Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 管理學院企業管理專班(Global MBA)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66100
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭佳瑋(Chia-Wei Kuo)
dc.contributor.authorEric C. Suen
dc.contributor.author蘇紀瑋zh_TW
dc.date.accessioned2021-06-17T00:21:48Z-
dc.date.available2012-07-18
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-06-14
dc.identifier.citationReferences
2009 Publication Annual (Taiwan), Industry Foundation in Taiwan (RIT)
“Apple surpasses Wal-Mart as No. 1 music retailer in U.S.”
http://www.cbc.ca/news/technology/story/2008/04/04/tech-itunes-numberone.html
Brennan, M. and Webster, B. (2011). “Why Concert Promoters Matter”, Scottish Music
Review, vol. 2, no. 1, pp. 1-25.
Busch, L. and Curry, P. (2004). “Rock Concert Pricing and Anti-Scalping Laws:
Selling to an Input”, pp. 1-9
Chase, C. (2007). “How the Band Protects Its Brand: The Use of Trademarks to
Protect and Promote the Musical Artist”, pp. 1-12
Connolly, M. and Krueger, A. (2006). “Rockonomics: The Economics of
Popular Music,” in Handbook of the Economics of Art and Culture, Vol. 1,
pp. 667-719
Diamond, T. (1982). “Ticket Scalping : A New Look at an Old Problem.” University of
Miami Law Review 37 : pp. 71-92.
Frith, S. (2007). “Live Music Matters”, Scottish Music Review, vol. 1,
no. 1 (2007), pp. 1-17.
Happel, S. and Jennings, M. (1995). “The Folly of Anti-Scalping Laws.”
Cato Journal 15(1) : pp. 65-80.
Happel, S. and Jennings, M. (1995). “Herd them together and Scalp them.”
The Wall Street Journal (February 23) : Section A pp.14 column 4.
Huntington, P. (1993). “Ticket Pricing Policy and Box Office Revenue.”
Journal of Cultural Economics 17(1) : pp. 71-87.
Krueger, A. (2005): ‘The Economics of Real Superstars: The Market for
Rock Concerts in the Material World’, Journal of Labor Economics, vol. 23, no. 1, pp. 1-30.
Louvain Economic Review (2000), “An economic guide to ticket pricing
in the entertainment industry, Louvain Economic Review 66(1), pp.1-26
Pagliero, M. (2011). “The Pricing of Art and the Art of Pricing: Pricing Styles in the
Concert Industry”, pp. 1-97
Phillips, R. (2005). Pricing and Revenue Optimization. Stanford Business Books.
pp.1-368
Prynn, J. (2008). “Festival explosion turns live music into £1.9bn big business”,
Evening Standard, 10 September. http://www.thisislondon.co.uk/standard/article-23553561-details/Festival+explosion+turns+live+music+into+1.9bn+big+business/article.do
Rosen, S. (1974). “Hedonic Prices and Implicit Markets : Product Differentiation
in Pure Competition.” Journal of Political Economy 82(1). pp. 35-55.
Rosen, S. and Rosenfield, A. (1997). “Ticket Pricing.” Journal of Law and
Economics 40(2) : pp. 351-76.
Tirole, J. (1988). The Theory of Industrial Organization. Cambridge, Mass.
The MIT Press.
Williams, A. (1994). “Do Anti-Ticket Scalping Laws Make a Difference?”
Managerial and Decision Economics 15(5) (September-October) : pp. 503-09.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66100-
dc.description.abstract在以往的研究中,演唱會的票價與週邊商品這兩項相關互補的產品類總是在研究中被分開來探討。在本篇的研究中,主要是以實證研究(Empirical Study)的方式使用問卷來蒐集資料,來推導出一個可以結合演唱會票價的購買意願與週邊商品的迴歸模型(Regression Model)。由於演唱會最熱門跟最常出現的週邊商品為螢光棒以及T-SHIRT,本研究針對這兩項周邊商品在加上明星光環時的購買意願進行調查。在檢查完迴歸模型適用後,本研究探討的相關係數包含週邊商品加了明星光環後的訂價差異,參加演唱會的民眾對於螢光棒和T-SHIRT的喜愛程度,以及民眾印象中對於其他人在週邊商品上所進行的花費數字。最後,本研究以迴歸模型來推導一場模擬實際現實中演唱會的市場需求(Demand Function),來進行收益管理(Revenue Management)與訂價的策略。此研究發現,加了明星光環的T-SHIRT比加了明星光環的螢光棒帶來更高的票價購買意願。此外,使用迴歸模型的收益訂價策略的收入會增加51.19%。zh_TW
dc.description.abstractTraditionally, concert ticket sales and merchandise sales which are complementary to one other have been examined separately. The following paper conducts an empirical study to develop a model that links the relationship between a consumer’s merchandise preferences and its influence on the individual’s ticket reservation price. Two of the most prevalent concert merchandise items, the Glowstick and the T-Shirt, are selected to represent this category. The merchandise variables investigated include the consumer’s personal interest in the merchandise item, the difference in the reservation price for a merchandise item due to celebrity stardom, and the individual’s perception of the merchandise spending of an average concert attendee. Regression is used to explain the link between ticket reservation price model and these merchandise variables. It is discovered that there is a stronger brand influence to Celebrity T-Shirts when compared to Celebrity Glowsticks on Ticket Reservation Prices. Using the model to forecast a larger population demand through ticket reservation prices, revenue management is applied to a live ticket concert scenario to determine the optimal ticket prices. Compared to the traditional scenario of ticket pricing, the revenue management scheme incorporating the merchandise regression model shows a 51.19% improvement in revenue.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:21:48Z (GMT). No. of bitstreams: 1
ntu-101-R99749015-1.pdf: 2665947 bytes, checksum: 37f05a19c40a891b78a8ecdc2cbe4c00 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTable of Contents
Master Thesis Certification i
Acknowledgement and Dedication ii
Chinese Abstract iii
English Abstract iv
Table of Contents v
List of Figures vii
List of Tables viii
Chapter 1: Introduction 1
1.1 Background 2
1.2 Statement of Problem 4
1.3 Research Process 11
Chapter 2: Literature Review 13
2.1 The Supply Side: Vertical Organization of Entertainment Industry 13
2.2 The Demand Side: Concert attendees vs. Arbitragers, Free Riding Merchants 14
2.3 Related Works on Ticket and Merchandise Pricing 15
Chapter 3: The Model 22
3.1 Benefits of Regression Analysis 22
3.2 Formulating the Model 24
3.3 The Model 26
3.4 Explanation and Calculation of Model Variables 26
Chapter 4: Results and Analysis 34
4.1 Correlation Matrix and Residuals Analysis 35
4.2 Multiple Regressions 44
4.3 Finalized Model Equation for Ticket Reservation Price 45
4.4 Interpreting the Model Coefficients 45
4.5 Revenue Management on Ticket Pricing 47
4.6 Multiple Regressions II (Stepwise Regression) 56
4.7 Revenue Management on Ticket Pricing II (Stepwise Regression) 58
Chapter 5: Conclusions and Recommendations 65
5.1 Conclusions 65
5.2 Recommendations on Future Research Direction 68
References 71
Appendix A-Calculated Data from Survey Responses 73
Appendix B-Design Survey for Concert (Chinese Version) 80
Appendix C-Design Survey for Concert (English Version) 83
Appendix D-Design Survey Raw Data 86
List of Figures
Figure 1: Overview Structure of Research Paper 2
Figure 2: The Decline of Record Sales in Taiwan (1997-2008) 6
Figure 3: Concert Organization of Zones 27
Figure 4: Survey Design: The Six Pricing Scenarios 28
Figure 5: Scatter Plot of RTICKETSi as a function of RGCELBi 35
Figure 6: Scatter Plot of RTICKETSi as a function of IGLOWSTICKi 36
Figure 7: Scatter Plot of RTICKETSi as a function of RTCELBi 36
Figure 8: Scatter Plot of RTICKETSi as a function of IT-SHIRTi 36
Figure 9: Scatter Plot of RTICKETSi as a function of RPEMSi 37
Figure 10: Combined Scatter Plot 37
Figure 11: Residuals over Time 38
Figure 12: Scatter Plot of RGCELBi Residuals 39
Figure 13: Scatter Plot of IGLOWSTICKi Residuals 39
Figure 14: Scatter Plot of RTCELBi Residuals 39
Figure 15: Scatter Plot of IT-SHIRTi Residuals 40
Figure 16: Scatter Plot of RPEMSi Residuals 40
Figure 17: Predicted Values vs. Residuals 41
Figure 18: Histogram of Standardized Residuals 42
Figure 19: VIF Calculation Formula 42
Figure 20: Ticket Price-Demand Function for Zone 1 49
Figure 21: Ticket Price-Demand Function for Zone 2 50
Figure 22: Ticket Price-Demand Function for Zone 3 50
Figure 23: Ticket Price-Demand Function for Zone 4 51
Figure 24: Ticket Price-Demand Function for Zone 5 51
Figure 25: Ticket Price-Demand Function for Zone 6 52
Figure 26: Ticket Price-Demand Function for Zone 7 52
Figure 27: Ticket Price-Demand Function for Zone 1 (Stepwise Regression) 59
Figure 28: Ticket Price-Demand Function for Zone 2 (Stepwise Regression) 59
Figure 29: Ticket Price-Demand Function for Zone 3 (Stepwise Regression) 60
Figure 30: Ticket Price-Demand Function for Zone 4 (Stepwise Regression) 60
Figure 31: Ticket Price-Demand Function for Zone 5 (Stepwise Regression) 61
Figure 32: Ticket Price-Demand Function for Zone 6 (Stepwise Regression) 61
Figure 33: Ticket Price-Demand Function for Zone 7 (Stepwise Regression) 62
List of Tables
Table 1: The Decline of Record Sales in Taiwan (1997-2008) 6
Table 2: Income Contribution of Live Concerts of Taiwanese Artists in 2008 7
Table 3: Taiwan’s Record Companies 14
Table 4: Model Variables 26
Table 5: Ticket Prices based on Zones for Scenarios 1~6 28
Table 6: Example: Determination of Ticket Reservation Price 29
Table 7: Determination of Glowstick Reservation Prices in Lower/Upper Bounds 30
Table 8: Example: Determination of Glowstick Branding Factor 31
Table 9: Determination of T-Shirt Reservation Prices in Lower/Upper Bounds 31
Table 10: Mixed Bundling Options 32
Table 11: Personal Preference Factor on Reservation Price 32
Table 12: Personal Preference/Interest Measurement Evaluation 33
Table 13: Correlation Matrix 35
Table 14: Durbin-Watson Table 41
Table 15: VIF Calculation on Multicollinearity 43
Table 16: Regression Statistics 44
Table 17: Sorted Reservation Price Data by Model Predictions 48
Table 18: Customer Demand by Zone 49
Table 19: Optimal Prices for Revenue Management under Model 53
Table 20: Revenue earned under Prices for Mayday DNA Live 2009 World Tour 54
Table 21: A Comparison of Ticket Prices for both Scenarios 55
Table 22: A Comparison of Revenue Earnings 56
Table 23: Regression Statistics II (Stepwise Regression) 57
Table 24: Customer Demand by Zone (Stepwise Regression) 58
Table 25: Optimal Prices for Revenue Management (Stepwise Regression) 63
Table 26: A Comparison of Ticket Prices of Original vs. Stepwise Regression 63
Table 27: A Comparison of Revenue Earnings of Original vs. Stepwise Regression 64
dc.language.isoen
dc.subject收益管理zh_TW
dc.subject購買意願zh_TW
dc.subject演唱會票價zh_TW
dc.subject週邊商品zh_TW
dc.subject明星光環zh_TW
dc.subject品牌zh_TW
dc.subject迴歸模型zh_TW
dc.subjectConcert Ticket Pricingen
dc.subjectRevenue Managementen
dc.subjectMultiple Regressionen
dc.subjectCelebrity Brandingen
dc.subjectReservation Price (Willingness-to-Pay)en
dc.subjectMerchandisingen
dc.title現場演唱會之最適訂價研究zh_TW
dc.titleAn Empirical Study of Ticket Pricing at Live Concertsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊朝龍(Chao-Lung Yang),黃奎隆(Kwei-Long Huang)
dc.subject.keyword購買意願,演唱會票價,週邊商品,明星光環,品牌,迴歸模型,收益管理,zh_TW
dc.subject.keywordReservation Price (Willingness-to-Pay),Concert Ticket Pricing,Merchandising,Celebrity Branding,Multiple Regression,Revenue Management,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2012-06-15
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept企業管理碩士專班zh_TW
顯示於系所單位:管理學院企業管理專班(Global MBA)

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved