Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66110
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭智馨
dc.contributor.authorChih-Yu Hungen
dc.contributor.author洪志祐zh_TW
dc.date.accessioned2021-06-17T00:22:08Z-
dc.date.available2012-06-29
dc.date.copyright2012-06-29
dc.date.issued2012
dc.date.submitted2012-06-13
dc.identifier.citationBarford, C.C., Wofsy, S.C., Munger, J.W., Goulden, M.L., Pyle, H.E., Urbanski, S.P., Hutyra, L., Saleska, S.R., Fitzjarrald, D., Moore, K., 2001. Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294, 1688-1691.
Barr, A.G., Griffis, T.J., Black, T.A., Lee, X., Staebler, R.M., Fuentes, J.D., Chen, Z., Morgenstern, K., 2002. Comparing the carbon budgets of boreal and temperate deciduous forest stands. Canadian Journal of Forest Research 32, 813-822.
Binkley, D., Stape, J.L., Ryan, M.G., Barnard, H.R., Fownes, J., 2002. Age-related Decline in Forest Ecosystem Growth: An Individual-Tree, Stand-Structure Hypothesis. Ecosystems 5, 58-67.
Black, K., Byrne, K.A., Mencuccini, M., Tobin, B., Nieuwenhuis, M., Reidy, B., Bolger, T., Saiz, G., Green, C., Farrell, E.T., Osborne, B., 2009. Carbon stock and stock changes across a Sitka spruce chronosequence on surface-water gley soils. Forestry 82, 255-272.
Bradford, J.B., Kastendick, D.N., 2010. Age-related patterns of forest complexity and carbon storage in pine and aspen–birch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research 40, 401-409.
Broaddus, G.M., York, J.E., Hoseley, J.M., 1965. Factors affecting the levels of nitrate nitrogen in cured tobacco leaves. Tobacco Science 9, 149-157.
Chambers, J.Q., Schimel, J.P., Nobre, A.D., 2001. Respiration from coarse wood litter in central Amazon forests. Biogeochemistry 52, 115-131.
Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., Crispim, B.F., Higuchi, N., Dos Santos, J., Araujo, A.C., Kruijt, B., Nobre, A.D., Trumbore, S.E., 2004. Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. Ecological Applications 14, S72-S88.
Chang, C.T., 1986. Biomass productivity of Cryptomeria japonica stand in central and northern Taiwan. Quarterly Journal of Chinese Forestry 19, 45-84. (in Chinese)
Chang, C.T., Hsu, C.C., 1987. Seasonal varation of litter-fall and nutrient contents of Japanese red cadear and Chinese-fir stands. Quarterly Journal of Chinese Forestry 20, 47-64. (in Chinese)
Chang, Y.F., Lin, S.T., Tsai, C.C., 2006. Estimation of soil organic carbon storage in a Cryptomeria plantation forest of Northeastern Taiwan. Taiwan Journal of Forest Science 21, 383-393. (in Chinese)
Chen, D., Zhang, C., Wu, J., Zhou, L., Lin, Y., Fu, S., 2011. Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in South China. Agriculture and Forest Meteorology 151, 1214-1225.
Cheng, C.H., Chen, Y.J., Chiou, C.R., Lin, J.C., Wu, C.S., 2011. Changes in ecosystem carbon stocks in betel but palm farmland following reforestation: A case study in Chungliao after the 921 earthquake. Quarterly Journal of Chinese Forestry 44, 217-232. (in Chinese)
Chertov, O., Bhatti, J.S., Komarov, A., Mikhailov, A., Bykhovets, S., 2009. Influence of climate change, fire and harvest on the carbon dynamics of black spruce in Central Canada. Forest Ecology and Managament 257, 941-950.
Chiao, K.M., Chen, Y., Liu, C.F., 1974. Growth records of important species in the experimental forest college of agriculture, National Taiwan University. Special Bulltein of Forestry. (in Chinese)
Chiba, Y., 1998. Simulation of CO2 budget and ecological implications of sugi (Cryptomeria japonica) man-made forests in japan. Ecological Modelling 111, 269-281.
Clark, D.A., 2002. Are Tropical Forests an Important Carbon Sink? Reanalysis of the Long-Term Plot Data. Ecological Applications 12, 3-7.
Clark, D.A., Brown, S., Kicklighter, D.W., Chambers, J.Q., Thomlinson, J.R., Ni, J., 2001. Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11, 356-370.
Curtis, P.S., Hanson, P.J., Bolstad, P., Barford, C., Randolph, J.C., Schmid, H.P., Wilson, K.B., 2002. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agriculture and Forest Meteorology 113, 3-19.
Davidson, E.A., Belk, E., Boone, R.D., 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4, 217-227.
Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski, J., 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185-190.
Duh, C.T., Chiu, C.M., Lin, K.C., 2011. Estimate of above- and below- ground biomass of a Cryptomeria japonica plantatin in Renluen area of Taiwan. Quarterly Journal of Chinese Forestry 44, 401-412. (in Chinese)
Enoki, T., Inoue, T., Tashiro, N., Ishii, H., 2011. Aboveground productivity of an unsuccessful 140-year-old Cryptomeria japonica plantation in northern Kyushu, Japan. Journal of Forest Research 16, 268-274.
Fang, J., Chen, A., Peng, C., Zhao, S., Ci, L., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320-2322.
Fang, J., Oikawa, T., Kato, T., Mo, W., Wang, Z., 2005. Biomass carbon accumulation by Japan's forest from 1947 to 1995. Global Biogeochemical Cycles 19, 1-10.
Feng, F.L., 1990. Studies on the quantitative theory of the stand structure and growth in plantations. In, School of Forestry and Resource Conservation. National Taiwan University, Taipei. (in Chinese)
Fukuda, M., Iehara, T., Matsumoto, M., 2003. Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Managament 184, 1-16.
Gough, C.M., Vogel, C.S., Kazanski, C., Nagel, L., Flower, C.E., Curtis, P.S., 2007. Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecology and Managament 244, 60-67.
Gough, C.M., Vogel, C.S., Schmid, H.P., Su, H.B., Curtis, P.S., 2008. Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agriculture and Forest Meteorology 148, 158-170.
Gower, S.T., McMurtrie, R.E., Murty, D., 1996. Aboveground net primary production decline with stand age: Potential causes. Trends in Ecology and Evolution 11, 378-382.
Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115-146.
Hanson, P.J., Wullschleger, S.D., Bohlman, S.A., Todd, D.E., 1993. Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiology 13, 1-15.
Harmon, M.E., Bible, K., Ryan, M.G., Shaw, D.C., Chen, H., Klopatek, J., Li, X., 2004. Production, respiration, and overall carbon balance in an old-growth pseudotsuga-tsuga forest ecosystem. Ecosystems 7, 498-512.
Hendrick, R.L., Pregitzer, K.S., 1993a. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research 23, 2507-2520.
Hendrick, R.L., Pregitzer, K.S., 1993b. Patterns of fine root mortality in two sugar maple forests. Nature 361, 59-61.
Hendricks, J.J., Hendrick, R.L., Wilson, C.A., Mitchell, R.J., Pecot, S.D., Guo, D., 2006. Assessing the patterns and controls of fine root dynamics: An empirical test and methodological review. Journal of Ecology 94, 40-57.
Hoover, C.M., Leak, W.B., Keel, B.G., 2012. Benchmark carbon stocks from old-growth forests in northern New England, USA. Forest Ecology and Managament 266, 108-114.
Hosoda, K., 1999. Growth performance of Sugi plantation in Sanin region - a case study at Shinotani Mount experiemental site. In. FFPRI Kansai Research Center, p. 39. (in Japanese)
Hudiburg, T., Law, B., Turner, D.P., Campbell, J., Donato, D., Duane, M., 2009. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecological Applications 19, 163-180.
IPCC, 2001. Climate Change 2001: The Scientific Basis IPCC: The carbon cycle and atmospheric carbon dioxide. Cambridge University, Cambridge.
Janisch, J.E., Harmon, M.E., 2002. Successional changes in live and dead wood carbon stores: Implications for net ecosystem productivity. Tree Physiology 22, 77-89.
Jenkins, J.C., Chojnacky, D.C., Heath, L.S., Birdsey, R.A., 2003. National-scale biomass estimators for United States tree species. Forest Science 49, 12-35.
Kalyn, A.L., Van Rees, K.C.J., 2006. Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agriculture and Forest Meteorology 140, 236-243.
Kauppi, P.E., Mielikainen, K., Kuusela, K., 1992. Biomass and carbon budget of european forests, 1971 to 1990. Science 256, 70-74.
Keeney, D.R., Nelson, D.W., 1982. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties 2nd. Academic Press, New York.
Kempers, A.J., 1974. Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodium nitroprusside and hypochlorite. Geoderma 12, 201-206.
Kern, J.S., 1994. Spatial patterns of soil organic carbon in the contiguous United States. Soil Science Society of America Journal 58, 439-455.
Kominami, Y., Jomura, M., Dannoura, M., Goto, Y., Tamai, K., Miyama, T., Kanazawa, Y., Kaneko, S., Okumura, M., Misawa, N., Hamada, S., Sasaki, T., Kimura, H., Ohtani, Y., 2008. Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan. Agriculture and Forest Meteorology 148, 723-737.
Lu, X.T., Yin, J.X., Jepsen, M.R., Tang, J.W., 2010. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. Forest Ecology and Managament 260, 1798-1803.
Lopez, B., Sabate, S., Gracia, C.A., 2001. Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. Plant and Soil 230, 125-134.
Lal, R., 2005. Forest soils and carbon sequestration. Forest Ecol Manag 220, 242-258.
Law, B.E., Sun, O.J., Campbell, J., Van Tuyl, S., Thornton, P.E., 2003. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology 9, 510-524.
Law, B.E., Thornton, P.E., Irvine, J., Anthoni, P.M., Van Tuyl, S., 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology 7, 755-777.
Lee, M.J. (Ed.), 2010. Handbook of practical silviculture. Forestry Bureau, Council of Agriculture, Executive Yuan, Taipei. (in Chinese)
Lee, S.H., 1978. Study on the growth and tree biomass production in Cryptomeria stands of different age classes. In, School of Forestry and Resource Conservation. National Taiwan University, Taipei. (in Chinese)
Lehtonen, A., Makipaa, R., Heikkinen, J., Sievanen, R., Liski, J., 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Managament 188, 211-224.
Li, K.J., Lin, J.C., Lain, C.S., Lin, L.C., 2004. Carbon sequestration effects in different forest ecosystem managment scenarios in experimental forest, National Taiwan University. Journal of The Experimental Forest of National Taiwan University 18, 261-272. (in Chinese)
Li, X., Yi, M., Son, Y., Park, P., Lee, K., Son, Y., Kim, R., Jeong, M., 2011. Biomass and carbon storage in an age-sequence of Korean Pine (Pinus koraiensis) plantation forests in Central Korea. Journal of Plant Biology 54, 33-42.
Li, Z., Kurz, W.A., Apps, M.J., Beukema, S.J., 2003. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: Recent improvements and implications for the estimation of NPP and NEP. Canadian Journal of Forest Research 33, 126-136.
Lin, J.C., Lee, K.J., Lin, Y.J., 1999. A study on carbon sinking effect and adaptation cost of Cryptomeria japonica. Journal of The Experimental Forest of National Taiwan University 13, 51-60. (in Chinese)
Lin, K.C., Duh, C.T., Huang, C.M., 2009. Thinning effects on litterfall and litter layer in Cryptomeria Japonica plantation during the first year. Quarterly Journal of Chinese Forestry 42, 595-607. (in Chinese)
Lin, K.C., Huang, C.M., Wang, C.P., Chang, N.H., 2004. Carbon and nitrogen accumulation and distribution in Taiwania plantations of the Liukuei experimental forest. Taiwan Journal of Forest Science 19, 225-235. (in Chinese)
Lin, Y.J., Lee, K.J., Lin, J.C., 2002. Forest carbon sink estimation for Taiwan by biomass-volume relationship method. Journal of The Experimental Forest of National Taiwan University 16, 71-79. (in Chinese)
Lin, Y.R., Cheng, C.H., Tseng, T.Y., accepted. Carbon sequestration potential of afforestation in the plain areas in Taiwan: examples from long-term abandoned orchards and afforested sites. Quarterly Journal of Chinese Forestry. (in Chinese)
Liu, C.Y., Wang, C.H., 2008. Carbon sequestration estimates for Cryptomeria and Cypress plantations by age-based stock model. Ilan University Journal of Bioresources 4, 35-45. (in Chinese)
Lovett, G.M., Cole, J.J., Pace, M.L., 2006. Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9, 152-155.
Lu, H.C., 1983. Growth model for thinned Cryptomeria plantations. In, School of Forestry and Resource Conservation. National Taiwan University, Taipei. (in Chinese)
Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichstein, M., Papale, D., Piao, S.L., Schulze, E.D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K.G., Bonal, D., Bonnefond, J.M., Chambers, J., Ciais, P., Cook, B., Davis, K.J., Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grunwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B.E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J.W., Nikinmaa, E., Ollinger, S.V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith, M.L., Tang, J., Valentini, R., Vesala, T., Janssens, I.A., 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology 13, 2509-2537.
Luyssaert, S., Schulze, E.D., Borner, A., Knohl, A., Hessenmoller, D., Law, B.E., Ciais, P., Grace, J., 2008. Old-growth forests as global carbon sinks. Nature 455, 213-215.
Murty, D., McMurtrie, R.E., 2000. The decline of forest productivity as stands age: a model-based method for analysing causes for the decline. Ecological Modelling 134, 185-205.
Niklaus, P.A., Wohlfender, M., Siegwolf, R., Korner, C., 2001. Effects of six years atmospheric CO2 enrichment on plant, soil, and soil microbial C of a calcareous grassland. Plant and Soil 233, 189-202.
NTU, 2010. Growth record of the long-term growth monitoring forest. The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taipei. (in Chinese)
O'Connell, K.E.B., Gower, S.T., Norman, J.M., 2003. Net Ecosystem Production of Two Contrasting Boreal Black Spruce Forest Communities. Ecosystems 6, 248-260.
Ogawa, K., Hagihara, A., 2003. Self-thinning and size variation in a sugi (Cryptomeria japonica D. Don) plantation. Forest Ecology and Managament 174, 413-421.
Ohashi, M., Gyokusen, K., Saito, A., 1999. Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an open-flow chamber method. Forest Ecology and Managament 123, 105-114.
Ohashi, M., Kumagai, T., Kume, T., Gyokusen, K., Saitoh, T.M., Suzuki, M., 2008. Characteristics of soil CO2 efflux variability in an aseasonal tropical rainforest in Borneo Island. Biogeochemistry 90, 275-289.
Ohtsuka, T., Mo, W., Satomura, T., Inatomi, M., Koizumi, H., 2007. Biometric based carbon flux measurements and net ecosystem production (NEP) in a temperate deciduous broad-leaved forest beneath a flux tower. Ecosystems 10, 324-334.
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988-993.
Peichl, M., Arain, M.A., 2006. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agriculture and Forest Meteorology 140, 51-63.
Peichl, M., Arain, M.A., Brodeur, J.J., 2010a. Age effects on carbon fluxes in temperate pine forests. Agriculture and Forest Meteorology 150, 1090-1101.
Peichl, M., Brodeur, J.J., Khomik, M., Arain, M.A., 2010b. Biometric and eddy-covariance based estimates of carbon fluxes in an age-sequence of temperate pine forests. Agriculture and Forest Meteorology 150, 952-965.
Pregitzer, K.S., Euskirchen, E.S., 2004. Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology 10, 2052-2077.
Reich, P.B., Grigal, D.F., Aber, J.D., Gower, S.T., 1997. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78, 335-347.
Rustad, L.E., Huntington, T.G., Boone, R.D., 2000. Controls on soil respiration: Implications for climate change. Biogeochemistry 48, 1-6.
Ryan, M.G., Binkley, D., Fownes, J.H., 1997. Age-Related Decline in Forest Productivity: Pattern and Process. In: Begon, M., Fitter, A.H. (Eds.), Advances in Ecological Research. Academic Press, pp. 213-262.
Ryan, M.G., Binkley, D., Fownes, J.H., Giardina, C.P., Senock, R.S., 2004. An experimental test of the causes of forest growth decline with stand age. Ecological Monographs 74, 393-414.
Saiz, G., Byrne, K.A., Butterbach-Bahl, K., Kiese, R., Blujdea, V., Farrell, E.P., 2006. Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology 12, 1007-1020.
Shoch, D.T., Kaster, G., Hohl, A., Souter, R., 2009. Carbon storage of bottomland hardwood afforestation in the lower Mississippi Valley, USA. Wetlands 29, 535-542.
Shutou, K., Nakane, K., 2004. Change in soil carbon cycling for stand development of Japanese cedar (Cryptomeria japonica) plantations following clear-cutting. Ecology Research 19, 233-244.
Stoyan, H., De-Polli, H., hm, S., Robertson, G., Paul, E., 2000. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil 222, 203-214.
Subke, J.A., Reichstein, M., Tenhunen, J.D., 2003. Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology and Biochemistry 35, 1467-1483.
Suzuki, E., Tsukahara, J., 1987. Age structure and regeneration of old growth Cryptomeria japonica forests on Yakushima Island. The Botanical Magazine Tokyo 100, 223-241.
Tai, K.Y., 1964. Precommercial thinning of Cryptomeria plantation. Quarterly Journal of Chinese Forestry 1, 96. (in Chinese)
Takeuchi, I., 2005. The Growth of Diameters and Stand Stem Volumes in Old Man-made Sugi (Cryptomeria japonica) Stands. Journal of Japan Forestry Society 87, 394-401.
Tateno, R., Fukushima, K., Fujimaki, R., Shimamura, T., Ohgi, M., Arai, H., Ohte, N., Tokuchi, N., Yoshioka, T., 2009. Biomass allocation and nitrogen limitation in a Cryptomeria japonica plantation chronosequence. Journal of Forest Research 14, 276-285.
Tsui, C.C., Chen, Z.S., Hsieh, C.F., 2004. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 123, 131-142.
Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumagi, M., Lohmus, K., 2012. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. Forest Ecology and Managament 267, 117-126.
Wang, S., Zhou, L., Chen, J., Ju, W., Feng, X., Wu, W., 2011. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Journal of Environmental Management 92, 1651-1662.
Wang, T.T., 1977. Tree biomass production in Cryptomeria stands of different age classes. Journal of the Agricultural Association of China 102, 59-76. (in Chinese)
Wu, J., Zhang, X., Wang, H., Sun, J., Guan, D., 2010. Respiration of downed logs in an old-growth temperate forest in north-eastern China. Scandinavian Journal of Forest Research 25, 500-506.
Yang, Y.C., 1972. Comparison of the effect of thinning on growth of seed plant and vegetative plant Cryptomeria in Taiwan. Journal of The Experimental Forest of National Taiwan University 98, 1-15. (in Chinese)
Yang, Y.C., 1975. Studies on the growth and yield of Cryptomeria in the experimental forest of Taiwan university. Journal of The Experimental Forest of National Taiwan University 116, 1-145. (in Chinese)
Yashiro, Y., Lee, N.Y.M., Ohtsuka, T., Shizu, Y., Saitoh, T.M., Koizumi, H., 2010. Biometric-based estimation of net ecosystem production in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. Journal of Plant Research 123, 463-472.
Yen, T.M., Ai, L.M., Li, C.L., Lee, J.S., Huang, K.L., 2009. Aboveground carbon contents and storage of three major taiwanese conifer species. Taiwan Journal of Forest Science 24, 91-102. (in Chinese)
Yu, H.M., 1981. Above-ground biomass and net production in Cryptomeria stands of different age classes. In, School of Forestry and Resource Conservation. National Taiwan University, Taipei. (in Chinese)
Yuan, Z.Y., Chen, H.Y.H., 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Critical Reviews in Plant Sciences 29, 204-221.
Zha, T., Barr, A.G., Black, T.A., McCaughey, J.H., Bhatti, J., Hawthorne, I., Krishnan, P., Kidston, J., Saigusa, N., Shashkov, A., Nesic, Z., 2009. Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology 15, 1475-1487.
Zhou, G., Liu, S., Li, Z., Zhang, D., Tang, X., Zhou, C., Yan, J., Mo, J., 2006. Old-Growth Forests Can Accumulate Carbon in Soils. Science 314, 1417.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66110-
dc.description.abstract在台灣,柳杉林不僅在國有人工林佔有重要地位且林份逐漸老化,因此估計生態系統碳貯存量與淨生態系統生產量成了近來重要的課題。本研究於溪頭建立一柳杉林時間序列樣區測量林木碳貯存量及生態系統碳貯存量,並且結合前人研究結果配適一林齡-林木碳量預測模式 (Mitscherlich model)。在時間序列樣區中,選取三塊不同林齡林地,利用生物計量方法測量其淨生態系統生產量。研究結果顯示林木碳貯存量介於164.92到272.36 Mg C ha-1 之間,並佔生態系統碳貯存量最大宗 (285.65 – 355.88 Mg C ha-1)。本研究預測模式的結果顯示林木碳量可能最大值為541.3 Mg C ha-1;且在本研究的林齡範圍之下,林木碳量並無達到最大值。此結果顯示柳杉老齡林仍為碳吸存且跟本研究中淨生態系統生產量的結果相符合。淨生態系統生產量的結果中,在37年生、60年生及90年生的柳杉人工林分別吸存5.61, 4.73和1.46 Mg C ha -1 y-1。 同時,本研究發現淨初級生產量隨著林齡上升而下降,且土壤肥力影響著生態系統內不同部分的淨初級生產量分配。在估算淨生態系統生產量上,異營生物呼吸量介於4.95到7.29 Mg C ha-1 y-1之間,且其單一林分內變異高。我們在溪頭柳杉老齡林的研究,可以提供碳收支及森林經營方面十分具有參考價值的結果。zh_TW
dc.description.abstractEcosystem carbon stock and net ecosystem production (NEP) are two crucial factors in understanding ecological functions of a forest ecosystem. In Taiwan, Japanese cedar (Cryptomeria japonica D. Don) plantations are one of the important plantations. However, their carbon stock and NEP are not well known, especially when the plantations are becoming older and exceeding their normal rotation period. In this study, we measured live tree carbon stock and ecosystem carbon stock in stands selected along an age gradient from 37 to 90 years of age in Xitou, central Taiwan. We incorporated previous published data with our data to develop an age-sequence model by using the Mitscherlich model. We also determined the NEP in three stands with different ages by using biometric based method. The results show that live tree and ecosystem carbon stock ranged from 164.92 to 272.36 Mg C ha-1 and 285.65 to 355.88 Mg C ha-1, respectively, and live tree carbon stock was the largest carbon pool of ecosystem. The Mitscherlich model further indicated that live tree C continually accumulated in current Japanese cedar stands and the final value of live tree carbon was predicted at 541.3 Mg C ha-1. The NEP values of three stands were in agreement with the findings of the model, showing that the Japanese cedar plantations were carbon sinks and sequestrated 5.61, 4.73 and 1.46 Mg C ha-1 y-1 in the 37-year-old, 60-year-old and 90-year-old plantation respectively. We found the values of NPP declined with stand age, while their allocation of net primary production (NPP) was affected by the nutrient availability of stand. Heterotrophic respiration of three stands ranged from 4.95 to 7.29 Mg C ha-1 y-1 and contributed great uncertainty in NEP estimation. The result of this study is of importance in studying carbon budget and forest management of the Japanese cedar plantation in Xitou.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:22:08Z (GMT). No. of bitstreams: 1
ntu-101-R98625011-1.pdf: 3919128 bytes, checksum: ad194524150f0dc1f3ed7298b6337113 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAcknowlegement iii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
Chapter 2 Methods 5
2.1 Site description 5
2.2 Ecosystem C stock in the Japanese cedar stands 7
2.2.1 Live tree C stock including coarse root (CT) 7
2.2.2 C stock of understory vegetation (CU) 8
2.2.3 Woody debris (CWD) 8
2.2.4 C stock in litter (CL) 9
2.2.5 Fine root C stock (CFR) 9
2.2.6 Soil C stock (CS) 9
2.2.7 Carbon content 10
2.2.8 EF prediction 11
2.3 Age-related model in Japanese cedar plantations 12
2.4 Carbon fluxes: NPP, respiration and NEP in three Japanese cedar stands 14
2.4.1 NPP estimation 14
2.4.2 Heterotrophic respiration (RH): RWD and RS 16
2.4.3 Soil nutrient 18
2.4.4 Calibration of soil moisture sensor 18
2.5 Statistical analysis 20
Chapter 3 Results 22
3.1 Ecosystem C stock 22
3.2 Accumulation of live tree C stock with age 25
3.3 NPP 26
3.4 Heterotrophic respiration 29
3.5 NEP 33
Chapter 4 Discussion 34
4.1 Living tree C stock 34
4.2 C stock in understory, litter, fine root and CWD 35
4.3 Soil C stock 38
4.4 Forest ecosystem C 39
4.5 NPP 39
4.6 Heterotrophic respiration 41
4.7 NEP 42
4.8 Possible source of uncertainty 43
Reference 45
Appendix A 52
Appendix B 53
dc.language.isoen
dc.subject淨初級生產量zh_TW
dc.subject土壤異營生物呼吸zh_TW
dc.subject生態系統碳貯存量zh_TW
dc.subjectEcosystem carbon stocken
dc.subjectNet primary productionen
dc.subjectSoil heterotrophic respirationen
dc.title溪頭柳杉老齡林生態系統碳貯存量與淨生態系生產力zh_TW
dc.titleAssessment of ecosystem carbon stock and net ecosystem productivity of old-aged Japanese cedar plantation in Xitouen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee久米朋宣,王兆桓
dc.subject.keyword生態系統碳貯存量,淨初級生產量,土壤異營生物呼吸,zh_TW
dc.subject.keywordEcosystem carbon stock,Net primary production,Soil heterotrophic respiration,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2012-06-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved