Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6611
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩燁
dc.contributor.authorWei-Lin Luoen
dc.contributor.author羅瑋霖zh_TW
dc.date.accessioned2021-05-17T09:15:15Z-
dc.date.available2014-08-15
dc.date.available2021-05-17T09:15:15Z-
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-13
dc.identifier.citationAguzzi A, Sigurdson C, Heikenwalder M (2007) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol-Mech 3: 11-40
Alper T, Cramp WA, Haig DA, Clarke MC (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214: 764-766
Alper T, Haig DA, Clarke MC (1966) The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 22: 278-284
Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223-230
Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277: 21140-21148
Bendheim PE, Brown HR, Rudelli RD, Scala LJ, Goller NL, Wen GY, Kascsak RJ, Cashman NR, Bolton DC (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42: 149
Bocharova OV, Breydo L, Parfenov AS, Salnikov VV, Baskakov IV (2005) In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J Mol Biol 346: 645-659
Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave K-A, Weis J, Aguzzi A (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13: 310-318
Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390: 684-687
Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock CJ (1997) Transmissions to mice indicate that `new variant' CJD is caused by the BSE agent. Nature 389: 498-501
Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73: 1339-1347
Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp H-P, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356: 577-582
Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41: 3991-4001
Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121: 195-206
Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443: 803-810
Chaudhary YS, Manna SK, Mazumdar S, Khushalani D (2008) Protein encapsulation into mesoporous silica hosts. Micropor Mesopor Mat 109: 535-541
Cobb NJ, Apetri AC, Surewicz WK (2008) Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. J Biol Chem 283: 34704-34711
Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A 104: 18946-18951
Cobb NJ, Surewicz WK (2009) Prion diseases and their biochemical mechanisms. Biochemistry 48: 2574-2585
Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24: 519-550
Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR, Jefferys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370: 295-297
Cooke JA, Brown LJ (2011) Distance measurements by continuous wave EPR spectroscopy to monitor protein folding. Methods Mol Biol 752: 73-96
Criado JR, Sanchez-Alavez M, Conti B, Giacchino JL, Wills DN, Henriksen SJ, Race R, Manson JC, Chesebro B, Oldstone MBA (2005) Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis 19: 255-265
Cuille J, Chelle P-L (1939) Transmission experimental de la tremblante chez la chevre. C R Acad Sci 208: 1058-1060
Davies P, Brown DR (2008) The chemistry of copper binding to PrP: is there sufficient evidence to elucidate a role for copper in protein function? Biochem J 410: 237-244
DeMarco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci U S A 101: 2293-2298
Frare E, Mossuto MF, Polverino de Laureto P, Dumoulin M, Dobson CM, Fontana A (2006) Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J Mol Biol 361: 551-561
Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209: 794-796
Gibbs CJ, Jr., Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, Matthews WB (1968) Creutzfeldt-Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science 161: 388-389
Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Evidence for assembly of prions with left-handed β-helices into trimers. Proc Natl Acad Sci U S A 101: 8342-8347
Griffith JS (1967) Self-replication and scrapie. Nature 215: 1043-1044
Hadlow WJ (1959) Scrapie and Kuru. Lancet ii: 289-290
Hafner-Bratkovic I, Bester R, Pristovsek P, Gaedtke L, Veranic P, Gaspersic J, Mancek-Keber M, Avbelj M, Polymenidou M, Julius C, Aguzzi A, Vorberg I, Jerala R (2011) Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. J Biol Chem 286: 12149-12156
Hammes GG (2005) Principles of nuclear magnetic resonance and electron spin resonance. In Spectroscopy for the Biological Sciences, pp 103-128. John Wiley & Sons, Inc.
Helmus JJ, Surewicz K, Nadaud PS, Surewicz WK, Jaroniec CP (2008) Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proc Natl Acad Sci 105: 6284-6289
Hooper NM (1990) Proteolytic enzymes: a practical approach edited by R J Beynon and J S Bond. pp 259. IRL Press at Oxford University Press, Oxford. 1989. £29 (spiral bound)/£19 (paper) ISBN 0-19-963058-5/963059-3. Biochemical Education 18: 55-55
Hsiao K, Scott M, Foster D, Groth D, DeArmond S, Prusiner S (1990) Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250: 1587-1590
Huang YW, Chiang YW (2011) Spin-label ESR with nanochannels to improve the study of backbone dynamics and structural conformations of polypeptides. Phys Chem Chem Phys 13: 17521-17531
Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol 4: 566-573
Imran M, Mahmood S (2011) An overview of animal prion diseases. Virol J 8: 493
Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283: 1935-1937
Jarrett JT, Lansbury PT, Jr. (1993) Seeding 'one-dimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055-1058
Kanaani J, Prusiner SB, Diacovo J, Baekkeskov S, Legname G (2005) Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem 95: 1373-1386
Kleschyov AL, Wenzel P, Munzel T (2007) Electron paramagnetic resonance (EPR) spin trapping of biological nitric oxide. J Chromat B, Analyt Technol Biomed Life Sci 851: 12-20
Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Mol Biol 8: 770-774
Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122: 1-5
Kumar J, Sreeramulu S, Schmidt TL, Richter C, Vonck J, Heckel A, Glaubitz C, Schwalbe H (2010) Prion protein amyloid formation involves structural rearrangements in the C-terminal domain. ChemBioChem 11: 1208-1213
Lopez Garcia F, Zahn R, Riek R, Wuthrich K (2000) NMR structure of the bovine prion protein. Proc Natl Acad Sci 97: 8334-8339
Langedijk JP, Fuentes G, Boshuizen R, Bonvin AM (2006) Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies. J Mol Biol 360: 907-920
Lee S-W, Mou Y, Lin S-Y, Chou F-C, Tseng W-H, Chen C-h, Lu C-YD, Yu SSF, Chan JCC (2008) Steric zipper of the amyloid fibrils formed by residues 109–122 of the syrian hamster prion protein. J Mol Biol 378: 1142-1154
Lin NS, Chao JC, Cheng HM, Chou FC, Chang CF, Chen YR, Chang YJ, Huang SJ, Chan JC (2010) Molecular structure of amyloid fibrils formed by residues 127 to 147 of the human prion protein. Chemistry 16: 5492-5499
Lisa Washmon-Kriel VLJ, Kenneth J. Balkus Jr. (2000) Cytochrome c immobilization into mesoporous molecular sieves. J Mol Catal B-enzym 10: 453-469
Longhi S, Belle V, Fournel A, Guigliarelli B, Carriere F (2011) Probing structural transitions in both structured and disordered proteins using site-directed spin-labeling EPR spectroscopy. J Pept Sci 17: 315-328
Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A 104: 1510-1515
Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Guntert P, Wuthrich K (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102: 640-645
Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CAO (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7: e1000055
M.P. Hornshaw JRM, and J.M. Candy (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avain prion protein. Biochem Biophys Res Commun 207: 621-629
Makarava N, Baskakov IV (2008) Expression and purification of full-length recombinant PrP of high purity. Methods Mol Biol 459: 131-143
McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35: 57-62
Morillas M, Vanik DL, Surewicz WK (2001) On the Mechanism of α-Helix to β-Sheet Transition in the Recombinant Prion Protein†. Biochemistry 40: 6982-6987
Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435: 773-778
Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, et al. (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40: 735-746
Pan K, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick R, Cohen F, Prusiner S (1993) Conversion of a-helices b-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90: 10962-10966
Perini F, Vidal R, Ghetti B, Tagliavini F, Frangione B, Prelli F (1996) PrP27–30 is a normal soluble prion protein fragment released by human platelets. Biochem Biophys Res Commun 223: 572-577
Prusiner S (1991) Molecular biology of prion diseases. Science 252: 1515-1522
Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136-144
Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363-13383
Qi X, Moore RA, McGuirl MA (2012) Dissociation of recombinant prion protein fibrils into short protofilaments: implications for the endocytic pathway and involvement of the N-terminal domain. Biochemistry
Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-231). Nature 382: 180-182
Rogers NG, Basnight M, Gibbs CJ, Gajdusek DC (1967) Latent viruses in chimpanzees with experimental kuru. Nature 216: 446-449
Ryou C (2011) Prion diseases. In eLS. John Wiley & Sons, Ltd
Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447: 453-457
Spielhaupter C, Schatzl HM (2001) PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276: 44604-44612
Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32: 1991-2002
Steadman LB (1980) Ethnology: Kuru sorcery: disease and danger in the New Guinea Highlands. Shirley Lindenbaum. Am Anthropol 82: 692-694
Surewicz WK, Apostol MI (2011) Prion protein and its conformational conversion: a structural perspective. Top Curr Chem 305: 135-167
Swietnicki W, Morillas M, Chen SG, Gambetti P, Surewicz WK (1999) Aggregation and fibrillization of the recombinant human prion protein huPrP90−231. Biochemistry 39: 424-431
Trevitt CR, Singh PN (2003) Variant Creutzfeldt-Jakob disease: pathology, epidemiology, and public health implications. Am J Clin Nutr 78: 651S-656S
Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV (2010) The α-Helical C-Terminal Domain of Full-Length Recombinant PrP Converts to an In-Register Parallel β-Sheet Structure in PrP Fibrils: Evidence from Solid State Nuclear Magnetic Resonance. Biochemistry 49: 9488-9497
Walsh P, Simonetti K, Sharpe S (2009) Core structure of amyloid fibrils formed by residues 106–126 of the human prion protein. Structure 17: 417-426
Wang F, Wang X, Yuan C-G, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327: 1132-1135
Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319: 1523-1526
Wells G, Scott A, Johnson C, Gunning R, Hancock R, Jeffrey M, Dawson M, Bradley R (1987) A novel progressive spongiform encephalopathy in cattle. Vet Rec 121: 419-420
Wilesmith J, Ryan J, Atkinson M (1991) Bovine spongiform encephalopathy: epidemiological studies on the origin. Vet Rec 128: 199-203
Will RG (2003) Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br Med Bull 66: 255-265
Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347: 921-925
Wille H, Bian W, McDonald M, Kendall A, Colby DW, Bloch L, Ollesch J, Borovinskiy AL, Cohen FE, Prusiner SB, Stubbs G (2009) Natural and synthetic prion structure from X-ray fiber diffraction. Proc Natl Acad Sci 106: 16990-16995
Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci 99: 3563-3568
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6611-
dc.description.abstract普立昂疾病是一類具傳染力且致命的神經退化性疾病,會侵襲中樞神經系統造成人類或動物腦組織產生海綿狀的病變。其致病物質為錯誤折疊的普立昂蛋白(PrPSc),有容易聚集和傳染的特性。細胞中正常的普立昂蛋白(PrPC)是α螺旋為主的結構,會轉變成以β摺板為主的致病性普立昂蛋白(PrPSc),而聚集成易沉澱的澱粉樣類纖維構造。這種不正常的結構轉變便是造成細胞毒性的主要原因。但是目前我們仍然不清楚普立昂疾病結構轉變的過程和致病機制。本實驗室在先前研究中發現雙硫鍵被移除的重組普立昂蛋白,可以在中性環境下進行自發性的結構轉變。它可以轉變成β寡聚體或者澱粉樣類纖維構造。為了探討不同區域的資訊,在這項研究中,我們先分別標定在普立昂蛋白的三個α螺旋上。接著,將標定的普立昂蛋白進行結構轉變,包括自發性結構轉變,形成β寡聚體以及形成澱粉樣類纖維構造。我們利用圓二色光譜和電子自旋共振(ESR)圖譜等技術來探討這些區域有無參與結構轉變。在自發性的結構轉變中,我們發現整體結構變得比較鬆散。另外,在β寡聚體的結構時,helix 1和helix 2的結構會部分解開,而helix 3可能維持在穩定的結構中。最後,在澱粉樣類纖維構造中,我們發現helix 3的分子間距離只有1奈米,但仍然需要進一步實驗來確認β摺板為主結構是由哪一區域轉變成的。zh_TW
dc.description.abstractTransmissible Spongiform Encephalopathies (TSE), also called prion diseases are infectious neurodegenerative disorders. The key molecular event in the pathogenesis of prion diseases is the conformational conversion of a cellular prion protein, PrPC, into a misfolded form, PrPSc. The α to β conformational transition leads to protein aggregation and the formation of toxic amyloid fibrils. However, the mechanism of protein misfolding and the pathogenic pathway are still unclear. In our lab’s previous study, we found that the disulfide-deleted mouse PrP could undergo a spontaneous structural conversion under native condition from the native α-helical structure to β-oligomers, amorphous aggregate, even amyloid fibrils. Here, we made spin-labeling on each of three helices of mouse prion protein individually and combined circular dichroism spectroscopy and electron spin resonance (ESR) spectroscopy to investigate the structural conversion process. Our study illustrated that helix 1 and helix 2 were partially unfolded when converted into soluble β-structures. On the other hand, spin labeled on helix 3 showed slow mobility, suggesting that the local environment of that spin is in an ordered state. Moreover, when the helix3-labeled protein was transformed into amyloid fibrils, the spin-labeled fibrils showed intermolecular spin interaction with a distance of 10 A.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:15:15Z (GMT). No. of bitstreams: 1
ntu-101-R99b46019-1.pdf: 13012334 bytes, checksum: 7f1f91c5230dab87b0589949bba14514 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 III
Abstract IV
Abbreviations V
Contents VIII
Figure contents XI
Chapter 1 Introduction 1
1.1 Introduction to prion disease 1
1.2 Protein only hypothesis 5
1.3 Prion infectious conversion 6
1.4 The structural and biological aspect of PrPC 9
1.5 Different models of PrPSc 11
1.6 Electron spin resonance (ESR) 19
1.7 Previous study in our lab 24
1.8 The aim of the thesis 25
Chapter 2 Materials and Methods 26
2.1 Materials 26
2.1.1 Water 26
2.1.2 Chemicals 26
2.2 Methods 29
2.2.1 Expression construct and site-directed mutagenesis 29
2.2.2 Small-scale protein expression 30
2.2.3 Large-scale protein expression, purification, and identification 31
2.2.3.1 Glycerol cell stock preparation 31
2.2.3.2 Expression of recombinant mouse PrP in E. coli and cell lysis 31
2.2.3.3 Immobilized metal-ion affinity chromatography (IMAC) 32
2.2.3.4 Desalting and disulfide bond formation for mPrPwt 33
2.2.3.5 HPLC purification and protein identification 33
2.2.4 Secondary structure analysis by circular dichroism and CDPro 35
2.2.5 Analytical ultracentrifugation (AUC) 35
2.2.6 Fibril formation and ThT (thioflavin T) binding assay 36
2.2.7 Transition electron microscopy (TEM) 37
2.2.8 Spin-labeling & purification 38
2.2.9 Electron spin resonance (ESR) 39
2.2.10 Pepsin digestion assay 40
Chapter 3 Results (I) 41
3.1 Design and expression of mutant mouse prion protein constructs 41
3.2 Small-scale expression analysis 43
3.3 large-scale expression 44
3.4 Purification by immobilized metal-ion affinity chromatography (IMAC) 45
3.5 Desalting and disulfide bond formation for mPrPwt 46
3.6 High-performance liquid chromatography (HPLC) purification 47
3.7 Spin-labeling and purification 49
3.8 Protein identification and storage 52
Chapter 4 Results (II) 57
4.1 Spontaneous structural conversion under native condition 57
4.1.1 CD spectra of spontaneous structural conversion 57
4.1.2 Monitor the spontaneous structural conversion by ESR 60
4.1.3 pH value can affect structural conversion rate 64
4.2 Soluble β-PrP 68
4.2.1 CD spectra of β-PrP 68
4.2.2 Particle size determination 69
4.2.3 TEM image and ThT assay of β-PrP 70
4.2.4 ESR spectra of β-PrP 73
4.3 Amyloid fibrils 75
4.3.1 ThT binding assay and TEM images of mutant PrP 75
4.3.2 Fibrils formed from Spin-labeled PrP 78
4.3.3 ESR spectra of amyloid fibrils 80
4.3.4 Pepsin digestion assay 81
Chapter 5 Discussion 84
Chapter 6 Future Works 90
References 91
dc.language.isoen
dc.title探討老鼠普立昂蛋白進行結構轉變時三段阿法螺旋扮演的角色zh_TW
dc.titleExploring the role of three α-helices on the structural conversion of mouse prion proteinen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江昀緯,黃人則,金之彥,陳炳宇
dc.subject.keyword普立昂疾病,錯誤折疊,結構轉變,zh_TW
dc.subject.keywordPrion disease,misfolding,structural conversion,en
dc.relation.page99
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf12.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved