Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66046
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥彬
dc.contributor.authorTsai-Hua Chungen
dc.contributor.author鍾采樺zh_TW
dc.date.accessioned2021-06-17T00:20:05Z-
dc.date.available2016-09-17
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-06-25
dc.identifier.citation[1] Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, Frank JA. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005;105 (1):420-5.
[2] Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 2005;80 (2):182-90.
[3] Bulte JW, Duncan ID, Frank JA. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 2002;22 (8):899-907.
[4] Bulte JW, Douglas T, Witwer B, Zhang SC, Lewis BK, van Gelderen P, Zywicke H, Duncan ID, Frank JA. Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents. Acad Radiol 2002;9 Suppl 2:S332-5.
[5] Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17 (7):484-99.
[6] Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 2003;108 (8):1009-14.
[7] Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001;19 (12):1141-7.
[8] Jendelova P, Herynek V, DeCroos J, Glogarova K, Andersson B, Hajek M, Sykova E. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 2003;50 (4):767-76.
[9] Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, Bryja V, Burian M, Hajek M, Sykova E. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 2004;76 (2):232-43.
[10] Ju S, Teng G, Zhang Y, Ma M, Chen F, Ni Y. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn Reson Imaging 2006;24 (5):611-7.
[11] Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000;18 (4):410-4.
[12] Daldrup-Link HE, Rudelius M, Oostendorp RA, Settles M, Piontek G, Metz S, Rosenbrock H, Keller U, Heinzmann U, Rummeny EJ, Schlegel J, Link TM. Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 2003;228 (3):760-7.
[13] Daldrup-Link HE, Rudelius M, Piontek G, Metz S, Brauer R, Debus G, Corot C, Schlegel J, Link TM, Peschel C, Rummeny EJ, Oostendorp RA. Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 2005;234 (1):197-205.
[14] Hsieh SC, Wang FF, Lin CS, Chen YJ, Hung SC, Wang YJ. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials 2006;27 (8):1656-64.
[15] Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 2004;17 (7):513-7.
[16] Arbab AS, Liu W, Frank JA. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 2006;3 (4):427-39.
[17] Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, Wang SW, Yang CS. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009;30 (22):3645-51.
[18] Chen YC, Hsiao JK, Liu HM, Lai IY, Yao M, Hsu SC, Ko BS, Chen YC, Yang CS, Huang DM. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicology and Applied Pharmacology 2010;245 (2):272-9.
[19] Chien LY, Hsiao JK, Hsu SC, Yao M, Lu CW, Liu HM, Chen YC, Yang CS, Huang DM. In vivo magnetic resonance imaging of cell tropsim, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials 2011;32 (12):3275-84.
[20] Chang DK, Chiu CY, Kuo SY, Lin WC, Lo A, Wang YP, Li PC, Wu HC. Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors. J Biol Chem 2009;284 (19):12905-16.
[21] Reddy LH, Murthy RS. Pharmacokinetics and biodistribution studies of Doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles synthesized by two different techniques. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2004;148 (2):161-6.
[22] Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 2002;8 (4):1172-81.
[23] Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 2005;65 (19):8984-92.
[24] Schluep T, Hwang J, Hildebrandt IJ, Czernin J, Choi CH, Alabi CA, Mack BC, Davis ME. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc Natl Acad Sci U S A 2009;106 (27):11394-9.
[25] Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 2009;30 (10):1928-36.
[26] Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 2007;104 (39):15549-54.
[27] Kaiser CR, Flenniken ML, Gillitzer E, Harmsen AL, Harmsen AG, Jutila MA, Douglas T, Young MJ. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int J Nanomedicine 2007;2 (4):715-33.
[28] Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008;68 (16):6652-60.
[29] Santra S, Kaittanis C, Grimm J, Perez JM. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009;5 (16):1862-8.
[30] Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A. Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 2008;30 (3):121-7.
[31] Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 2000;97 (23):12846-51.
[32] Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 2004;101 (52):18117-22.
[33] Chien LY, Hsiao JK, Hsu SC, Yao M, Lu CW, Liu HM, Chen YC, Yang CS, Huang DM. In vivo magnetic resonance imaging of cell tropism, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials;32 (12):3275-84.
[34] Schmidt NO, Przylecki W, Yang W, Ziu M, Teng Y, Kim SU, Black PM, Aboody KS, Carroll RS. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 2005;7 (6):623-9.
[35] Widera D, Holtkamp W, Entschladen F, Niggemann B, Zanker K, Kaltschmidt B, Kaltschmidt C. MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol 2004;83 (8):381-7.
[36] Palumbo R, Bianchi ME. High mobility group box 1 protein, a cue for stem cell recruitment. Biochem Pharmacol 2004;68 (6):1165-70.
[37] Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, Bianchi ME. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol 2007;179 (1):33-40.
[38] Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003;9 (6):702-12.
[39] Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006;24 (5):1254-64.
[40] Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, Mills M, Wanzeck J, Janowska-Wieczorek A, Ratajczak MZ. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 2005;105 (1):40-8.
[41] Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 2007;109 (9):4055-63.
[42] Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PM, Carroll RS. Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol 2006;79 (2):125-33.
[43] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284 (5411):143-7.
[44] Colombo P, Bettini R, Peracchia MT, Santi P. Controlled release dosage forms: from ground to space. Eur J Drug Metab Pharmacokinet 1996;21 (2):87-91.
[45] Gopin A, Pessah N, Shamis M, Rader C, Shabat D. A chemical adaptor system designed to link a tumor-targeting device with a prodrug and an enzymatic trigger. Angew Chem Int Ed Engl 2003;42 (3):327-32.
[46] Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, Smith A, Illum L. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res 2002;19 (7):998-1008.
[47] Cascone MG, Lazzeri L, Carmignani C, Zhu Z. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med 2002;13 (5):523-6.
[48] Borm PJ, Muller-Schulte D. Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomed 2006;1 (2):235-49.
[49] Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49 (18):N309-15.
[50] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26 (18):3995-4021.
[51] Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 2006;103 (16):6315-20.
[52] Abdulla-Al-Mamun M, Kusumoto Y, Zannat T, Islam MS. Synergistic cell-killing by photocatalytic and plasmonic photothermal effects of Ag@TiO2 core shell composite nanoclusters against human epithelial carcinoma (HeLa) cells. Applied Catalysis a-General 2011;398 (1-2):134-42.
[53] Linsebigler AL, Lu GQ, Yates JT. Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews 1995;95 (3):735-58.
[54] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009;38 (1):253-78.
[55] Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 2008;3 (3):311-21.
[56] Chen YC, Hsiao JK, Liu HM, Lai IY, Yao M, Hsu SC, Ko BS, Yang CS, Huang DM. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol;245 (2):272-9.
[57] Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, Wang SW, Yang CS, Chen YC. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009;30 (22):3645-51.
[58] Roth JC, Curiel DT, Pereboeva L. Cell vehicle targeting strategies. Gene Ther 2008;15 (10):716-29.
[59] Murphy JE, Rheinwald JG. Intraperitoneal injection of genetically modified, human mesothelial cells for systemic gene therapy. Hum Gene Ther 1997;8 (16):1867-79.
[60] Naffakh N, Henri A, Villeval JL, Rouyer-Fessard P, Moullier P, Blumenfeld N, Danos O, Vainchenker W, Heard JM, Beuzard Y. Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts. Proc Natl Acad Sci U S A 1995;92 (8):3194-8.
[61] Bachoud-Levi AC, Deglon N, Nguyen JP, Bloch J, Bourdet C, Winkel L, Remy P, Goddard M, Lefaucheur JP, Brugieres P, Baudic S, Cesaro P, Peschanski M, Aebischer P. Neuroprotective gene therapy for Huntington's disease using a polymer encapsulated BHK cell line engineered to secrete human CNTF. Hum Gene Ther 2000;11 (12):1723-9.
[62] Ishida A, Yasuzumi F. Approach to ex vivo gene therapy in the treatment of Parkinson's disease. Brain Dev 2000;22 Suppl 1:S143-7.
[63] Wang H, Thompson TC. Gene-modified bone marrow cell therapy for prostate cancer. Gene Ther 2008;15 (10):787-96.
[64] Picinich SC, Mishra PJ, Glod J, Banerjee D. The therapeutic potential of mesenchymal stem cells. Cell- & tissue-based therapy. Expert Opin Biol Ther 2007;7 (7):965-73.
[65] Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65 (8):3307-18.
[66] Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62 (13):3603-8.
[67] Elzaouk L, Moelling K, Pavlovic J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 2006;15 (11):865-74.
[68] Duan HL, Shen ZQ, Wang XW, Chao FH, Li JW. Preparation of immunomagnetic iron-dextran nanoparticles and application in rapid isolation of E.coli O157:H7 from foods. World J Gastroenterol 2005;11 (24):3660-4.
[69] Chung TH, Hsiao JK, Hsu SC, Yao M, Chen YC, Wang SW, Kuo MYP, Yang CS, Huang DM. Iron Oxide Nanoparticle-Induced Epidermal Growth Factor Receptor Expression in Human Stem Cells for Tumor Therapy. ACS Nano 2011;5 (12):9807-16.
[70] Gensini GF, Conti AA, Lippi D. The contributions of Paul Ehrlich to infectious disease. J Infect 2007;54 (3):221-4.
[71] Galarneau A, Nader M, Guenneau F, Di Renzo F, Gedeon A. Understanding the stability in water of mesoporous SBA-15 and MCM-41. Journal of Physical Chemistry C 2007;111 (23):8268-77.
[72] Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS. Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int J Pharm 2008;359 (1-2):280-7.
[73] Huang DM, Hung Y, Ko BS, Hsu SC, Chen WH, Chien CL, Tsai CP, Kuo CT, Kang JC, Yang CS, Mou CY, Chen YC. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 2005;19 (14):2014-6.
[74] Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM, Chen YC. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Letters 2007;7 (1):149-54.
[75] Hsiao JK, Tsai CP, Chung TH, Hung Y, Yao M, Liu HM, Mou CY, Yang CS, Chen YC, Huang DM. Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 2008;4 (9):1445-52.
[76] Huang DM, Chung TH, Hung Y, Lu F, Wu SH, Mou CY, Yao M, Chen YC. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol 2008;231 (2):208-15.
[77] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2009.
[78] Zhu YF, Shi JL, Shen WH, Chen HR, Dong XP, Ruan ML. Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnology 2005;16 (11):2633-8.
[79] Ge H, Ding YW, Ma CC, Zhang GZ. Temperature-controlled release of diols from N-isopropylacrylamide-co-acrylamidophenylboronic acid microgels. Journal of Physical Chemistry B 2006;110 (41):20635-9.
[80] Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VSY. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 2003;125 (15):4451-9.
[81] Hu SH, Chen SY, Liu DM, Hsiao CS. Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Advanced Materials 2008;20 (14):2690-2695.
[82] Hu SH, Liu DM, Tung WL, Liao CF, Chen SY. Surfactant-Free, Self-Assembled PVA-Iron Oxide/Silica Core-Shell Nanocarriers for Highly Sensitive, Magnetically Controlled Drug Release and Ultrahigh Cancer Cell Uptake Efficiency. Advanced Functional Materials 2008;18 (19):2946-55.
[83] Prabu P, Chaudhari AA, Dharmaraj N, Khil MS, Park SY, Kim HY. Preparation, characterization, in-vitro drug release and cellular uptake of poly(caprolactone) grafted dextran copolymeric nanoparticles loaded with anticancer drug. Journal of Biomedical Materials Research Part A 2009;90A (4):1128-36.
[84] Tseng YH, Kuo CH. Photocatalytic degradation of dye and NO(x) using visible-light-responsive carbon-containing TiO2. Catalysis Today 2011;174 (1):114-20.
[85] Cai RX, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A. Induction of Cytotoxicity by Photoexcited TiO2 Particles. Cancer Research 1992;52 (8):2346-8.
[86] Hussain S, Thomassen LC, Ferecatu I, Borot MC, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol;7:10.
[87] Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine 2008;4 (3):226-36.
[88] Pujalte I, Passagne I, Brouillaud B, Treguer M, Durand E, Ohayon-Courtes C, L'Azou B. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology 2011;8.
[89] Salganik RI. The benefits and hazards of antioxidants: Controlling apoptosis and other protective mechanisms in cancer patients and the human population. Journal of the American College of Nutrition 2001;20 (5):464s-72s.
[90] Tisdale MJ. Cancer cachexia. Curr Opin Gastroenterol 2009.
[91] Argiles JM, Lopez-Soriano FJ, Busquets S. Novel approaches to the treatment of cachexia. Drug Discov Today 2008;13 (1-2):73-8.
[92] Agustsson T, Ryden M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J, Arner P. Mechanism of increased lipolysis in cancer cachexia. Cancer Res 2007;67 (11):5531-7.
[93] Shaw JH, Wolfe RR. Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg 1987;205 (4):368-76.
[94] Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009;89 (2):381-410.
[95] Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 2003;14 (5):447-55.
[96] Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem 1997;272 (9):5367-70.
[97] Camp HS, Ren D, Leff T. Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol Med 2002;8 (9):442-7.
[98] Bost F, Aouadi M, Caron L, Binetruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005;87 (1):51-6.
[99] Prusty D, Park BH, Davis KE, Farmer SR. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma ) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem 2002;277 (48):46226-32.
[100] Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 2003;17 (11):1352-65.
[101] Xu J, Liao K. Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation. J Biol Chem 2004;279 (34):35914-22.
[102] Granneman JG, Moore HPH, Granneman RL, Greenberg AS, Obin MS, Zhu ZX. Analysis of lipolytic protein trafficking and interactions in adipocytes. Journal of Biological Chemistry 2007;282 (8):5726-35.
[103] Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Seminars in Cell & Developmental Biology 1999;10 (1):51-8.
[104] Ryden M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P. Targets for TNF-alpha-induced lipolysis in human adipocytes. Biochemical and Biophysical Research Communications 2004;318 (1):168-75.
[105] Souza SC, de Vargas LM, Yamamoto MT, Lien P, Franciosa MD, Moss LG, Greenberg AS. Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. J Biol Chem 1998;273 (38):24665-9.
[106] Laurencikiene J, van Harmelen V, Arvidsson Nordstrom E, Dicker A, Blomqvist L, Naslund E, Langin D, Arner P, Ryden M. NF-kappaB is important for TNF-alpha-induced lipolysis in human adipocytes. J Lipid Res 2007;48 (5):1069-77.
[107] Ko FN, Wu CC, Kuo SC, Lee FY, Teng CM. YC-1, a novel activator of platelet guanylate cyclase. Blood 1994;84 (12):4226-33.
[108] Chun YS, Yeo EJ, Park JW. Versatile pharmacological actions of YC-1: anti-platelet to anticancer. Cancer Lett 2004;207 (1):1-7.
[109] Huang YT, Pan SL, Guh JH, Chang YL, Lee FY, Kuo SC, Teng CM. YC-1 suppresses constitutive nuclear factor-kappaB activation and induces apoptosis in human prostate cancer cells. Mol Cancer Ther 2005;4 (10):1628-35.
[110] Yeo EJ, Ryu JH, Chun YS, Cho YS, Jang IJ, Cho H, Kim J, Kim MS, Park JW. YC-1 induces S cell cycle arrest and apoptosis by activating checkpoint kinases. Cancer Res 2006;66 (12):6345-52.
[111] Mulsch A, Bauersachs J, Schafer A, Stasch JP, Kast R, Busse R. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. British Journal of Pharmacology 1997;120 (4):681-9.
[112] Wegener JW, Nawrath H. Differential effects of isoliquiritigenin and YC-1 in rat aortic smooth muscle. European Journal of Pharmacology 1997;323 (1):89-91.
[113] Tansey JT, Sztalryd C, Hlavin EM, Kimmel AR, Londos C. The central role of perilipin a in lipid metabolism and adipocyte lipolysis. IUBMB Life 2004;56 (7):379-85.
[114] Miyoshi H, Souza SC, Zhang HH, Strissel KJ, Christoffolete MA, Kovsan J, Rudich A, Kraemer FB, Bianco AC, Obin MS, Greenberg AS. Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem 2006;281 (23):15837-44.
[115] Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem 2008;114 (3):183-94.
[116] Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett 2008;582 (1):117-31.
[117] Chen X, Xun K, Chen L, Wang Y. TNF-alpha, a potent lipid metabolism regulator. Cell Biochem Funct 2009;27 (7):407-16.
[118] Tanaka Y, Eda H, Tanaka T, Udagawa T, Ishikawa T, Horii I, Ishitsuka H, Kataoka T, Taguchi T. Experimental cancer cachexia induced by transplantable colon 26 adenocarcinoma in mice. Cancer Res 1990;50 (8):2290-5.
[119] Yasumoto K, Mukaida N, Harada A, Kuno K, Akiyama M, Nakashima E, Fujioka N, Mai M, Kasahara T, Fujimoto-Ouchi K, et al. Molecular analysis of the cytokine network involved in cachexia in colon 26 adenocarcinoma-bearing mice. Cancer Res 1995;55 (4):921-7.
[120] Inadera H, Nagai S, Dong HY, Matsushima K. Molecular analysis of lipid-depleting factor in a colon-26-inoculated cancer cachexia model. Int J Cancer 2002;101 (1):37-45.
[121] Ren T, He J, Jiang H, Zu L, Pu S, Guo X, Xu G. Metformin reduces lipolysis in primary rat adipocytes stimulated by tumor necrosis factor-alpha or isoproterenol. J Mol Endocrinol 2006;37 (1):175-83.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66046-
dc.description.abstract奈米技術的快速發展是個備受重視的研究領域,尤其在醫藥生技(奈米醫學)的應用潛力更是無限。本論文有五個部份將分別陳述,主要是結合奈米醫學、幹細胞學與藥物生理學三大領域,並且發展以利用奈米粒子或結合幹細胞的模式應用於癌症治療,另瞭解抗癌藥物對幹細胞生理的影響,試圖發展奈米生物醫學應用之新策略。
(1)氧化鐵奈米粒子促進人類幹細胞表面生長因子受體大量表現以作為癌症治療模式之應用:氧化鐵奈米粒子在幹細胞治療應用中,具有可標定幹細胞且可透過MRI偵測及追蹤。然而,氧化鐵奈米粒子對於幹細胞的影響仍不明確,並且是個不容忽視的議題。在本論文,我們將氧化鐵奈米粒子標定幹細胞後,發現會促進幹細胞表面生長因子受體EGFR大量表現。而標定後的幹細胞趨向於腫瘤的能力以及抗腫瘤生長的情形均比未標定的幹細胞優。而這些現象起因於幹細胞大量表現EGFR而抑制了腫瘤因自泌作用產生的EGF所造成的腫瘤生長、血管新生以及因腫瘤的VEGF表現所造成的腫瘤癌化與發育。我們的結果顯示,氧化鐵奈米粒子對於幹細胞的影響將可提供一個全新的幹細胞治療之應用。
(2)探討基因轉殖於人類幹細胞以結合氧化鐵奈米粒子於癌症治療應用:我們藉由氧化鐵奈米粒子促進幹細胞移動的能力,試圖合成Dextran和CM-Dextran不同材質的氧化鐵奈米粒子,利用幹細胞來攜帶具有抑制腫瘤生長的基因,加強毒殺腫瘤的能力。根據初步結果顯示,Dextran和CM-Dextran氧化鐵奈米粒子會促進人類幹細胞EGFR的大量表現,亦提昇幹細胞本身具有趨向腫瘤的能力。我們預計,幹細胞的基因轉殖技術克服後,將進一步在動物模式中進行腫瘤毒殺測試。
(3)探討人類幹細胞傳遞磁性氧化鐵奈米粒子結合抗癌藥物釋放於腫瘤治療之應用:根據上述,利用幹細胞具有趨向腫瘤且具有毒殺腫瘤能力的應用,亦可利用幹細胞將具有抑制腫瘤生長能力的基因或藥物,攜帶到腫瘤的位置,提昇毒殺腫瘤的能力。本部份,試圖合成具有可控制藥物釋放的奈米粒子,再透過幹細胞具有移動的能力,攜帶藥物到腫瘤的位置。由於,具有抗癌藥物釋放能力的奈米粒子,在合成上具有挑戰性及困難度,因此,突破在合成上的瓶頸後,接著在後續的腫瘤毒殺作用便將可順利進行。
(4)可見光誘導之二氧化鈦奈米粒子於腫瘤毒殺作用:透過浸漬法(impregnation method)的方式改變二氧化鈦吸收光的光譜,從原本UV光增加到可見光(藍光)可吸收的範圍。改質後的二氧化鈦奈米粒子容易被黑色素瘤細胞吞入,且隨著培養的時間增加,吞入的二氧化鈦奈米粒子愈多。吞入二氧化鈦奈米粒子後的黑色素瘤細胞於照光1小時後會產生活性氧,進而攻擊細胞造成細胞凋亡的現象,因此可作為黑色素瘤細胞之癌症治療應用。
(5)YC-1可減緩惡質病現象藉由脂肪裂與脂肪生成之調控:脂肪組織的減少,主要是由於脂肪裂解速度增加以及脂肪生成能力降低所造成的現象,而這也是癌症惡質病造成體重減輕的主要特徴。有太多相關致病的訊息調控影響了脂肪組織的減少,因此有必要發展有效抑制惡質病造成脂肪減少的治療藥物。根據我們的結果證明,由於YC-1具有抗腫瘤生長等多功能的生理作用,因此,YC-1影
響了3T3-L1 preadipocytes分化時的脂肪生成、也參與了TNF-α與腫瘤細胞造成的脂肪裂解調控以及腸癌細胞CT26-WT動物模式造成的惡質病的現象。YC-1會活化Akt和ERK的調控機制,促進了3T3-L1 preadipocytes 提早分化為脂肪細胞的過程,其中也活化了PPARγ、IRα、IRS3和GLUT-4等與脂肪生成相關的蛋白質;在活體外的脂肪裂解模式中,YC-1具有抑制因TNF-α或腫瘤細胞所促進而活化ERK的訊息傳遞,使得下游PLIN的蛋白質表現佭低所造成脂肪裂解的情形。在腫瘤腸癌細胞動物模式中,YC-1能抑制因腫瘤造成血液中胰島素減少,使得能延緩體重減輕的能力。綜合上述,YC-1是個新的癌症治療藥物,不僅具有抗腫瘤生長,亦具有抗腫瘤惡質病的能力。
zh_TW
dc.description.abstractWith the recent progress of nanotechnology in biomedical applications, nanomedicine is a rapidly evolving area of intensive research and has received considerable attention. In this thesis, the combination of nanotechnology or nanomedicine, stem cell biology and pharmacology is used to develop novel stem cell-based tumor therapy and new strategy for nanomedicial applications. There are five topics: (1) Iron oxide nanoparticles-induced epidermal growth factor receptor expression in human stem cells for tumor therapy. (2) The enhancement of stem cell-based gene delivery by iron oxide nanoparticles for tumor therapy. (3) Stem cell-targeting delivery of controlled drug released-nanoparticles for tumor therapy. (4) Toxic effects of titanium dioxide nanoparticles in melanoma. (5) YC-1 rescues cancer cachexia by affecting lipolysis and adipogenesis.
(1) Iron oxide nanoparticles-induced epidermal growth factor receptor expression in human stem cells for tumor therapy.
Superparamagnetic iron oxide (SPIO) nanoparticles show promise as labels for cellular magnetic resonance imaging (MRI) in the application of stem cell-based therapy. However, the unaddressed concerns about the impact of SPIO nanoparticles on stem cell attributes make the feasibility of SPIO labeling uncertain. Here, we show that the labeling of human mesenchymal stem cells (hMSCs) with ferucarbotran can induce epidermal growth factor receptor (EGFR) overexpression. Labeled hMSCs with their overexpressed EGFR were attracted by tumorous EGF and more effectively migrated toward tumor than unlabeled cells, resulting in more potent intrinsic antitumor activity. Moreover, the captured binding of tumorous EGF by overexpressed EGFR of labeled hMSCs blocked EGF/EGFR signaling-derived tumor growth, tumorous angiogenesis, and tumorous VEGF expression also responsible for tumor progression and development. Our results show that the impact of SPIO nanoparticles on stem cell. attributes is not necessarily harmful but can be cleverly used to be beneficial to stem cell-based therapy.
(2) The enhancement of stem cell-based gene delivery by iron oxide nanoparticles for tumor therapy.
With the promotion stem cell migration toward tumor by iron oxide nanoparticles, we have been trying to synthesized dextran- or Carboxymethyl-dextran (CM-dextran) -coated SPIO nanoparticles to enhance stem cell-based gene delivery. We found that as-synthesized dextran-and CM-dextran-coated SPIO nanoparticles could induce the expression of EGFR and hence stimulate the tumor tropism of stem cells as demonstrated by in vitro migration assay. A stable transfection of stem cells with TNF-a gene is proceeding. We suggest that with the establishment of transgenic stem cells SPIO-stimulated tumor tropism would be benificical to stem cell-based gene therapy for tumor.
(3) Stem cell-targeting delivery of controlled drug released-nanoparticles for tumor therapy.
According to the above, SPIO-induced stem cells tropism toward tumor is also used to deliver drug-loading nanoparticles stem cells used for specific tumor targeting. Therefore, we would like to integrate the targeted delivery ability of stem cells with the carrying efficiency for anticancer drugs of nanoparticles to develop a novel drug delivery system for cancer therapy. Anticancer drugs will be encapsulated into a soft-material core (polyvinyl alcohol, PVA) and then coated with a biocompatible silica shell that can protectively construct the nanoparticles and can enhance the internalization of nanoparticles into stem cells. Moreover, a controlled release mechanism (high-frequency magnetic field, HFMF) will be installed in the nanoparticle core. After the targeted-migration of stem cells with intracellular internalized nanoparticles toward tumors, HFMF could induce the release of anticancer drugs from the nanoparticle core to kill the tumor cells.
(4) Visible-light inducible carbon-modified titanium dioxide nanoparticles for tumor therapy.
Visible-light inducible of carbon-modified titanium dioxide were synthesized by impregnation method, and therefore these particles are called TiO2-200 nanoparticles. The photocatalytic activity that under the irradiation of visible-light was ROS produced and was measured by reduction methyl orange assay. TiO2-200 nanoparticles are easily uptaken by melanoma cells in a time-dependent manner. By irradiation with visible-light (400-500 nm) the decrease of cell viability was measured by trypan blue and induced apoptosis was measured by TUNEL assay. Intracellular ROS were generated dependent on uptake of TiO2-200 nanoparticles in treated melanoma cells. Taken together, we suggest that the carbon-modified titanium dioxide would be ideality beneficial to therapy for tumor.
(5) YC-1 rescues cancer cachexia by affecting lipolysis and adipogenesis.
Loss of adipose tissue, primarily due to increased lipolysis but also to an impairment of adipogenesis, is a key feature of weight loss in cancer cachexia. Because of the myriad pathogenic signaling pathways essential for atrophy of adipose tissue, effective therapeutic agents for cachectic adipose loss are lacking and urgently needed. The authors evaluated the effects of YC-1 on adipogenesis of 3T3-L1 preadipocytes, TNF-α- and tumor-cell-induced lipolysis in 3T3-L1 adipocytes, and cachectic weight loss in colon-26 adenocarcinoma-bearing mice because YC-1 has been shown to possess versatile pharmacological actions, including anticancer activity. It was found that YC-1 promotes the differentiation of 3T3-L1 preadipocytes into adipocytes through activation of Akt and extracellular signal-regulated kinase (ERK) signaling pathways as well as activation of several adipogenic mediators, such as peroxisome proliferator-activated receptor γ(PPARγ), insulin receptor α (IRα), insulin receptor substrate-3 (IRS-3) and glucose transporter-4 (GLUT-4). In the in vitro lipolysis models, YC-1 attenuates TNF-α induced lipolysis of adipocytes by antagonizing TNF-a-mediated activation of ERK and downregulation of perilipin (PLIN). It was also found that YC-1 inhibits colon-26 adenocarcinoma cell-induced lipolysis of 3T3-L1 adipocytes. Moreover, YC-1 effectively rescues cachectic weight loss in colon-26 adenocarcinoma-bearing mice by blocking lipolysis, involving insulin. Taken together the results show that YC-1 with its anticancer and anticachexia talents is highly worth developing as a novel agent for cancer therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:20:05Z (GMT). No. of bitstreams: 1
ntu-101-D97422004-1.pdf: 1959780 bytes, checksum: 9ea62673c6934c5078d8700fd8ab10df (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………………VI
誌謝………………………………………………………………………………...…VII
中文摘要……………………………………………………………………………..VIII
英文摘要………………………………………………………………………………..X
圖目錄 XIII
第一部份、緒論 1
第二部份、氧化鐵奈米粒子促進人類幹細胞表皮生長因子受體大量表現以作為癌症治療模式之應用 8
第一章、研究背景與動機 8
第二章、實驗方法 9
2-1實驗材料 9
2-1-1抗體 9
2-1-2實驗藥品 9
2-2 細胞培養 9
2-2-1 人類骨髓間質幹細胞 9
2-2-2 腫瘤細胞:大腸癌細胞株 10
2-3 製備標定氧化鐵奈米粒子之幹細胞 10
2-4 西方墨點法 10
2-5 螢光物質標定幹細胞 11
2-6動物受損模式建立 11
2-7病理組織切片 11
2-8普魯士藍染色 11
2-9 觀察幹細胞存在位置 11
2-10 幹細胞移動能力試驗 12
2-11 幹細胞的細胞安全性及生長能力測定 12
2-12 血管新生測定 12
2-12-1 樣品製備 12
2-12-2 老鼠組別 13
2-12-3 血紅素測定 13
2-12-4 血管內皮細胞粘著分子染色 13
第三章、結果與討論 15
3-1活體內證明幹細胞能趨向到腫瘤細胞之能力 15
3-2活體外證明氧化鐵奈米粒子促進幹細胞趨性到癌細胞的能力 15
3-3證明氧化鐵奈米粒子標定之幹細胞能抑制癌細胞造成的血管新生 15
3-4證明氧化鐵奈米粒子標定之幹細胞能抑制癌細胞之生長 16
3-5證明氧化鐵奈米粒子標定之幹細胞能抑制癌細胞VEGF表現 17
第四章、結論與未來展望 18
第三部份、探討基因轉殖於人類幹細胞以結合氧化鐵奈米粒子於癌症治療應用 19
第一章 研究背景與動機 19
第二章、實驗方法 21
2-1實驗藥品 21
2-2氧化鐵奈米粒子之製備 21
2-3 粒徑分析與表面電位之測定 21
2-4 穿透式顯微鏡觀察 21
2-5細胞培養 21
2-5-1 人類骨髓間質幹細胞 21
2-5-2 腫瘤細胞:大腸癌細胞株 22
2-6 幹細胞毒性測試 22
2-7 西方墨點法 22
2-8 幹細胞移動能力試驗 22
第三章、結果與討論 24
3-1 粒徑及表面電位 24
3-2奈米粒子對細胞的毒性影響 24
3-3 氧化鐵奈米粒子於幹細胞之功能性分析 25
第四章、結論與未來展望 26
第四部份、探討人類幹細胞傳遞磁性氧化鐵奈米粒子結合抗癌藥物釋放於腫瘤治療之應用 27
第一章 研究背景與動機 27
第二章、實驗方法 30
2-1 實驗藥品 30
2-2 製備具有藥物的磁性氧化鐵奈米粒子 30
2-3 穿透式顯微鏡觀察 30
2-4 UV-Visible光譜儀之偵測 30
2-5 腫瘤細胞:大腸癌細胞株 30
2-6 腫瘤細胞對藥物CPT的敏感性測試 30
第三章、結果與討論 31
3-1 TEM觀察裝載藥物後氧化鐵奈米粒子之構型 31
3-2 TEM觀察裝載藥物氧化鐵奈米粒子在酸性條件之構型 31
第四章、結論與未來展望 33
第五部份、可見光誘發之二氧化鈦奈米粒子於黑色素腫瘤毒殺作用 34
第一章、研究背景與動機 34
第二章、實驗方法 35
2-1實驗材料 35
2-1-1 實驗藥品 35
2-1-2實驗設備 35
2-2 奈米粒子製備與鑑定 35
2-3 表面電位之測定 35
2-4 穿透式顯微鏡觀察 35
2-5 黑色素癌細胞培養 35
2-6 活體外之處理條件 36
2-7 TEM觀察細胞之製備 36
2-7-1 TEM細胞專用slide之製備 36
2-7-2 細胞包埋 36
2-7-3 細胞切片 36
2-8 離子體質譜分析 36
2-9 細胞型態之觀察 37
2-10 細胞存活率的測量 37
2-11 細胞凋亡偵測:利用TUNEL分析法 37
2-12 細胞內活性氧的測定 37
第三章、結果與討論 39
3-1 奈米粒子製備與鑑定 39
3-2 細胞吞噬能力 39
3-3 細胞毒性評估 39
3-4 細胞凋亡評估 39
3-5 證明TiO2-200奈米粒子可於照光後產生ROS 40
第四章、結論與未來展望 41
第六部份、YC-1可減緩惡質病現象藉由脂肪裂解與脂肪生成之調控 42
第一章 研究背景與動機 42
第二章、實驗方法 44
2-1實驗藥品 44
2-2 細胞培養 44
2-3 脂肪分化實驗 44
2-4 脂肪細胞染色分析 44
2-5 脂肪裂解實驗 45
2-6 葡萄糖攝取實驗 45
2-7 偵測細胞內三酸甘油酯含量 45
2-8 細胞毒性測定 45
2-9免疫螢光實驗分析 45
2-10 西方墨點法 46
2-11 腫瘤惡質病之動物模式 46
2-12 酵素連結免疫吸附法之偵測 46
第三章、結果與討論 47
3-1 探討YC-1於3T3-L1 preadipocytes分化為脂肪細胞之影響 47
3-2探討YC-1於TNF-
dc.language.isozh-TW
dc.subject奈米粒子zh_TW
dc.subjectYC-1zh_TW
dc.subject3T3-L1zh_TW
dc.subject氧化鐵zh_TW
dc.subject幹細胞zh_TW
dc.subject惡質病zh_TW
dc.subjectiron oxideen
dc.subjectnanoparticlesen
dc.subjectstem cellen
dc.subjectcachexiaen
dc.subjectYC-1en
dc.subject3T3-L1en
dc.title奈米生物醫學新策略開發zh_TW
dc.titleNew strategy development for nanomedicineen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.coadvisor黃東明
dc.contributor.oralexamcommittee顧記華,林淑宜,羅履維,陳令儀,蕭仲凱
dc.subject.keyword氧化鐵,奈米粒子,幹細胞,惡質病,YC-1,3T3-L1,zh_TW
dc.subject.keywordiron oxide,nanoparticles,stem cell,cachexia,YC-1,3T3-L1,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2012-06-25
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved