Jerala R (2011) Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. J Biol Chem 286: 12149-12156 Hammes GG (2005) Principles of nuclear magnetic resonance and electron spin resonance. In Spectroscopy for the Biological Sciences, pp 103-128. John Wiley & Sons, Inc. Helmus JJ, Surewicz K, Nadaud PS, Surewicz WK, Jaroniec CP (2008) Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proc Natl Acad Sci 105: 6284-6289 Hooper NM (1990) Proteolytic enzymes: a practical approach edited by R J Beynon and J S Bond. pp 259. IRL Press at Oxford University Press, Oxford. 1989. £29 (spiral bound)/£19 (paper) ISBN 0-19-963058-5/963059-3. Biochemical Education 18: 55-55 Hsiao K, Scott M, Foster D, Groth D, DeArmond S, Prusiner S (1990) Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250: 1587-1590 Huang YW, Chiang YW (2011) Spin-label ESR with nanochannels to improve the study of backbone dynamics and structural conformations of polypeptides. Phys Chem Chem Phys 13: 17521-17531 Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol 4: 566-573 Imran M, Mahmood S (2011) An overview of animal prion diseases. Virol J 8: 493 Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283: 1935-1937 Jarrett JT, Lansbury PT, Jr. (1993) Seeding 'one-dimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055-1058 Kanaani J, Prusiner SB, Diacovo J, Baekkeskov S, Legname G (2005) Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem 95: 1373-1386 Kleschyov AL, Wenzel P, Munzel T (2007) Electron paramagnetic resonance (EPR) spin trapping of biological nitric oxide. J Chromat B, Analyt Technol Biomed Life Sci 851: 12-20 Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Mol Biol 8: 770-774 Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122: 1-5 Kumar J, Sreeramulu S, Schmidt TL, Richter C, Vonck J, Heckel A, Glaubitz C, Schwalbe H (2010) Prion protein amyloid formation involves structural rearrangements in the C-terminal domain. ChemBioChem 11: 1208-1213 Lopez Garcia F, Zahn R, Riek R, Wuthrich K (2000) NMR structure of the bovine prion protein. Proc Natl Acad Sci 97: 8334-8339 Langedijk JP, Fuentes G, Boshuizen R, Bonvin AM (2006) Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies. J Mol Biol 360: 907-920 Lee S-W, Mou Y, Lin S-Y, Chou F-C, Tseng W-H, Chen C-h, Lu C-YD, Yu SSF, Chan JCC (2008) Steric zipper of the amyloid fibrils formed by residues 109–122 of the syrian hamster prion protein. J Mol Biol 378: 1142-1154 Lin NS, Chao JC, Cheng HM, Chou FC, Chang CF, Chen YR, Chang YJ, Huang SJ, Chan JC (2010) Molecular structure of amyloid fibrils formed by residues 127 to 147 of the human prion protein. Chemistry 16: 5492-5499 Lisa Washmon-Kriel VLJ, Kenneth J. Balkus Jr. (2000) Cytochrome c immobilization into mesoporous molecular sieves. J Mol Catal B-enzym 10: 453-469 Longhi S, Belle V, Fournel A, Guigliarelli B, Carriere F (2011) Probing structural transitions in both structured and disordered proteins using site-directed spin-labeling EPR spectroscopy. J Pept Sci 17: 315-328 Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A 104: 1510-1515 Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Guntert P, Wuthrich K (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102: 640-645 Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CAO (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7: e1000055 M.P. Hornshaw JRM, and J.M. Candy (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avain prion protein. Biochem Biophys Res Commun 207: 621-629 Makarava N, Baskakov IV (2008) Expression and purification of full-length recombinant PrP of high purity. Methods Mol Biol 459: 131-143 McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35: 57-62 Morillas M, Vanik DL, Surewicz WK (2001) On the Mechanism of α-Helix to β-Sheet Transition in the Recombinant Prion Protein†. Biochemistry 40: 6982-6987 Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435: 773-778 Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, et al. (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40: 735-746 Pan K, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick R, Cohen F, Prusiner S (1993) Conversion of a-helices b-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90: 10962-10966 Perini F, Vidal R, Ghetti B, Tagliavini F, Frangione B, Prelli F (1996) PrP27–30 is a normal soluble prion protein fragment released by human platelets. Biochem Biophys Res Commun 223: 572-577 Prusiner S (1991) Molecular biology of prion diseases. Science 252: 1515-1522 Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136-144 Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363-13383 Qi X, Moore RA, McGuirl MA (2012) Dissociation of recombinant prion protein fibrils into short protofilaments: implications for the endocytic pathway and involvement of the N-terminal domain. Biochemistry Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-231). Nature 382: 180-182 Rogers NG, Basnight M, Gibbs CJ, Gajdusek DC (1967) Latent viruses in chimpanzees with experimental kuru. Nature 216: 446-449 Ryou C (2011) Prion diseases. In eLS. John Wiley & Sons, Ltd Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447: 453-457 Spielhaupter C, Schatzl HM (2001) PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276: 44604-44612 Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32: 1991-2002 Steadman LB (1980) Ethnology: Kuru sorcery: disease and danger in the New Guinea Highlands. Shirley Lindenbaum. Am Anthropol 82: 692-694 Surewicz WK, Apostol MI (2011) Prion protein and its conformational conversion: a structural perspective. Top Curr Chem 305: 135-167 Swietnicki W, Morillas M, Chen SG, Gambetti P, Surewicz WK (1999) Aggregation and fibrillization of the recombinant human prion protein huPrP90−231. Biochemistry 39: 424-431 Trevitt CR, Singh PN (2003) Variant Creutzfeldt-Jakob disease: pathology, epidemiology, and public health implications. Am J Clin Nutr 78: 651S-656S Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV (2010) The α-Helical C-Terminal Domain of Full-Length Recombinant PrP Converts to an In-Register Parallel β-Sheet Structure in PrP Fibrils: Evidence from Solid State Nuclear Magnetic Resonance. Biochemistry 49: 9488-9497 Walsh P, Simonetti K, Sharpe S (2009) Core structure of amyloid fibrils formed by residues 106–126 of the human prion protein. Structure 17: 417-426 Wang F, Wang X, Yuan C-G, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327: 1132-1135 Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319: 1523-1526 Wells G, Scott A, Johnson C, Gunning R, Hancock R, Jeffrey M, Dawson M, Bradley R (1987) A novel progressive spongiform encephalopathy in cattle. Vet Rec 121: 419-420 Wilesmith J, Ryan J, Atkinson M (1991) Bovine spongiform encephalopathy: epidemiological studies on the origin. Vet Rec 128: 199-203 Will RG (2003) Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br Med Bull 66: 255-265 Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347: 921-925 Wille H, Bian W, McDonald M, Kendall A, Colby DW, Bloch L, Ollesch J, Borovinskiy AL, Cohen FE, Prusiner SB, Stubbs G (2009) Natural and synthetic prion structure from X-ray fiber diffraction. Proc Natl Acad Sci 106: 16990-16995 Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci 99: 3563-3568 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6611 | - |
| dc.description.abstract | 普立昂疾病是一類具傳染力且致命的神經退化性疾病,會侵襲中樞神經系統造成人類或動物腦組織產生海綿狀的病變。其致病物質為錯誤折疊的普立昂蛋白(PrPSc),有容易聚集和傳染的特性。細胞中正常的普立昂蛋白(PrPC)是α螺旋為主的結構,會轉變成以β摺板為主的致病性普立昂蛋白(PrPSc),而聚集成易沉澱的澱粉樣類纖維構造。這種不正常的結構轉變便是造成細胞毒性的主要原因。但是目前我們仍然不清楚普立昂疾病結構轉變的過程和致病機制。本實驗室在先前研究中發現雙硫鍵被移除的重組普立昂蛋白,可以在中性環境下進行自發性的結構轉變。它可以轉變成β寡聚體或者澱粉樣類纖維構造。為了探討不同區域的資訊,在這項研究中,我們先分別標定在普立昂蛋白的三個α螺旋上。接著,將標定的普立昂蛋白進行結構轉變,包括自發性結構轉變,形成β寡聚體以及形成澱粉樣類纖維構造。我們利用圓二色光譜和電子自旋共振(ESR)圖譜等技術來探討這些區域有無參與結構轉變。在自發性的結構轉變中,我們發現整體結構變得比較鬆散。另外,在β寡聚體的結構時,helix 1和helix 2的結構會部分解開,而helix 3可能維持在穩定的結構中。最後,在澱粉樣類纖維構造中,我們發現helix 3的分子間距離只有1奈米,但仍然需要進一步實驗來確認β摺板為主結構是由哪一區域轉變成的。 | zh_TW |
| dc.description.abstract | Transmissible Spongiform Encephalopathies (TSE), also called prion diseases are infectious neurodegenerative disorders. The key molecular event in the pathogenesis of prion diseases is the conformational conversion of a cellular prion protein, PrPC, into a misfolded form, PrPSc. The α to β conformational transition leads to protein aggregation and the formation of toxic amyloid fibrils. However, the mechanism of protein misfolding and the pathogenic pathway are still unclear. In our lab’s previous study, we found that the disulfide-deleted mouse PrP could undergo a spontaneous structural conversion under native condition from the native α-helical structure to β-oligomers, amorphous aggregate, even amyloid fibrils. Here, we made spin-labeling on each of three helices of mouse prion protein individually and combined circular dichroism spectroscopy and electron spin resonance (ESR) spectroscopy to investigate the structural conversion process. Our study illustrated that helix 1 and helix 2 were partially unfolded when converted into soluble β-structures. On the other hand, spin labeled on helix 3 showed slow mobility, suggesting that the local environment of that spin is in an ordered state. Moreover, when the helix3-labeled protein was transformed into amyloid fibrils, the spin-labeled fibrils showed intermolecular spin interaction with a distance of 10 A. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:15:15Z (GMT). No. of bitstreams: 1 ntu-101-R99b46019-1.pdf: 13012334 bytes, checksum: 7f1f91c5230dab87b0589949bba14514 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 III
Abstract IV Abbreviations V Contents VIII Figure contents XI Chapter 1 Introduction 1 1.1 Introduction to prion disease 1 1.2 Protein only hypothesis 5 1.3 Prion infectious conversion 6 1.4 The structural and biological aspect of PrPC 9 1.5 Different models of PrPSc 11 1.6 Electron spin resonance (ESR) 19 1.7 Previous study in our lab 24 1.8 The aim of the thesis 25 Chapter 2 Materials and Methods 26 2.1 Materials 26 2.1.1 Water 26 2.1.2 Chemicals 26 2.2 Methods 29 2.2.1 Expression construct and site-directed mutagenesis 29 2.2.2 Small-scale protein expression 30 2.2.3 Large-scale protein expression, purification, and identification 31 2.2.3.1 Glycerol cell stock preparation 31 2.2.3.2 Expression of recombinant mouse PrP in E. coli and cell lysis 31 2.2.3.3 Immobilized metal-ion affinity chromatography (IMAC) 32 2.2.3.4 Desalting and disulfide bond formation for mPrPwt 33 2.2.3.5 HPLC purification and protein identification 33 2.2.4 Secondary structure analysis by circular dichroism and CDPro 35 2.2.5 Analytical ultracentrifugation (AUC) 35 2.2.6 Fibril formation and ThT (thioflavin T) binding assay 36 2.2.7 Transition electron microscopy (TEM) 37 2.2.8 Spin-labeling & purification 38 2.2.9 Electron spin resonance (ESR) 39 2.2.10 Pepsin digestion assay 40 Chapter 3 Results (I) 41 3.1 Design and expression of mutant mouse prion protein constructs 41 3.2 Small-scale expression analysis 43 3.3 large-scale expression 44 3.4 Purification by immobilized metal-ion affinity chromatography (IMAC) 45 3.5 Desalting and disulfide bond formation for mPrPwt 46 3.6 High-performance liquid chromatography (HPLC) purification 47 3.7 Spin-labeling and purification 49 3.8 Protein identification and storage 52 Chapter 4 Results (II) 57 4.1 Spontaneous structural conversion under native condition 57 4.1.1 CD spectra of spontaneous structural conversion 57 4.1.2 Monitor the spontaneous structural conversion by ESR 60 4.1.3 pH value can affect structural conversion rate 64 4.2 Soluble β-PrP 68 4.2.1 CD spectra of β-PrP 68 4.2.2 Particle size determination 69 4.2.3 TEM image and ThT assay of β-PrP 70 4.2.4 ESR spectra of β-PrP 73 4.3 Amyloid fibrils 75 4.3.1 ThT binding assay and TEM images of mutant PrP 75 4.3.2 Fibrils formed from Spin-labeled PrP 78 4.3.3 ESR spectra of amyloid fibrils 80 4.3.4 Pepsin digestion assay 81 Chapter 5 Discussion 84 Chapter 6 Future Works 90 References 91 | |
| dc.language.iso | en | |
| dc.title | 探討老鼠普立昂蛋白進行結構轉變時三段阿法螺旋扮演的角色 | zh_TW |
| dc.title | Exploring the role of three α-helices on the structural conversion of mouse prion protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江昀緯,黃人則,金之彥,陳炳宇 | |
| dc.subject.keyword | 普立昂疾病,錯誤折疊,結構轉變, | zh_TW |
| dc.subject.keyword | Prion disease,misfolding,structural conversion, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 12.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
