請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65989完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃坤祥 | |
| dc.contributor.author | Yung-Kang Lin | en |
| dc.contributor.author | 林詠剛 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:18:07Z | - |
| dc.date.available | 2017-07-06 | |
| dc.date.copyright | 2012-07-06 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-29 | |
| dc.identifier.citation | [1] R.M. German, “Powder Injection Molding”, Metal Powder Industries Federation, 1990, NY, pp. 3-19.
[2] “金屬射出成形技術與其他各製程之比較”,http://www.tpttw.com.tw。 [3] 黃坤祥,粉末冶金學,中華民國粉末冶金協會,2003,247頁 [4] C.E. Guillaume, Comptes rendus de l'Académie des sciences. Série I, Mathématique, 124 (1897) 176. [5] J. Liu, “Application and Development of Low Expansion Alloys”, Metallic Functional Materials, 2007, Vol. 14, No. 5, pp. 33-37. [6] 馮慧平、鄭春德、蔡習訓,“光電構裝粉末燒結Kovar合金之性質”,第三屆台塑應用工程研討會,2003,47-52頁 [7] E. P. Wohlfarth, “Ferromagnetic Materials : A Handbook on The Properties of Magnetically Ordered Substances”, Elsevier Science, 1990, Vol. 5, pp. 237-322. [8] R. J. Weiss, “The Origin of The Invar Effect”, Proceedings of the Physical Society, 1963, Vol. 82, No.2, pp. 281-288. [9] “Magnetostriction”, http://en.wikipedia.org/wiki/Magnetostriction. [10] B. Bagautdinov and V. Shekhtman, “The Invar Effect and Phase Transitions in Cs2Znl4 Crystals”, Physics of the Solid State, 1999, Vol. 41, No. 1, pp. 123-127. [11] L. Dubrovinsky, N. Dubrovinskaia, I. Abrikosov, M. Vennström, F. Westman, S. Carlson, M. van Schilfgaarde, and B. Johansson, “Pressure-Induced Invar Effect in Fe-Ni Alloys”, Physical Review Letters, 2001, Vol. 86, No. 21, pp. 4851-4854. [12] C. W. Nan, “Effective Magnetostriction of Magnetostrictive Composites”, Applied Physics Letters, 1998, Vol. 72, No. 22, pp. 2897-2899. [13] D. Y. Sim and et al., “A Bakable Microvalve with A Kovar - Glass - Silicon - Glass Structure”, Journal of Micromechanics and Microengineering, 1996, Vol. 6, No. 2, pp. 266. [14] K. Lagarec, D. G. Rancourt, S. K. Bose, B. Sanyal, and R. A. Dunlap, 'Observation of A Composition-Controlled High-Moment/Low-Moment Transition in The Face Centered Cubic Fe-Ni System: Invar Effect is An Expansion, Not A Contraction', Journal of Magnetism and Magnetic Materials, 2001, Vol. 236, No. 1-2, pp. 107-130. [15] F. Liot and C. A. Hooley, “A Simple Theory of The Invar Effect in Iron-Nickel Alloys”, Condensed Matter, arXiv.org, 2008, arXiv:0811.3673v1, pp. 1-3, http://arxiv.org/abs/0811.3673. [16] Earl L. Frantz, “Low-Expansion Alloys”, ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 1990, Vol. 2, pp. 889-896. [17] “Low Expansion Alloys”, http://what-when-how.com/materialsparts-and-finishes/low-expansion-alloys/. [18] S. W. Ma, B. H. Duan, P. Gao, M. I. Qin, X. H. Qu, and T. Cheng, “Powder Injection Molding of 4J32 Invar Alloy”, Vacuum Electronics, 2006, Vol.4, No. 4, pp. 55-58. [19] “ASTM Designation F15-04: Standard Specification for Iron-Nickel-Cobalt Sealing Alloy”, ASTM International, West Conshohocken, PA, 2009, vol. 10.04. [20] L. L. Harner, “Selecting Controlled Expansion Alloys”, Advanced Materials and Processed, 1997, Vol. 146, No. 4, pp. 19-21. [21] K. S. Hwang and M. Y. Shiau, 'Effects of Nickel on The Sintering Behavior of Fe-Ni Compacts Made from Composite and Elemental Powders', Metallurgical and Materials Transactions B, 1996, Vol. 27, No. 2, pp. 203-211. [22]H. Baker, ASM Handbook: Alloy Phase Diagrams, ASM International, Materials Park, OH, 1992, Vol. 3, pp. 2.141-2.199. [23] “Low-Expansion Alloys”, http://www.microwaves101.com/encyclopedia/low_expansion.cfm. [24] K. Tokui, S. Sakuragi, T. Sasaki, Y. Yamada, M. Ishihara, M. Nakayama, I. Kuji, and M. Nomura, “Properties of Sintered Kovar Using Metal Injection Molding”, Journal of Japan Society of Powder and Powder Metallurgy, 1994, Vol. 41, No.6, pp.671-675. [25] 陳秉正,“低熱膨脹係數合金之MIM製程及封裝研究”, 碩士論文,國立台灣大學材料科學與工程學研究所,2004,67-75頁。 [26] W. Yext, B. Shook, W. Katzenberger, and R. Michalek, 'Improved Glass-to-Metal Sealing Through Furnace Atmosphere Composition Control', Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 1983, Vol. 6, No. 4, pp. 455-459. [27] M. W. Wu, K. S. Hwang, and K. H. Chuang, “Improved distribution of nickel and carbon in sintered steels through addition of chromium and molybdenum”, Powder Metallurgy, 2008, Vol. 51, No. 2, pp. 160-165. [28] V. M. Nadutov, S. G. Kosintsev, Y. O. Svystunov, V. M. Garamus, R. Willumeit, H. Eckerlebe, T. Ericsson, and H. Annersten, “Anti-Invar Properties and Magnetic Order in Fcc Fe–Ni–C Alloy”, Journal of Magnetism and Magnetic Materials, 2011, Vol. 323, No. 22, pp. 2786-2791. [29] B.-S. Kim, K.-J. Yoo, B.-G. Kim, and H.-W. Lee, 'Effect of Carbon on The Coefficient of Thermal Expansion of As-Cast Fe−30wt%Ni−12.5wt%Co−×C Invar Alloys', Metals and Materials International, 2002, Vol. 8, No. 3, pp. 247-252. [30]汪建民主編,陶瓷技術手冊(下),中華民國粉末冶金協會,1994,108頁。 [31]陳力俊,微電子材料與製程,中國材料科學學會,2000,491頁。 [32]W. D. Callister, Materials Science and Engineering: An Introduction, 7th ed., John Wiley & Sonc, Inc., NY, 2007, pp. 472. [33] I. W. Donald, “Preparation, Properties and Chemistry of Glass- and GlassCeramic-to-Metal Seals and Coatings”, Journal of Materials Science, 1993, Vol. 28, No. 11, pp. 2841-2886. [34] I. W. Donald, P. M. Mallinson, B. L. Metcalfe, L. A. Gerrard, and J. A. Fernie, “Recent Developments in The Preparation, Characterization and Applications of Glass- and Glass–Ceramic-to-Metal Seals and Coatings”, Journal of Materials Science, 2011, Vol. 46, No. 7, pp. 1975-2000. [35] I. W. Donald, Glass to metal seals, Society of Glass Technology, 2009, pp. 14-19. [36] M. K. Mahapatra and K. Lu, 'Seal Glass for Solid Oxide Fuel Cells', Journal of Power Sources, 2010, Vol. 195, No. 21, pp. 7129-7139. [37] K. A. Nielsen, M. Solvang, S. B. L. Nielsen, A. R. Dinesen, D. Beeaff, and P. H. Larsen, 'Glass Composite Seals for SOFC Application', Journal of the European Ceramic Society, 2007, Vol. 27, No. 2-3, pp. 1817-1822. [38] D. Lei, Z. Wang, and J. Li, 'The Analysis of Residual Stress in Glass-to-Metal Seals for Solar Receiver Tube', Materials & Design, 2010, Vol. 31, No. 4, pp. 1813-1820. [39] C. J. Macey, L. Salvati Jr, R. L. Moore, C. Bachman, and V. Greenhut, 'SEM and ESCA Study of Fractured Borosilicate Glass to Kovar Seals', Applications of Surface Science, 1985, Vol. 21, No. 1-4, pp. 139-150. [40] “Parabolic Trough Solar Thermal Collector-Solar Receiver Tube”, http://www.solar-evacuated-tube.com/solar_product_info_276.html. [41] A. Zanchetta, P. Lortholary, and P. Lefort, 'Ceramic to Metal Sealings: Interfacial Reactions Mechanism in A Porcelain-Kovar Junction', Journal of Alloys and Compounds, 1995, Vol. 228, No. 1, pp. 86-95. [42] A. Taylor, “Ceramics Joining – Glass to Metal Seals”, www.twi.co.uk/, 2003. [43] D. W. Luo and Z. S. Shen, 'Oxidation Behavior of Kovar Alloy in Controlled Atmosphere', Acta Metallurgica Sinica (English Letters), 2008, Vol. 21, No. 6, pp. 409-418. [44] T.-S. Chern and H.-L. Tsai, 'Wetting and Sealing of Interface between 7056 Glass and Kovar Alloy', Materials Chemistry and Physics, 2007, Vol. 104, No. 2-3, pp. 472-478. [45] D. Luo and Z. Shen, 'Wetting and Spreading Behavior of Borosilicate Glass on Kovar', Journal of Alloys and Compounds, 2009, Vol. 477, No. 1-2, pp. 407-413. [46] J. A. Pask, 'New Techniques in Glass-to-Metal Sealing', Proceedings of the IRE, 1948, Vol. 36, No. 2, pp. 286-289. [47] A. Zanchetta, P. Lefort, and E. Gabbay, 'Thermal Expansion and Adhesion of Ceramic to Metal Sealings: Case of Porcelain-Kovar Junctions', Journal of the European Ceramic Society, 1995, Vol. 15, No. 3, pp. 233-238. [48] Y. Liu, L. Liu, Z. Wu, J. Li, B. Shen, and W. Hu, 'Grain Growth and Grain Size Effects on The Thermal Expansion Properties of An Electrodeposited Fe–Ni Invar Alloy', Scripta Materialia, 2010, Vol. 63, No. 4, pp. 359-362. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65989 | - |
| dc.description.abstract | 目前Kovar合金製程大部分為熔煉與鑄造,但需要形狀較複雜的Kovar工件時,常需額外進行二次機械加工,使整體成本相對提高。利用MIM(Metal Injection Molding)製程能一次成形出較複雜之工件,成本低,適合大量生產,機械性質亦優於傳統粉末冶金產品。Kovar合金一般與硬玻璃進行接合,屬於匹配型接合(Matched Seal),即金屬與玻璃彼此之熱膨脹係數相當接近,是利用金屬表面經預氧化處理形成之氧化層與玻璃反應形成化學鍵結,因此具有良好的熱穩定性。製作MIM Kovar合金時,常使用預合金粉與混合元素粉兩種,其中混合元素粉之成本較低且燒結密度較高,但燒結後有可能發生成分不均勻的現象,導致α相生成,影響熱膨脹係數,故需提高燒結溫度與延長燒結時間,本研究中發現若在氫氣中以1380℃燒結4小時,不論預合金粉或混合元素粉均能均質化,成為單一γ相組織且具有高燒結密度,分別為96%與99.6%。
Kovar合金在與玻璃接合前需先進行預氧化處理,若在空氣中進行預氧化可發現所形成之氧化層主要為Fe2O3並有少量之Fe3O4,造成預氧化層之附著性及連續性皆不佳;若在溼氮氣中進行預氧化,由於氧分壓遠較空氣中低,故在800℃持溫45分鐘所形成之氧化層幾乎都為連續性佳且附著良好之Fe3O4並具有4.5 μm的適當厚度,利於後續接合處理。除了預氧化層之組成形態外,接合時所選用之氣氛也將大大影響接合完成後Kovar合金與玻璃之接合面狀態與強度,本研究發現使用緻密且連續性良好之氧化層,如在溼氮氣中以800℃持溫45分鐘所形成之氧化層,並在真空下以1100℃持溫20分鐘與玻璃接合能得到最佳之界面狀態、強度且玻璃能緻密化。預合金粉系統與混合元素粉系統接合後測試其抗剪強度分別為165 MPa及177 MPa;而這些接合工件經過500次溫度循環後仍維持160 MPa之抗剪強度且能承受至少50次高低溫熱衝擊而不發生界面破壞。 | zh_TW |
| dc.description.abstract | Kovar alloy products are usually made by melting and casting. These parts may need secondary machining and thus leading to high cost. One of the advantages of using MIM(Metal Injection Molding) process is that it can produce components with complex shapes and better mechanical properties than those manufactured by traditional PM process. MIM Kovar parts are made in this study from prealloyed powders and admixed powders. Admixed powders cost less and still can obtain high sintered density. However, composition inhomogeneity may happen after sintering and induce an increase in CTE(Coefficient of Thermal Expansion). Higher sintering temperature and longer holding time are the solutions to this problem. Both prealloyed powders and admixed powders can reach a high density of 96% and 99.6%, respectively, with uniform alloy distribution after sintering at 1380℃ for 4 hours in hydrogen.
Kovar alloys need to be preoxidized before sealing with glass. After being preoxidized in air, it is obvious that the oxide layer on the surface of Kovar alloys is composed mainly of loosely-bonded Fe2O3 and some Fe3O4 due to the high partial pressure of O2. However, the dense Fe3O4 layer with a thickness of 4.5 μm and good adherence to the metal substrate could be attained when the preoxidation process is carried out at 800℃ for 45 minutes in wet nitrogen. The interfacial condition and strength after sealing depend on not only the characteristics of the oxide layer but also the sealing atmosphere. In this study, it has been shown that Kovar parts covered with dense Fe3O4 layer and with a thickness of 4.5 μm can produce the best interfacial condition and highest shear strength after sealing with glass at 1100℃ for 20 minutes in vacuum. These samples also show good reliability under thermal shock and temperature cycling tests. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:18:07Z (GMT). No. of bitstreams: 1 ntu-101-R99527036-1.pdf: 7055188 bytes, checksum: 1bc03c06feb262431e974379ea8c7a12 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目 錄
誌謝…….. i 摘要…….. ii Abstract…. iii 目 錄…… v 表目錄….. viii 圖目錄….. ix 第一章 文獻回顧 1 1.1 金屬射出成形製程 1 1.2 低熱膨脹係數合金 3 1.2.1 Invar Effect 4 1.2.2 Kovar合金 5 1.3 改變熱膨脹係數的因素 7 1.3.1 鎳含量的影響 7 1.3.2 鈷含量的影響 10 1.3.3 碳含量影響 12 1.4 封裝用玻璃簡介 14 1.4.1 玻璃的選擇 14 1.4.2 玻璃的分類 16 1.4.3 玻璃的特性 16 1.5 玻璃封裝製程 18 1.5.1 玻璃封裝的分類 20 1.5.2 金屬的預氧化處理 22 1.5.3 接合處理 26 1.6 研究動機 27 第二章 實驗步驟 28 2.1實驗設計 28 2.2原料 29 2.2.1基礎粉 29 2.2.2黏結劑 34 2.3混煉 35 2.4射出成形 35 2.5溶劑脫脂與熱脫脂 37 2.5.1溶劑脫脂 37 2.5.2熱脫脂 38 2.6燒結 38 2.7性質量測與分析 39 2.7.1硬度及密度測試 39 2.7.2碳含量測試及金相製備 40 2.8 Kovar合金之預氧化處理 40 2.9接合處理 41 2.10可靠度測試 43 2.10.1溫度循環測試 43 2.10.2 熱衝擊測試 43 2.11 測試儀器 44 第三章 結果與討論 45 3.1熱脫脂氣氛對Kovar合金碳含量影響 45 3.2燒結參數選擇與燒結性質 46 3.2.1燒結氣氛 46 3.2.2燒結溫度與持溫時間 52 3.2.3微結構分析 57 3.3玻璃之封裝製程 62 3.3.1黏結劑之去除 62 3.3.2玻璃生胚密度的影響 65 3.4 Kovar合金之預氧化處理 66 3.4.1空氣中預氧化 66 3.4.2溼氮氣中預氧化 70 3.5接合處理 74 3.5.1空氣預氧化組 74 3.5.2溼氮氣預氧化組 81 3.6可靠度測試 85 3.6.1溫度循環測試 85 3.6.2熱衝擊測試 87 第四章 結論 90 第五章 未來工作 92 參考文獻… 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 玻璃封裝 | zh_TW |
| dc.subject | 射出成型 | zh_TW |
| dc.subject | 科瓦合金 | zh_TW |
| dc.subject | glass to metal sealing | en |
| dc.subject | MIM | en |
| dc.subject | Kovar | en |
| dc.title | MIM Kovar合金之燒結性質與玻璃封裝處理 | zh_TW |
| dc.title | Sintered properties and glass sealing behavior of
MIM Kovar alloys | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 韋文誠,莊東漢,范揚樑 | |
| dc.subject.keyword | 玻璃封裝,射出成型,科瓦合金, | zh_TW |
| dc.subject.keyword | glass to metal sealing,MIM,Kovar, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-06-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
