Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66058
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管中閔(Chung-Ming Kuan)
dc.contributor.authorHui-Ching Chuangen
dc.contributor.author莊惠菁zh_TW
dc.date.accessioned2021-06-17T00:20:26Z-
dc.date.available2013-11-03
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-06-22
dc.identifier.citationBibliography
Altman, E.I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of finance 23 (4), pp.589–609.
Azizpour, S., K. Giesecke et al. 2008. Self-exciting corporate defaults,Contagion vs. frailty. Palo Alto, California, pp. Stanford University). Available via the Internet.
Beaver, W.H., M.F. McNichols, and J.W. Rhie. 2005. Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy.
Review of Accounting Studies 10 (1), pp.93–122.
Bharath, S.T. and T. Shumway. 2008. Forecasting default with the Merton distance to default model. Review of Financial Studies 21 (3), pp.1339.
Billingsley, P. 1995. Probability and Measure John Wiley & Sons. Inc. New York .
Brier, G.W. 1950. Verification of forecasts expressed in terms of probability. Monthly Weather Review 78 (1), pp.1–3.
Cameron, A.C. and P.K. Trivedi. 2005. Microeconometrics, methods and applications. Cambridge Univ Pr.
Campbell, J.Y., J. Hilscher, and Jan Szilagyi. 2008. In search of distress risk. The Journal of Finance 63 (6), pp.2899–2939.
Cox, D.R. and D. Oakes. 1984. Analysis of survival data. Chapman & Hall.
Das, S.R., D. Duffie, N. Kapadia, and L. Saita. 2007. Common failings, How corporate defaults are correlated? Journal of Finance 62 (1), pp.93–117.
Duan, J.C. 2010. Clustered default. Working Paper, Risk Management Institute, National University of Singapore .
Duan, J.C., J. Sun, and T. Wang. 2011. Multiperiod corporate default prediction–A forward intensity approach. Singapore, pp. RMI, National University of Singapore.
Duffie, D., A. Eckner, G. Horel, and L. Saita. 2009. Frailty correlated default. Journal of Finance 64 (5), pp.2089–2123.
Duffie, D., L. Saita, and K. Wang. 2007. Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics 83 (3), pp.635–665.
Duffie, D. and K. Singleton. 2003. Credit risk. Princeton, New Jersey .
Friedman, J., T. Hastie, and R. Tibshirani. 2010. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33 (1), pp.1.
Friedman, J., R. Tibshirani, and T. Hastie. 2009. The elements of statistical learning, Data mining, inference, and prediction. Springer-Verlag New York, second ed.
Hamilton, J.D. 1994. Time Series Analysis. Princeton University Press.
Hansen, B.E. 1992. The likelihood ratio test under nonstandard conditions, Testing the Markov switching model of GNP. Journal of Applied Econometrics 7, pp.61–82.
Hansen, B.E. 1996. Erratum, The likelihood ratio test under nonstandard conditions, Testing the Markov switching model of GNP . Journal of Applied Econometrics 11, pp.195–198.
Hillegeist, S.A., E.K. Keating, D.P. Cram, and K.G. Lundstedt. 2004. Assessing the probability of bankruptcy. Review of Accounting Studies 9 (1), pp.5–34.
Jorion, P. and G. Zhang. 2007. Good and bad credit contagion, pp. Evidence from credit default swaps. Journal of Financial Economics 84 (3), pp.860–883.
Karlis, D. and E. Xekalaki. 2000. A simulation comparison of several procedures for testing the Poisson assumption. Journal of the Royal Statistical Society, Series D (The Statistician) 49 (3), pp.355–382.
Kim, B. and K. Giesecke. 2010. Systemic risk, What defaults are telling us. Working Paper, Stanford University.
Kim, C.J. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics 60 (1-2), pp.1–22.
Kim, C.J. and C.R. Nelson. 1999. State-space models with regime switching, Classical and gibbs-sampling approaches with applications. MIT Press Books 1.
Koopman, S.J., R. Kraussl, A. Lucas, and A.B. Monteiro. 2009. Credit cycles and macro fundamentals. Journal of Empirical Finance 16 (1), pp.42–54.
Koopman, S.J., A. Lucas, and B. Schwaab. 2010a. Macro, industry and frailty effects in defaults, the 2008 credit crisis in perspective. Working paper, VU University
Amsterdam.
Koopman, S.J., A. Lucas, and B. Schwaab. 2010b. Modeling frailty-correlated defaults using many macroeconomic covari-
ates.
Kramer, F. and G. Loffler. 2010. Corporate bond defaults are consistent with conditional independence. Journal of Credit Risk 6 (2), pp.3–35.
Lando, D. 1998. On Cox processes and credit risky securities. Review of Derivatives research 2 (2), pp.99–120.
Lando, D. 2004. Credit risk modeling, theory and applications. Princeton Univ Pr.
Lando, D. and M.S. Nielsen. 2008. Correlation in corporate defaults, pp. Contagion or conditional independence? Working Paper, SSRN.
Lando, D. and M.S. Nielsen. 2010. Correlation in corporate defaults, pp. Contagion or conditional independence? Journal of Financial Intermediation 19 (3), pp.355–372.
Luo, D., D.Y. Tang, and S.Q. Wang. 2009. A little knowledge is a dangerous thing, Model specification, data history and CDO (mis-) pricing. Working Paper, University of Hong Kong.
McNeil, A.J. and J.P. Wendin. 2007. Bayesian inference for generalized linear mixed models of portfolio credit risk. Journal of Empirical Finance 14 (2), pp.131–149.
Merton, R.C. 1974. On the pricing of corporate debt, the risk structure of interest rates. The Journal of Finance 29 (2), pp.449–470.
Ohlson, J.A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research 18 (1), pp.109–131.
Park, J.Y. and Y.J. Whang. 2005. A test of the martingale hypothesis. Studies in Nonlinear Dynamics & Econometrics 9 (2), pp.1163.
Shapiro, A.R. 1977. The evaluation of clinical predictions. New England Journal of Medicine 296 (26), pp.1509–1514.
Shumway, T. 2001. Forecasting bankruptcy more accurately, pp. A simple hazard model. The Journal of Business 74 (1), pp.101–124.
Tibshirani, R. 1997. The lasso method for variable selection in the Cox model. Statistics in Medicine 16 (4), pp.385–395.
Wang, Tao. 2010. Determinants of corporate default, Systematic distress, sectoral distress and credit contagion. Working Paper, National University of Singapore.
Welling, M. 2005. Fisher linear discriminant analysis. Department of Computer Science, University of Toronto.
Wooldridge, J.M. 2010. Econometric analysis of cross section and panel data. The MIT press, 2 ed.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66058-
dc.description.abstractDefault/Bankruptcy prediction has a long history in finance.
Intensity (instantaneous default probability) model has gain more and more attentions in recent default/bankruptcy studies. In this work, we discussion two aspects in intensity modeling: model specification test and regime-switching generalized intensity model.
Model specification test is an important issue for empirical
researchers to judge the goodness of fit of the model to the data. In intensity models, Das et. al. (2007) and Lando and Nielsen (2010) needs to specified a bin size that may affect the test results. I will introduce a new specification test based on the martingale properties of aggregate default intensities. Simulation results show that martingale-based test has better power than time-transformed specification test without considering the estimation effects.
The second part of this thesis, I will introduce a default
prediction model with regime-switching effects in the intensity function, such that the default intensity is affected by both observable risk factors and unobservable regime indicators. In particular, the level of the intensity function and the risk exposures to observable risk factors in the intensity function are specified as state dependent. We provide an estimation algorithm when the state variable is Markovian and illustrate the proposed model using the default data of US-listed companies during 1990-2009. Our test indicates that the regime switching effect in the intensity function is significant. Regime-switching intensity model outperforms classical intensity model in the in-sample fit and out-of-sample default predictions.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:20:26Z (GMT). No. of bitstreams: 1
ntu-101-D94723007-1.pdf: 677433 bytes, checksum: 62f65caecab99d6686e4244d03af05b2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
1 Introduction to Default Prediction Modeling 2
1.1 Introduction. . . 2
1.2 Statistical Methods in Default Modeling. . . 2
1.2.1 Linear Discrimination Analysis. . . 3
1.2.2 Binary Response Models. . . 6
1.2.3 Survival Analysis. . . 7
1.3 Conclusion. . . 10
2 Model Specication Tests 11
2.1 Introduction. . . . 11
2.2 Cox Process. . . 11
2.3 Specication Tests Using Martingale Properties. . . 16
2.4 The Time-Changed Methods. . . 19
2.5 Simulation Results. . . 21
2.5.1 Five Settings in simulation study. . . 23
2.5.2 Bootstrap and Number of Firms. . . 25
2.6 Conclusion. . . 26
3 Regime Switching Intensity Model 38
3.1 Introduction. . . 38
3.2 Related Literature. . . 42
3.3 Methodology. . . 45
3.3.1 Covariate selection in intensity model. . . 45
3.3.2 Regime-switching intensity model. . . 47
3.4 Empirical analysis. . . 50
3.4.1 Data and covariates selection. . . 50
3.4.2 Is regime-switching eect statistically signicant? . 52
3.4.3 MLEs of various models. . . 54
3.4.4 Default number tting. . . 56
3.4.5 Out-of-sample default prediction performance. . . 58
3.5 Conclusion. . . 59
4 Conclusions 76
5 Bibliography 78
dc.language.isoen
dc.subject縮減式模型zh_TW
dc.subject破產預測zh_TW
dc.subject時間轉換檢定zh_TW
dc.subject平睹過程檢定zh_TW
dc.subject平賭差分過程檢定zh_TW
dc.subject馬可夫轉換模型zh_TW
dc.subject脆弱模型zh_TW
dc.subjecttime-transformed testen
dc.subjectfrailty modelsen
dc.subjectMarkov-switching modelingen
dc.subjectmartingale difference testen
dc.subjectbankruptcy predictionen
dc.subjectreduced-form modelen
dc.subjectmartingale testen
dc.title違約強度模型之計量分析與應用zh_TW
dc.titlePREDICTING DEFAULTS WITH INTENSITY MODELS: METHODS AND EMPIRICAL EVIDENCESen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee俞明德(Min-Teh Yu),莊文議(Wen-I Chuang),徐之強(Chih-Chiang Hsu),葉錦徽(Jin-Huei Yeh)
dc.subject.keyword破產預測,縮減式模型,時間轉換檢定,平睹過程檢定,平賭差分過程檢定,馬可夫轉換模型,脆弱模型,zh_TW
dc.subject.keywordbankruptcy prediction,reduced-form model,time-transformed test,martingale test,martingale difference test,Markov-switching modeling,frailty models,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2012-06-25
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
661.56 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved