請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66050完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭智馨(Chih-Hsin Cheng) | |
| dc.contributor.author | Yu-Hsuan Huang | en |
| dc.contributor.author | 黃于軒 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:20:11Z | - |
| dc.date.available | 2012-07-02 | |
| dc.date.copyright | 2012-07-02 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-24 | |
| dc.identifier.citation | Abraham, W.R., Hesse, C., Pelz, O., 1998. Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Applied and Environmental Microbiology 64, 4202-4209.
Amiro, B.D., Todd, J.B., Wotton, B.M., Logan, K.A., Flannigan, M.D., Stocks, B.J., Mason, J.A., Martell, D.L., Hirsch, K.G., 2001. Direct carbon emissions from canadian forest fires, 1959-1999. Canadian Journal of Forest Research 31, 512-525. Bååth, E., Anderson, T.H., 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35, 955-963. Belsky, A.J., Amundson, R.G., Duxbury, J.M., Riha, S.J., Ali, A.R., Mwonga, S.M., 1989. The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology 26, 1005-1024. Benner, R., Fogel, M.L., Sprague, E.K., Hodson, R.E., 1987. Depletion of C in lignin and its implications for stable carbon isotope studies. Nature 329, 708-710. Beringer, J., Hutley, L.B., Tapper, N.J., Cernusak, L.A., 2007. Savanna fires and their impact on net ecosystem productivity in North Australia. Global Change Biology 13, 990-1004. Bird, M., Santrùcková, H., Lloyd, J., Lawson, E., 2002. The isotopic composition of soil organic carbon on a north-south transect in western Canada. European Journal of Soil Science 53, 393-403. Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., Kuzyakov, Y., 2011. Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization. Soil Biology and Biochemistry 43, 159-166. Bond-Lamberty, B., Wang, C., Gower, S.T., 2004. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology 10, 473-487. Boschker, H.T.S., De Brouwer, J.F.C., Cappenberg, T.E., 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: Stable carbon isotope analysis of microbial biomarkers. Limnology and Oceanography 44, 309-319. Bossio, D.A., Scow, K.M., 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology 35, 265-278. Brady, N.C., Weil, R.R., 2008. The nature and Properties of soils. In. Pearson Education, USA, p. 597. Brooks, M.L., D'Antonio, C.M., Richardson, D.M., Grace, J.B., Keeley, J.E., DiTomaso, J.M., Hobbs, R.J., Pellant, M., Pyke, D., 2004. Effects of invasive alien plants on fire regimes. BioScience 54, 677-688. Certini, G., 2005. Effects of fire on properties of forest soils: A review. Oecologia 143, 1-10. Chang, E.H., Chen, C.T., Chen, T.H., Chiu, C.Y., 2011. Soil microbial communities and activities in sand dunes of subtropical coastal forests. Applied Soil Ecology 49, 256-262. Chen, T., Chiu, C., Tian, G., 2005. Seasonal dynamics of soil microbial biomass in coastal sand dune forest. Pedobiologia 49, 645-653. Chen, X., Hutley, L.B., Eamus, D., 2003. Carbon balance of a tropical savanna of northern Australia. Oecologia 137, 405-416. Chiang, P., 2004. Changes in the grassland-forest boundary at Ta-Ta-Chia long term ecological research (LTER) site detected by stable isotope ratios of soil organic matter. Chemosphere 54, 217-224. Chung, H., Zak, D.R., Reich, P.B., 2009. Microbial assimilation of new photosynthate is altered by plant species richness and nitrogen deposition. Biogeochemistry 94, 233-242. Clark, D.A., Brown, S., Kicklighter, D.W., Chambers, J.Q., Thomlinson, J.R., Ni, J., 2001. Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11, 356-370. Coyle, J.S., Dijkstra, P., Doucett, R.R., Schwartz, E., Hart, S.C., Hungate, B.A., 2009. Relationships between C and N availability, substrate age, and natural abundance 13C and 15N signatures of soil microbial biomass in a semiarid climate. Soil Biology and Biochemistry 41, 1605-1611. Cropper, W.P.J., Gholz, H.L., 1994. Evaluating potential response mechanisms of a forest stand to fertilization and night temperature: a case study using Pinus elliottii. Ecoligical Bulletins 43, 154-160. Curtis, P.S., Hanson, P.J., Bolstad, P., Barford, C., Randolph, J.C., Schmid, H.P., Wilson, K.B., 2002. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology 113, 3-19. D'Antonio, C.M., Vitousek, P.M., 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23, 63-87. Davidson, E.A., Verchot, L.V., Henrique Cattânio, J., Ackerman, I.L., Carvalho, J.E.M., 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48, 53-69. Devi, N., Yadava, P., 2006. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology 31, 220-227. Dijkstra, P., Ishizu, A., Doucett, R., Hart, S.C., Schwartz, E., Menyailo, O.V., Hungate, B.A., 2006. 13C and 15N natural abundance of the soil microbial biomass. Soil Biology and Biochemistry 38, 3257-3266. Donato, D.C., Campbell, J.L., Fontaine, J.B., Law, B.E., 2009. Quantifying char in postfire woody detritus inventories. Fire Ecology 5, 104-115. Dooley, S.R., Treseder, K.K., 2011. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry, 1-13. Dore, S., Kolb, T.E., Montes-Helu, M., Sullivan, B.W., Winslow, W.D., Hart, S.C., Kaye, J.P., Koch, G.W., Hungate, B.A., 2008. Long-term impact of a stand-replacing fire on ecosystem CO2 exchange of a ponderosa pine forest. Global Change Biology 14, 1801-1820. Fontúrbel, M.T., Barreiro, A., Vega, J.A., Martín, A., Jiménez, E., Carballas, T., Fernández, C., Díaz-Raviña, M., 2012. Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma. Giovannini, G., Lucchesi, S., Giachetti, M., 1990. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Science 149, 344-350. Girardin, C.A.J., Malhi, Y., Aragão, L.E.O.C., Mamani, M., Huaraca Huasco, W., Durand, L., Feeley, K.J., Rapp, J., Silva-Espejo, J.E., Silman, M., Salinas, N., Whittaker, R.J., 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16, 3176-3192. Glaser, B., 2005. Compound-specific stable-isotope (δ13C) analysis in soil science. Journal of Plant Nutrition and Soil Science 168, 633-648. Gower, S.T., Pongracic, S., Landsberg, J.J., 1996. A global trend in belowground carbon allocation: Can we use the relationship at smaller scales? Ecology 77, 1750-1755. Grace, J., José, J.S., Meir, P., Miranda, H.S., Montes, R.A., 2006. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography 33, 387-400. Habekost, M., Eisenhauer, N., Scheu, S., Steinbeiss, S., Weigelt, A., Gleixner, G., 2008. Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biology and Biochemistry 40, 2588-2595. Hamman, S., Burke, I., Stromberger, M., 2007. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biology and Biochemistry 39, 1703-1711. Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115-146. Harden, J.W., Trumbore, S.E., Stocks, B.J., Hirsch, A., Gower, S.T., O'Neill, K.P., Kasischke, E.S., 2000. The role of fire in the boreal carbon budget. Global Change Biology 6, 174-184. He, Z.L., Wu, J., O'Donnell, A.G., Syers, J.K., 1997. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils 24, 421-428. Hebel, C.L., Smith, J.E., Cromack Jr, K., 2009. Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon. Applied Soil Ecology 42, 150-159. Hill, G.T., Mitkowski, N.A., Aldrich-Wolfe, L., Emele, L.R., Jurkonie, D.D., Ficke, A., Maldonado-Ramirez, S., Lynch, S.T., Nelson, E.B., 2000. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology 15, 25-36. Holdo, R.M., Mack, M.C., Arnold, S.G., 2012. Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem. Journal of Vegetation Science 23, 352-360. House, J.I., Archer, S., Breshears, D.D., Scholes, R.J., Coughenour, M.B., Dodd, M.B., Gignoux, J., Hall, D.O., Hanan, N.P., Joffre, R., Le Roux, X., Ludwig, J.A., Menaut, J.C., Montes, R., Parton, W.J., San Jose, J.J., Scanlan, J.C., Scurlock, J.M.O., Simioni, G., Thorrold, B., 2003. Conundrums in mixed woody-herbaceous plant systems. Journal of Biogeography 30, 1763-1777. IPCC, 2006. IPCC guides for national greenhouse gases inventories. Cambride University Press, Cambridge, UK. Irvine, J., Law, B.E., Hibbard, K.A., 2007. Postfire carbon pools and fluxes in semiarid ponderosa pine in Central Oregon. Global Change Biology 13, 1748-1760. Jackson, R.B., Mooney, H.A., Schulze, E.D., 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America 94, 7362-7366. Kaur, A., Chaudhary, A., Choudhary, R., Kaushik, R., 2005. Phospholipid fatty acid - A bioindicator of environment monitoring and assessment in soil ecosystem. Current Science 89, 1103-1112. Khanna, P.K., Raison, R.J., 1986. Effect of fire intensity on solution chemistry of surface soil under a Eucalyptus pauciflora forest. Australian Journal of Soil Research 24, 423-434. Kirchmann, H., Eklund, M., 1994. Microbial biomass in a savanna-woodland and an adjacent arable soil profile in Zimbabwe. Soil Biology and Biochemistry 26, 1281-1283. Kutiel, P., Naveh, Z., 1987. The effect of fire on nutrients in a pine forest soil. Plant and Soil 104, 269-274. Lü, A.F., Tian, H.Q., Liu, Y.Q., 2005. State-of-the-art in quantifying fire disturbance and ecosystem carbon cycle. Acta Ecologica Sinica 25, 2734-2743. Law, B.E., Thornton, P.E., Irvine, J., Anthoni, P.M., Van Tuyl, S., 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology 7, 755-777. Liao, J., Boutton, T., 2008. Soil microbial biomass response to woody plant invasion of grassland. Soil Biology and Biochemistry 40, 1207-1216. Lin, K.C., Duh, C.T., Huang, C.M., 2007. Estimate of Carbon and Nitrogen Storages and Production of Acacia Confusa and Aleurites Montana Plantations in Miaoli Area. Quarterly Jounal of Chinese Forestry 40, 201-218. (in Chinese) Liqing, S., Jiwu, D., Kejin, X., Ying, M., 1998. Study on the Change of Soil Nutrient Before and After Burning Secondary Forest in Xishuangbanna. Chinese Journal of Plant Ecology 22, 513-517. Litton, C.M., Sandquist, D.R., Cordell, S., 2008. A non-native invasive grass increases soil carbon flux in a Hawaiian tropical dry forest. Global Change Biology 14, 726-739. Maithani, K., Tripathi, R.S., Arunachalam, A., Pandey, H.N., 1996. Seasonal dynamics of microbial biomass C, N and P during regrowth of a disturbed subtropical humid forest in north-east India. Applied Soil Ecology 4, 31-37. Malkisnon, D., Wittenberg, L., Beeri, O., Barzilai, R., 2011. Effects of Repeated Fires on the Structure, Composition, and Dynamics of Mediterranean Maquis: Short- and Long-Term Perspectives. Ecosystems 14, 478-488. Masocha, M., Skidmore, A.K., Poshiwa, X., Prins, H.H.T., 2010. Frequent burning promotes invasions of alien plants into a mesic African savanna. Biological Invasions 13, 1641-1648. McIntosh, P.D., Laffan, M.D., Hewitt, A.E., 2005. The role of fire and nutrient loss in the genesis of the forest soils of Tasmania and southern New Zealand. Forest Ecology and Management 220, 185-215. Meigs, G.W., Donato, D.C., Campbell, J.L., Martin, J.G., Law, B.E., 2009. Forest Fire Impacts on Carbon Uptake, Storage, and Emission: The Role of Burn Severity in the Eastern Cascades, Oregon. Ecosystems 12, 1246-1267. Michelsen, A., 2004. Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biology and Biochemistry 36, 1707-1717. Moore-Kucera, J., Dick, R.P., 2007. PLFA Profiling of Microbial Community Structure and Seasonal Shifts in Soils of a Douglas-fir Chronosequence. Microbial Ecology 55, 500-511. Nadelhoffer, K.J., Raich, J.W., 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139-1147. Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management 122, 51-71. Ostonen, I., Lohmus, K., Pajuste, K., 2005. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods. Forest Ecology and Management 212, 264-277. Patel, K., Nirmal Kumar, J.I., N Kumar, R., Kumar Bhoi, R., 2010. Seasonal and temporal variation in soil microbial biomass C, N and P in different types land uses of dry deciduous forest ecosystem of Udaipur, Rajasthan, Western India. Applied Ecology and Environmental Research 8, 377-390. Pelz, O., Abraham, W.-R., Saurer, M., Siegwolf, R., Zeyer, J., 2005. Microbial assimilation of plant-derived carbon in soil traced by isotope analysis. Biology and Fertility of Soils 41, 153-162. Persson, H., 1980. Fine-root production, mortality and decomposition in forest ecosystems. Vegetatio 41, 101-109. Persson, H.A., 1983. The distribution and productivity of fine roots in boreal forests. Plant and Soil 71, 87-101. Piao, H., Zhu, J., Liu, G., Liu, C., Tao, F., 2006. Changes of natural 13C abundance in microbial biomass during litter decomposition. Applied Soil Ecology 33, 3-9. Potthoff, M., 2003. The determination of δ13C in soil microbial biomass using fumigation-extraction. Soil Biology and Biochemistry 35, 947-954. Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, Series B 44 B, 81-99. Reich, P.B., Peterson, D.W., Wedin, D.A., Wrage, K., 2001. Fire and vegetation effects on production and nitrogen cycling across a forest grassland continuum. Ecology 82, 1703-1719. Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Dane Panetta, F., West, C.J., 2000. Naturalization and invasion of alien plants: Concepts and definitions. Diversity and Distributions 6, 93-107. Robertson, F.A., Myers, R.J.K., Saffigna, P.G., 1995. Respiration from soil and litter in a sown perennial grass pasture. Australian Journal of Soil Research 33, 167-178. San Jose, J.J., Montes, R.A., Fariñas, M.R., 1998. Carbon stocks and fluxes in a temporal scaling from a savanna to a semi-deciduous forest. Forest Ecology and Management 105, 251-262. Šantrůčková, H., Bird, M.I., Lloyd, J., 2000. Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Functional Ecology 14, 108-114. Schaeffer, S.M., Ziegler, S.E., Belnap, J., Evans, R.D., 2011. Effects of Bromus tectorum invasion on microbial carbon and nitrogen cycling in two adjacent undisturbed arid grassland communities. Biogeochemistry, 1-15. Scholes, R.J., Archer, S.R., 1997. Tree-grass interactions in Savannas. Annual Review of Ecology and Systematics 28, 517-544. Scholze, M., 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences 103, 13116-13120. Scurlock, J.M.O., K.Johnson, Olson, R.J., 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology 8, 736-753. Seiler, W., Crutzen, P.J., 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change 2, 207-247. Singh, R.S., Srivastava, S.C., Raghubanshi, A.S., Singh, J.S., Singh, S.P., 1991. Microbial C, N and P in dry tropical savanna: effects of burning and grazing. Journal of Applied Ecology 28, 869-878. Solomon, D., Fritzsche, F., Lehmann A, J., Tekalign, M., Zech, W., 2002. Soil organic matter dynamics in the subhumid agroecosystems of the Ethiopian highlands: Evidence from natural 13C abundance and particle-size fractionation. Soil Science Society of America Journal 66, 969-978. Staddon, P.L., 2004. Carbon isotopes in functional soil ecology. Trends in Ecology & Evolution 19, 148-154. Subke, J.-A., Inglima, I., Francesca Cotrufo, M., 2006. Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review. Global Change Biology 12, 921-943. Thomas, A.D., Walsh, R.P.D., Shakesby, R.A., 1999. Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet Mediterranean environment of northern Portugal. Catena 36, 283-302. Tomkins, I.B., Kellas, J.D., Tolhurst, K.G., Oswin, D.A., 1991. Effects of fire intensity on soil chemistry in a eucalypt forest. Australian Journal of Soil Research 29, 25-47. Tsai, H., Hseu, Z.Y., Huang, S.T., Huang, W.S., Chen, Z.S., 2010. Pedogenic properties of surface deposits used as evidence for the type of landform formation of the Tadu tableland in central Taiwan. Geomorphology 114, 590-600. Van Der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S., Arellano Jr, A.F., 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics 6, 3423-3441. Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19, 703-707. Vogt, K.A., Vogt, D.J., Bloomfield, J., 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil 200, 71-89. Waldrop, M.P., Harden, J.W., 2008. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Global Change Biology 14, 2591-2602. Wang, C.-P., Liu, M.-C., Lin, K.-C., Wang, L.-J., 2003. Effects of Fire and Vegetation Types on Soil Temperature and Chemistry at Chihsing Mountain, Taiwan. Taiwan Journal of Forest Science 18, 43-54. Werf, G.R.v., Randerson, J.T., Collatz, G.J., Giglios, L., 2003. Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology. Werth, M., Kuzyakov, Y., 2010. 13C fractionation at the root–microorganisms–soil interface: A review and outlook for partitioning studies. Soil Biology and Biochemistry 42, 1372-1384. Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W., 2006. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313, 940-943. Whisenant, S.G., 1990. Changing fire frequencies on Idaho's Snake River Plains: ecological and management implications. General Technical Report - US Department of Agriculture, Forest Service, 4-10. Williams, R.J., Hallgren, S.W., Wilson, G.W.T., 2012. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. Forest Ecology and Management 265, 241-247. Williams, R.J., Hutley, L.B., Cook, G.D., Russell-Smith, J., Edwards, A., Chen, X., 2004. Assessing the carbon sequestration potential of mesic savannas in the Northern Territory, Australia: Approaches, uncertainties and potential impacts of fire. Functional Plant Biology 31, 415-422. Wu, Y.T., Gutknecht, J., Nadrowski, K., Geißler, C., Kühn, P., Scholten, T., Both, S., Erfmeier, A., Böhnke, M., Bruelheide, H., Wubet, T., Buscot, F., 2012. Relationships Between Soil Microorganisms, Plant Communities, and Soil Characteristics in Chinese Subtropical Forests. Ecosystems, 1-13. Wynn, J.G., Bird, M.I., 2007. C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Global Change Biology 13, 2206-2217. Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmospheric Environment 34, 1641-1653. Yao, H., He, Z., Wilson, M.J., Campbell, C.D., 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology 40, 223-237. Yuan, Z.Y., Chen, H.Y.H., 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Critical Reviews in Plant Sciences 29, 204-221. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66050 | - |
| dc.description.abstract | 火燒是造成陸域生態系儲存碳量釋放最大的原因之一,近年來隨著全球氣候變遷,高溫及長期乾旱使森林火燒的強度、面積、及頻率皆更為加劇。一般而言,火燒頻率增加常伴隨著草類的入侵,而這些入侵草類在雨季萌發、乾季死亡並成為下一次火燒的燃料來源。如此正向回饋循環機制的結果,導致重複性火燒 (repeated fire) 的發生。台灣中部的大肚山台地保安林,原有植被為相思樹 (Acacia confusa),但因大黍 (Panicum maximum) 入侵引起的重複火燒,並造成相思樹死亡,導致現有植群生態隨火燒次數不同大致可分為:(1)未發生火燒之相思樹林 (AC)、(2)大黍已入侵地被植物但仍未明顯受火燒的相思樹林 (IV)、(3)經一次或兩次火燒後殘存相思樹枯立木的草原 (SD) 以及(4)長期處在高火燒頻率的草生地 (GR)。我們以大肚山台地為例,探討高頻率火燒對淨初級生產量 (net primary production, NPP)、淨生態系生產量 (net ecosystem production, NEP)、土壤微生物量及族群的影響。研究結果顯示,重複性火燒明顯造成生態系統NPP的下降,SD與GR樣區之NPP僅為原有森林NPP的64%與30%,且NEP皆呈現負值 (-3.16及-4.76 Mg C ha-1 yr-1),屬碳排放狀態,其中又以發生火燒次數最多之GR樣區的NEP最低,顯示高頻率火燒對碳循環帶來顯著的負向影響。另外,火燒也嚴重影響了土壤微生物,SD和GR微生物族群結構明顯與AC、IV不同,呈現AC與IV、SD、GR等三類分布差異。重複性火燒不僅造成GR微生物生物碳量最低,而且是唯一微生物族群的養分來源分配比例明顯呈現季節差異的樣區,這再次證明了多次重覆火燒是造成微生物差異的重要關鍵。 | zh_TW |
| dc.description.abstract | Fire is one of the most important factors that reduce terrestrial carbon stocks. Recently, the global climate change results in higher temperature and long-term drought, which increase the intensity, burning area, and frequency of forest fire. In general, rising fire frequency would promote the grass encroachment. The invaded grasses sprout quickly in rainy season and become fuels at the next fire event. This grass-fire positive feedback cycle usually leads to repeated fire. Take the protection forest at Dadu tableland in Taichung for example. The original dominate vegetation there was Acacia confuse. The repeated fire caused tree mortality and induced the invasion of the pioneer grasses such as Panicum maximum. Passing through about 30 years repeated fire, the vegetation type of Dadu tableland includes: (1) unburned forest (Acacia confuse, AC) (2) grass invaded forest (IV) (3) standing dead with grass (SD) (4) grassland (GR). We studied how the high-frequency repeated fire influences net primary production (NPP), net ecosystem production (NEP), soil microbial biomass, and microbial community. The results suggested that NPP and NEP were higher at AC and IV, and both NPP and NEP decreased significantly due to fire. The SD and GR sites only remained 64% and 30% NPP of original forest respectively, and became carbon source (NEP were -3.16 and -4.76 Mg C ha-1 yr-1, respectively). These data indicated that repeated fire has a quiet negative impact on carbon cycle. Besides, fire also influenced soil microorganism obviously. Principal component analysis (PCA) separated the microbial communities by times of fire (GR; SD; AC and IV). Microbial biomass carbon of GR, the site being burned most of times, was significant lowest. In addition, GR was the only site that showed seasonal fluctuation in C3 and C4 plant contribution to microbe. Therefore, we considered that the high-frequency repeated fire certainly plays a key role in microorganisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:20:11Z (GMT). No. of bitstreams: 1 ntu-101-R98625021-1.pdf: 3940897 bytes, checksum: e0d021c73b5d98bbdac70740303c3267 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii 目錄 iv 圖目錄 vi 表目錄 viii Chapter 1 重複性火燒對淨初級生產量及土壤呼吸的影響 1 1.1 前言 1 1.2 材料與方法 3 1.2.1 研究樣區 3 1.2.2 淨初級生產量 (NPP) 4 1.2.3 C3與C4植物對NPP的貢獻比例 6 1.2.4 土壤呼吸 (soil respiration) 6 1.2.5 淨生態系生產量 (NEP) 7 1.2.6 統計分析 8 1.3 結果 9 1.3.1 淨初級生產量 9 1.3.2 C3與C4植物對NPP的貢獻比例 9 1.3.3 土壤呼吸 10 1.3.4 淨生態系生產量 10 1.4 討論 11 1.4.1 淨初級生產量 11 1.4.2 C3與C4植物對NPP的貢獻比例 13 1.4.3 土壤呼吸與淨生態系生產量 14 1.4.4 NPP與NEP和其它火燒地區的比較 15 1.5 結論 16 Chapter 2 重複性火燒對土壤微生物的影響 26 2.1 前言 26 2.2 材料與方法 28 2.2.1 野外採集 28 2.2.2 土壤基本性質分析 28 2.2.3 土壤生物性質分析 29 微生物生物量碳及δ13CMB 29 土壤微生物族群 (磷脂質脂肪酸萃取) 及δ13CPLFA 29 C3與C4植物對土壤微生物養分的貢獻比例 31 2.2.4 統計分析 31 2.3 結果 33 2.3.1 微生物生物量碳 33 2.3.2 微生物生物量碳δ13C 33 2.3.3 PLFA 34 2.3.4 PLFA δ13C 34 2.4 討論 36 2.4.1 微生物生物量碳比較及季節變化 36 2.4.2 微生物生物量碳δ13C比較及季節變化 37 2.4.3 火燒影響下微生物族群的變動及季節變化 39 2.4.4 微生物族群養分來源分配的變動及季節變化 41 2.5 結論 42 參考文獻 53 附錄 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 淨初級生產量 | zh_TW |
| dc.subject | 穩定碳同位素 | zh_TW |
| dc.subject | 磷脂質脂肪酸 | zh_TW |
| dc.subject | 微生物生物量 | zh_TW |
| dc.subject | 草類入侵 | zh_TW |
| dc.subject | 重複性火燒 | zh_TW |
| dc.subject | 土壤呼吸 | zh_TW |
| dc.subject | 淨生態系生產量 | zh_TW |
| dc.subject | PLFA | en |
| dc.subject | grass invasion | en |
| dc.subject | net primary productivity (NPP) | en |
| dc.subject | net ecosystem production (NEP) | en |
| dc.subject | soil respiration | en |
| dc.subject | microbial biomass | en |
| dc.subject | repeated fire | en |
| dc.subject | stable isotope ratio | en |
| dc.title | 重複性火燒對淨初級生產量、土壤呼吸及土壤微生物的影響 | zh_TW |
| dc.title | Repeated Fires Effects on Net Primary Production, Soil Respiration, and Soil Microorganisms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 久米朋宣(Tomonori Kume),陳建德(Chien-Ten Chen) | |
| dc.subject.keyword | 重複性火燒,草類入侵,淨初級生產量,淨生態系生產量,土壤呼吸,微生物生物量,磷脂質脂肪酸,穩定碳同位素, | zh_TW |
| dc.subject.keyword | repeated fire,grass invasion,net primary productivity (NPP),net ecosystem production (NEP),soil respiration,microbial biomass,PLFA,stable isotope ratio, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
