請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66099完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽彥正(Yen-Jen Oyang),阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Chen-Ching Lin | en |
| dc.contributor.author | 林振慶 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:21:46Z | - |
| dc.date.available | 2012-06-27 | |
| dc.date.copyright | 2012-06-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-14 | |
| dc.identifier.citation | 1. Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 1999, 19:1720-1730.
2. Greenbaum D, Jansen R, Gerstein M: Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics 2002, 18:585-596. 3. Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003, 4:117. 4. Fu N, Drinnenberg I, Kelso J, Wu JR, Paabo S, Zeng R, Khaitovich P: Comparison of protein and mRNA expression evolution in humans and chimpanzees. PLoS One 2007, 2:e216. 5. Lu P, Vogel C, Wang R, Yao X, Marcotte EM: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 2007, 25:117-124. 6. Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, Reimers MA, Scherf U, Kahn A, Dolginow D, et al: Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol. Cancer Ther. 2007, 6:820-832. 7. Trauger SA, Kalisak E, Kalisiak J, Morita H, Weinberg MV, Menon AL, Poole FL, 2nd, Adams MW, Siuzdak G: Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. J. Proteome Res. 2008, 7:1027-1035. 8. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature 2008, 455:64-71. 9. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455:58-63. 10. Cusick ME, Klitgord N, Vidal M, Hill DE: Interactome: gateway into systems biology. Hum. Mol. Genet. 2005, 14 Spec No. 2:R171-181. 11. Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411:41-42. 12. Yook SH, Oltvai ZN, Barabasi AL: Functional and topological characterization of protein interaction networks. Proteomics 2004, 4:928-942. 13. Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC, Myers CL, Parsons A, Friesen H, Oughtred R, Tong A, et al: Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 2006, 5:11. 14. Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402:C47-52. 15. Rives AW, Galitski T: Modular organization of cellular networks. Proc. Natl. Acad. Sci. U S A. 2003, 100:1128-1133. 16. Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 2004, 5:101-113. 17. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, et al: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006, 440:637-643. 18. Parrish JR, Yu J, Liu G, Hines JA, Chan JE, Mangiola BA, Zhang H, Pacifico S, Fotouhi F, DiRita VJ, et al: A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol. 2007, 8:R130. 19. Ideker T, Sharan R: Protein networks in disease. Genome Res. 2008, 18:644-652. 20. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270:467-470. 21. Hoheisel JD: Microarray technology: beyond transcript profiling and genotype analysis. Nat. Rev. Genet. 2006, 7:200-210. 22. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537. 23. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, et al: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403:503-511. 24. Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z: Tissue classification with gene expression profiles. J. Comput. Biol. 2000, 7:559-583. 25. Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nat. Genet. 2003, 33:49-54. 26. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297. 27. Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835-840. 28. Doench JG, Sharp PA: Specificity of microRNA target selection in translational repression. Genes Dev. 2004, 18:504-511. 29. Filipowicz W, Bhattacharyya SN, Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008, 9:102-114. 30. Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233. 31. Alvarez-Garcia I, Miska EA: MicroRNA functions in animal development and human disease. Development 2005, 132:4653-4662. 32. Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu. Rev. Med. 2009, 60:167-179. 33. Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6:259-269. 34. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004, 430:88-93. 35. Vidal M: Interactome modeling. FEBS Lett. 2005, 579:1834-1838. 36. Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han JD: A modular network model of aging. Mol. Sys. Biol. 2007, 3:147. 37. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL: Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol. 2009, 27:199-204. 38. Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol. Sys. Biol. 2007, 3:140. 39. Liang H, Li WH: MicroRNA regulation of human protein protein interaction network. RNA 2007, 13:1402-1408. 40. Hsu CW, Juan HF, Huang HC: Characterization of microRNA-regulated protein-protein interaction network. Proteomics 2008, 8:1975-1979. 41. Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, Li J, Hasina R, Cheng C, Lingen MW, et al: Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Comput. Biol. 2010, 6:e1000730. 42. Zhang H, Li Y, Lai M: The microRNA network and tumor metastasis. Oncogene 2010, 29:937-948. 43. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25:25-29. 44. McMurray JJ, Pfeffer MA: Heart failure. Lancet 2005, 365:1877-1889. 45. Kaab S, Barth AS, Margerie D, Dugas M, Gebauer M, Zwermann L, Merk S, Pfeufer A, Steinmeyer K, Bleich M, et al: Global gene expression in human myocardium-oligonucleotide microarray analysis of regional diversity and transcriptional regulation in heart failure. J. Mol. Med. (Berlin, Germany) 2004, 82:308-316. 46. Barth AS, Kuner R, Buness A, Ruschhaupt M, Merk S, Zwermann L, Kaab S, Kreuzer E, Steinbeck G, Mansmann U, et al: Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies. J. Am. Coll. Cardiol. 2006, 48:1610-1617. 47. Wittchen F, Suckau L, Witt H, Skurk C, Lassner D, Fechner H, Sipo I, Ungethum U, Ruiz P, Pauschinger M, et al: Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. J. Mol. Med. (Berlin, Germany) 2007, 85:257-271. 48. Macdonald JS: Gastric cancer--new therapeutic options. N. Engl. J. Med. 2006, 355:76-77. 49. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437:1173-1178. 50. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al: Human Protein Reference Database--2009 update. Nucleic Acids Res. 2009, 37:D767-772. 51. Goel R, Muthusamy B, Pandey A, Prasad TS: Human protein reference database and human proteinpedia as discovery resources for molecular biotechnology. Mol. Biotechnol. 2011, 48:87-95. 52. Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG: Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 2009, 25:3049-3055. 53. Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19:92-105. 54. D'Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, Sera F, Saieva C, Ottini L, Palli D, et al: Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur. J. Cancer 2009, 45:461-469. 55. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature 2005, 435:834-838. 56. Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z, Liu CG, Reinhold W, Lorenzi PL, Kaldjian EP, et al: MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol. Cancer Ther. 2007, 6:1483-1491. 57. Pemmara ju S, Skiena S: Computational discrete mathematics: Combinatorics and graph theory with mathematica. Cambridge, England: Cambridge University Press 2003. 58. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS: Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 2006, 441:840-846. 59. Benjamini Y, Yekutieli D: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29:1165-1188. 60. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U S A. 2001, 98:5116-5121. 61. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite. Methods Enzymol. 2006, 411:134-193. 62. Ekman D, Light S, Bjorklund AK, Elofsson A: What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol. 2006, 7:R45. 63. Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005, 21:3448-3449. 64. Camargo A, Azuaje F: Identification of dilated cardiomyopathy signature genes through gene expression and network data integration. Genomics 2008. 65. Kang PM, Izumo S: Apoptosis and heart failure: A critical review of the literature. Circ. Res. 2000, 86:1107-1113. 66. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP: Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 1990, 345:315-319. 67. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K: Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 2005, 115:2108-2118. 68. Li J, Lenferink AE, Deng Y, Collins C, Cui Q, Purisima EO, O'Connor-McCourt MD, Wang E: Identification of high-quality cancer prognostic markers and metastasis network modules. Nat. Commun. 2010, 1:1-8. 69. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006, 34:D535-539. 70. Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB: Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 2007, 13:1894-1910. 71. Davies KE, Nowak KJ: Molecular mechanisms of muscular dystrophies: old and new players. Nat. Rev. 2006, 7:762-773. 72. Ervasti JM, Campbell KP: Membrane organization of the dystrophin-glycoprotein complex. Cell 1991, 66:1121-1131. 73. Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, Dreyer WJ, Messina J, Li H, Bowles NE, Towbin JA: Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 2001, 103:1256-1263. 74. Burton EA, Tinsley JM, Holzfeind PJ, Rodrigues NR, Davies KE: A second promoter provides an alternative target for therapeutic up-regulation of utrophin in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. U S A. 1999, 96:14025-14030. 75. Bostick B, Yue Y, Long C, Duan D: Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ. Res. 2008, 102:121-130. 76. Dube PE, Forse CL, Bahrami J, Brubaker PL: The essential role of insulin-like growth factor-1 in the intestinal tropic effects of glucagon-like peptide-2 in mice. Gastroenterology 2006, 131:589-605. 77. Laustsen PG, Russell SJ, Cui L, Entingh-Pearsall A, Holzenberger M, Liao R, Kahn CR: Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol. Cell. Biol. 2007, 27:1649-1664. 78. Roura S, Planas F, Prat-Vidal C, Leta R, Soler-Botija C, Carreras F, Llach A, Hove-Madsen L, Pons Llado G, Farre J, et al: Idiopathic dilated cardiomyopathy exhibits defective vascularization and vessel formation. Eur. J. Heart Fail. 2007, 9:995-1002. 79. Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E: Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell. Biol. 2003, 161:793-804. 80. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433:769-773. 81. Grondahl-Hansen J, Christensen IJ, Rosenquist C, Brunner N, Mouridsen HT, Dano K, Blichert-Toft M: High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res. 1993, 53:2513-2521. 82. Kuhn W, Pache L, Schmalfeldt B, Dettmar P, Schmitt M, Janicke F, Graeff H: Urokinase (uPA) and PAI-1 predict survival in advanced ovarian cancer patients (FIGO III) after radical surgery and platinum-based chemotherapy. Gynecol. Oncol. 1994, 55:401-409. 83. Liu G, Shuman MA, Cohen RL: Co-expression of urokinase, urokinase receptor and PAI-1 is necessary for optimum invasiveness of cultured lung cancer cells. Int. J. Cancer 1995, 60:501-506. 84. Chambers SK, Ivins CM, Carcangiu ML: Plasminogen activator inhibitor-1 is an independent poor prognostic factor for survival in advanced stage epithelial ovarian cancer patients. Int. J. Cancer 1998, 79:449-454. 85. Bajou K, Noel A, Gerard RD, Masson V, Brunner N, Holst-Hansen C, Skobe M, Fusenig NE, Carmeliet P, Collen D, Foidart JM: Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 1998, 4:923-928. 86. Bourguignon LY, Zhu H, Zhou B, Diedrich F, Singleton PA, Hung MC: Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J. Biol. Chem. 2001, 276:48679-48692. 87. Koike T, Kimura N, Miyazaki K, Yabuta T, Kumamoto K, Takenoshita S, Chen J, Kobayashi M, Hosokawa M, Taniguchi A, et al: Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. U S A. 2004, 101:8132-8137. 88. Sultmann H, von Heydebreck A, Huber W, Kuner R, Buness A, Vogt M, Gunawan B, Vingron M, Fuzesi L, Poustka A: Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin. Cancer Res. 2005, 11:646-655. 89. Lai SY, Ziober AF, Lee MN, Cohen NA, Falls EM, Ziober BL: Activated Vav2 modulates cellular invasion through Rac1 and Cdc42 in oral squamous cell carcinoma. Oral Oncol. 2008, 44:683-688. 90. Landemaine T, Jackson A, Bellahcene A, Rucci N, Sin S, Abad BM, Sierra A, Boudinet A, Guinebretiere JM, Ricevuto E, et al: A six-gene signature predicting breast cancer lung metastasis. Cancer Res. 2008, 68:6092-6099. 91. Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML: Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J. Natl. Cancer Inst. 2004, 96:364-375. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66099 | - |
| dc.description.abstract | 蛋白質交互作用網路可用來呈現細胞內分子間活動的基礎架構並且提供了解疾病可能機制的契機。信使核醣核酸的表現量以及微型核醣核酸的調控會影響蛋白質的量,進而影響蛋白質交互作用網路中的每筆交互作用。因此,我們結合蛋白質交互作用網路、信使核醣核酸的表現量以及微型核醣核酸的調控發展出一套整合型的分析方法,並利用這套方法去探討蛋白質交互作用網路中的動態模組性以及微型核醣核酸調控的特定蛋白質交互作用網路。
在分析動態模組性方面,藉由整合擴張型心肌病變病人的信使核醣核酸表現量與蛋白質交互作用的資料,我們發現在正常及疾病的樣本間有大量的交互作用發生重新連結的現象,這可能揭露了隱含於靜態交互作用網路中的動態資訊。我們更發現了兩個與心臟衰竭相關的功能性網路模組,而這兩個模組在正常及疾病樣本間的動態特性更進一步地提供了一個潛在的擴張型心肌病變的分子機制。 在微型核醣核酸方面,藉由整合微型核醣核酸的調控目標基因以及蛋白質交互作用網路,我們發展了一套方法來發掘出微型核醣核酸調控的交互作用網路以及預測它們在特定情況下的功能。另外,運用這個方法在胃癌的研究中也發現了幾個與癌症的發展有關的微型核醣核酸調控網路。進一步的分析更發現這些微型核醣核酸具有抑制胃癌腫瘤的可能性。其中,miR-148a更可以透過其調控目標去減少癌細胞的侵略、遷移以及附著的能力來降低癌細胞的增生及轉移。 在此我們提出了一個新方法去探索不同情況下蛋白質網路中的動態模組性及微型核醣核酸調控機制,也成功找到了和心臟衰竭高度相關的網路模組及具抑制胃癌腫瘤潛力的微型核醣核酸。最後,這些找到的網路模組及微型核醣核酸調控的蛋白質網路可能可以作為新的藥物標靶和提供治療心臟衰竭及胃癌的新方向。 | zh_TW |
| dc.description.abstract | Protein interaction networks can represent the backbone of molecular activity within cells and thus provide opportunities for understanding the mechanism of diseases. Through their influence on protein abundance, mRNA expression and microRNA regulation can affect the interaction dynamics within protein networks. Therefore, we developed an integrative analysis of protein interaction network by incorporating mRNA expression and microRNA regulation to reveal the dynamic modularity and microRNA-regulated networks in protein interaction networks.
For the dynamic modularity analysis, we integrated mRNA expression profiles of a cohort of dilated cardiomyopathy patients with protein-protein interactions and found a large amount of interaction rewiring between normal and disease samples. It might suggest that the condition-specific dynamic information hid among otherwise common static interactions. We identified two heart-failure related functional modules that significantly emerged from the protein interaction networks. Additionally, the dynamic change of these modules between normal and disease states further suggested a potential molecular model of dilated cardiomyopathy. For microRNA regulations, we integrated the information of microRNA expression, target mRNA expression, and target protein-protein interaction and developed an approach to reveal microRNA-regulated protein interaction networks and to determine their functional roles in specific biological conditions. Applying this approach to investigate gastric tumor samples revealed several microRNA-regulated networks which were enriched in functions related to cancer progression. Further analyses showed that these microRNAs could be potential tumor suppressors of gastric cancer. Among them, miR-148a decreased tumor proliferation and metastasis by reducing the invasiveness, migratory and adhesive activities of tumor cells through its targets. In conclusion, we proposed a novel framework to discover the dynamic modularity and microRNA regulation embedded in the protein interaction networks in different biological states. It successfully revealed network modules closely related to heart failure and potential tumor suppressor microRNAs involved in gastric cancer. The revealed molecular modules and microRNA-regulated networks might be able to be used as potential drug targets and provide new directions for heart failure and gastric cancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:21:46Z (GMT). No. of bitstreams: 1 ntu-101-D96945017-1.pdf: 15944039 bytes, checksum: f7fc03c63ac997b7465f9a675c67e732 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Table of Contents vi List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Protein Interaction Network 1 1.2 Microarray Analysis 2 1.3 MicroRNA Regulation 2 1.4 Integrative Analyses of PIN 3 Chapter 2 Materials and Methods 7 2.1 Human Protein Interaction Network and MicroRNA Targets 7 2.2 MicroRNA and mRNA Expression Profiles 7 2.3 Integrative Analyses of PIN 8 2.3.1 Dynamic modularity of PIN 10 2.3.2 MicroRNA-regulated PIN 10 2.4 Methods in the Integrative Analysis of PIN 13 2.4.1 Network properties 13 2.4.2 Pearson correlation coefficient 14 2.4.3 Hypergeometric test 14 2.4.4 Co-expressed protein interaction network 15 2.4.5 Identification of condition-specific functional modules 15 2.4.6 Evaluation of classification accuracy 17 2.4.7 Expression variations of microRNA and mRNA 17 2.4.8 MicroRNA-regulated PIN identification 18 2.4.9 Activities of microRNA-regulated PIN 18 2.4.10 Investigation of the functional roles of microRNAs in PIN 19 Chapter 3 Results 20 3.1 The Integrative Analyses of PIN 20 3.2 Dynamic Modularity of PIN 21 3.2.1 Condition-specific CePIN 21 3.2.2 Highly interacting proteins in CePIN tend to be differentially expressed and function as SDEGs in DCM 22 3.2.3 Identification of two DCM-related functional modules 26 3.2.4 Dynamic features of DCM-related modules 29 3.2.5 Robustness of dynamic modularity revealed by integrative analysis 33 3.4 MicroRNA Regulation in PIN 41 3.4.1 Correlations between expression profiles of microRNAs and targets 41 3.4.2 MicroRNA-regulated PIN in gastric cancer 46 3.4.3 Predicting the potential regulating functions of microRNAs in PIN 49 3.4.4 miR-148a-regulated PIN and its potential functions in gastric cancer 50 3.4.5 miR-148a affects gastric cancer metastasis through its regulated PIN 53 Chapter 4 Discussion 54 Chapter 5 Conclusions 61 References 62 Appendix A - Experimental Validations of miR-148a Functions in Gastric Cancer 69 A.1 Invasion Assays using Boyden Chamber Assays 69 A.2 Wound Healing Assays 69 A.3 Cell Adhesion Assays 69 A.4 Cell Proliferation Assays 70 A.5 Luciferase Reporter Assays 70 Appendix B - Publication List 71 Appendix C - Selected Publications 72 | |
| dc.language.iso | en | |
| dc.subject | 微型核醣核酸調控網路 | zh_TW |
| dc.subject | 蛋白質交互作用網路 | zh_TW |
| dc.subject | 信使核醣核酸表現量 | zh_TW |
| dc.subject | 微型核醣核酸調控 | zh_TW |
| dc.subject | 整合型網路分析 | zh_TW |
| dc.subject | 動態模組特性 | zh_TW |
| dc.subject | dynamic modularity | en |
| dc.subject | mRNA expression profile | en |
| dc.subject | microRNA-regulated network | en |
| dc.subject | protein interaction network | en |
| dc.subject | integrative network analysis | en |
| dc.subject | microRNA regulation | en |
| dc.title | 蛋白質交互作用網路中的動態模組及調控 | zh_TW |
| dc.title | Dynamic Modularity and Regulation in Protein Interaction Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 黃宣誠(Hsuan-Cheng Huang) | |
| dc.contributor.oralexamcommittee | 李文雄(Wen-Hsiung Li),蔣榮先(Jung-Hsien Chiang),曾新穆(Vincent Shin-Mu Tseng),蔡懷寬(Huai-Kuang Tsai) | |
| dc.subject.keyword | 蛋白質交互作用網路,信使核醣核酸表現量,微型核醣核酸調控,整合型網路分析,動態模組特性,微型核醣核酸調控網路, | zh_TW |
| dc.subject.keyword | protein interaction network,mRNA expression profile,microRNA regulation,integrative network analysis,dynamic modularity,microRNA-regulated network, | en |
| dc.relation.page | 135 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 15.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
