請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66054
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 貝蘇章(Soo-Chang Pei) | |
dc.contributor.author | Wen-Hui Chu | en |
dc.contributor.author | 朱文慧 | zh_TW |
dc.date.accessioned | 2021-06-17T00:20:18Z | - |
dc.date.available | 2017-06-29 | |
dc.date.copyright | 2012-06-29 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-06-22 | |
dc.identifier.citation | Chapter 2 Bilateral Filater
C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color Images,” ICCV, pp.836-846, 1998. F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic range images,” ACM Trans. on Graphics, Vol. 21(3), pp. 257V266, 2002. B. M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-based Modeling and Photo Editing,” ACM Siggraph, 2001. A. Buades, B. Coll and J. M. Morel, “A Review of Image Denoising Algorithms, with a New One,” Multiscale Modeling and Simulation, Vol. 4, pp.490-530, 2005. Q. Yang, R. Yang, J. Davis, and D. Nist’er, “Spatial-Depth Super Resolution for Range Images,” CVPR, 2007. W. C. K. Wong, A. C. S. Chung, and S. C. H. Yu, “Trilateral Filtering for Biomedical Images,” International Symposium on Biomedical Imaging, 2004. E. P. Bennett and L. McMillan, “Video Enhancement Using Per-Pixel Virtual Exposures,” Siggraph, 2001. E. P. Bennett, J. L. Mason, and L. McMillan, “Multispectral Bilateral Video Fusion,” Transactions on Image Processin, Vol. 16, pp. 1185-1194, 2007. R. Ramanath and W. E. Snyder, “Adaptive Demosaicking,” Journal of Electronic Imaging, Vol. 12, pp.633-642, 2003. G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama, “Digital Photography with Flash and NO-Flash Image Pairs,” Siggraph, Vol. 23, 2004. J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi, “Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection,” ECCV, 2006. P. Sand and S. Teller, “Particle Video : Long-Range Motion Estimation Using Point Trajectories,” ECCV, 2006. Q. Yang, L. Wang, R. Yang, H. Stew’enius, and D. Nist’er, “Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation and Occlusion Handling,” PAMI, 2008. K.J. Yoon and I.S. Kweon, “Adaptive Support-weight Approach for Correspondence search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006. H. Winnemoller, S. C. Olsen, and B. Gooch, “Real-Time Video Abstraction,” Siggraph, Vol.25, pp. 1221-1226, 2006. Chapter 3 Guided Image Filtering K. He, J. Sun, and X. Tang, “Guided Image Filtering,” ECCV, 2010. Chapter 4 Domain Transform for Edge-Aware Image Processing E. S. L. Gastal and M. M. Oliveira, 'Domain Transform for Edge-Aware Image and Video Processing,' ACM Trans. on Graphics (Siggraph), 2011. R. Kimmel, N.Sochen, and R. Makkadi, “From High Energy Physics to Low Level Vision,” Scale-Space Theory in Computer Vision, Springer-Verlag, 236-247, 1997. H. Knutsson, and C.-F. Westin, “Normalized and Differential Convolution: Methods for Interpolation and Filtering of Incomplete and Uncertain data,” CVPR, 515-523, 1993. E. Dougherty, “Digital Image Processing Method,” CRC Press, 1994. Chapter 5 Image smoothing via L_0 gradient minimization L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L_0 gradient minimization,” ACM Trans Graph 30(6):174, 2011 Chapter 6 Experimental Results Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation”, ACM Transactions on Graphics (TOG), 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66054 | - |
dc.description.abstract | 在過去十年,強化彩色影像一直是一個受歡迎的主題,而它的目標為改善原始影像之視覺品質。由於濾波器在影像處理被認為是最重要的運算,因此我們使用濾波器去實現這個應用,特別是能將邊際保留的模糊濾波器,它們對一些應用而言都十分重要。我們使用四種不同的邊際保留模糊濾波器,利用它們得到被模糊但還保有邊際的基礎層。而它們分別為雙向濾波器、嚮導濾波器、使用區域轉換的濾波器和L_0模糊濾波器,利用這些濾波器所產生的基礎層可計算出細節層,我們對基礎層和細節層做處理,以達到彩色影像強化的效果。
一張相片包含很多視覺的資訊,在人類的視覺感知裡,邊際對於神經感測到一個畫面的解釋而言是相當重要的一環。因此利用將基礎層和細節層分開,能區隔一張相片之邊際和細節部分,進行運算時才不會被同步處理和互相影響。 在這篇論文中,我們會一一介紹四種邊際保留模糊濾波器的理論和利用它們實做彩色影像強化,而在最後會對四種濾波器的結果做比較。 | zh_TW |
dc.description.abstract | In the past decades, color image enhancement has been a popular topic, and whose goal is to improve the visual quality of the original image. We use filters to implement the application because of filtering is arguably the most important operation in image processing. Particularly, edge-preserving smoothing filters are a fundamental building block for several applications. We utilize four kinds of edge-preserving smoothing filters to obtain the base layers, which are blurred but still retain their edges. They are bilateral filter, guided filter, filters based on domain transform, and L_0 smoothing filter. Using base layers to produce detail layers, and enhancing images by processing base layers and detail layers.
Photos contain well-structured visual information. In human visual perception, edges are vital for neural interpretation to make the sense of the scene. We decompose base layer and detail layer, and separate edges and details. Therefore, we can process them independently and do not have effect to each other. In this thesis, we introduce the four kinds of edge-preserving smoothing filters and implement color images enhancement based on them. In the end, we compare the experimental results of the four filters. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:20:18Z (GMT). No. of bitstreams: 1 ntu-101-R99942135-1.pdf: 4132410 bytes, checksum: acc7c8b36513f88c681b9c85e888f5ea (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiii Chapter 1 Introduction 1 Chapter 2 Bilateral Filter 3 2.1 Introduction 3 2.1.1 Definition 4 2.2 Base Layer and Detail Layer 4 2.3 Application of Image Enhancement 8 Chapter 3 Guided Image Filtering 13 3.1 Introduction 13 3.1.1 Definition 13 3.2 Base Layer and Detail Layer 16 3.3 Application of Image Enhancement 21 Chapter 4 Domain Transform for Edge-Aware Image Processing 25 4.1 Introduction 25 4.1.1 Definition 25 4.2 Base Layer and Detail Layer 36 4.3 Application of Image Enhancement 41 Chapter 5 Image Smoothing via L0 Grandient Minimization 45 5.1 Introduction 45 5.1.1 Definition 45 5.2 Base Layer and Detail Layer 49 5.3 Application of Image Enhancement 53 Chapter 6 Experimental Results 55 6.1 The Intensity of Base Layers 55 6.2 Image Enhancement 58 6.3 Conlusions 61 Chapter 7 Conclusions and Feature Work 63 7.1 Conclusions 63 7.2 Feature Work 64 REFERENCE 67 | |
dc.language.iso | en | |
dc.title | 利用基礎層和細節層的濾波器分解實現彩色影像增強 | zh_TW |
dc.title | Color Image Enhancement based on Base and Detail Layers Decomposition by Several Filters | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 杭學鳴(Hsueh-Ming Hang),鍾國亮(Chung-Kuo Liang) | |
dc.subject.keyword | 保留邊界濾波器,基礎層,細節層,影像增強, | zh_TW |
dc.subject.keyword | Edge-preserving filter,base layer,detail layer,image enhancement, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-06-25 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。