Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65959
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳健輝(Gen-Huey Chen)
dc.contributor.authorYu-Chun Chengen
dc.contributor.author鄭宇淳zh_TW
dc.date.accessioned2021-06-17T00:16:43Z-
dc.date.available2012-07-19
dc.date.copyright2012-07-19
dc.date.issued2012
dc.date.submitted2012-07-02
dc.identifier.citation[1] 'Spectrum policy task force,' Federal Commun. Comm., Washington, DC, Rep. ET Docket. Nov. 2002.
[2] S. Haykin, 'Cognitive radio: brain-empowered wireless communications,' IEEE Journal on Selected Areas in Communications, vol. 23, pp. 201-220, 2005.
[3] J. Mitola, III, 'Cognitive radio for flexible mobile multimedia communications,' in Proc. IEEE International Workshop on Mobile Multimedia Communications, 1999, pp. 3-10.
[4] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, 'NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey,' Computer Networks, vol. 50, pp. 2127-2159, 2006.
[5] J. D. Poston and W. D. Horne, 'Discontiguous OFDM considerations for dynamic spectrum access in idle TV channels,' in Proc. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005, pp. 607-610.
[6] J. C. Jia, Q. Zhang, and X. M. Shen, 'HC-MAC: a hardware-constrained cognitive MAC for efficient spectrum management,' IEEE Journal on Selected Areas in Communications, vol. 26, pp. 106-117, 2008.
[7] C. Cordeiro and K. Challapali, 'C-MAC: a cognitive MAC protocol for multi-channel wireless networks,' in Proc. 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2007, pp. 147-157.
[8] S. Y. Hung, Y. C. Cheng, E. H. K. Wu, and G. H. Chen, 'An opportunistic cognitive MAC protocol for coexistence with WLAN,' in Proc. IEEE International Conference on Communications, 2008, pp. 4059-4063.
[9] Z. Qing, T. Lang, S. Ananthram, and C. Yunxia, 'Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework,' IEEE Journal on Selected Areas in Communications, vol. 25, pp. 589-600, 2007.
[10] K. R. Chowdhury and I. F. Akyildiz, 'Cognitive wireless mesh networks with dynamic spectrum access,' IEEE Journal on Selected Areas in Communications, vol. 26, pp. 168-181, 2008.
[11] A. C. C. Hsu, D. S. L. Weit, and C. C. J. Kuo, 'A cognitive MAC protocol using statistical channel allocation for wireless ad-hoc networks,' in Proc. IEEE Wireless Communications and Networking Conference, 2007, pp. 105-110.
[12] F. Wang, M. Krunz, and S. Cui, 'Price-based spectrum management in cognitive radio networks,' IEEE Journal of Selected Topics in Signal Processing vol. 2, pp. 74-87, 2008.
[13] S. K. Jayaweera and L. Tianming, 'Dynamic spectrum leasing in cognitive radio networks via primary-secondary user power control games,' IEEE Transactions on Wireless Communications, vol. 8, pp. 3300-3310, 2009.
[14] A. T. Hoang, Y. C. Liang, and M. H. Islam, 'Power control and channel allocation in cognitive radio networks with primary users' cooperation,' IEEE Transactions on Mobile Computing, vol. 9, pp. 348-360, 2010.
[15] M. Felegyhazi, M. Cagalj, and J. P. Hubaux, 'Efficient MAC in cognitive radio systems: a game-theoretic approach,' IEEE Transactions on Wireless Communications, vol. 8, pp. 1984-1995, 2009.
[16] L. Ma, X. Han, and C. C. Shen, 'Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks,' in Proc. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005, pp. 203-213.
[17] Q. Zhao, L. Tong, and A. Swami, 'Decentralized cognitive MAC for dynamic spectrum access,' in Proc. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005, pp. 224-232.
[18] H. Nan, T. I. Hyon, and S. J. Yoo, 'Distributed coordinated spectrum sharing MAC protocol for cognitive radio,' in Proc. 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2007, pp. 240-249.
[19] H. Su and X. Zhang, 'Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,' IEEE Journal on Selected Areas in Communications, vol. 26, pp. 118-129, 2008.
[20] H. A. B. Salameh, M. M. Krunz, and O. Younis, 'MAC protocol for opportunistic cognitive radio networks with soft guarantees,' IEEE Transactions on Mobile Computing, vol. 8, pp. 1339-1352, 2009.
[21] D. Qiao and S. Choi, 'New 802.11h mechanisms can reduce power consumption,' IT Professional, vol. 8, pp. 43-48, 2006.
[22] A. T. Hoang and Y. C. Liang, 'Maximizing spectrum utilization of cognitive radio networks using channel allocation and power control,' in Proc. IEEE Vehicular Technology Conference, 2006, pp. 1-5.
[23] H.-H. Chen and M. Guizani, Next Generation Wireless Systems and Networks: Wiley 2006.
[24] J. Mitola, 'Cognitive radio: an integrated agent architecture for software defined radio,' Ph.D thesis, The Royal Institute of Technology (KTH), Stockholm, Sweden, 2000.
[25] M. Timmers, S. Pollin, A. Dejonghe, L. Van der Perre, and F. Catthoor, 'A distributed multichannel MAC protocol for multihop cognitive radio networks,' IEEE Transactions on Vehicular Technology, vol. 59, pp. 446-459, 2010.
[26] S. C. Hung, S. Y. Hung, E. H. K. Wu, and G. H. Chen, 'A decentralized CR system algorithm for cognitive borrowing scheme from primary users,' in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2006, pp. 1-5.
[27] S. Y. Lien, C. C. Tseng, and K. C. Chen, 'Carrier sensing based multiple access protocols for cognitive radio networks,' in Proc. IEEE International Conference on Communications, 2008, pp. 3208-3214.
[28] P. Papadimitratos, S. Sankaranarayanan, and A. Mishra, 'A bandwidth sharing approach to improve licensed spectrum utilization,' IEEE Communications Magazine, vol. 43, pp. supl.10-supl.14, 2005.
[29] A. Sabharwal, A. Khoshnevis, and E. Knightly, 'Opportunistic spectral usage: bounds and a multi-band CSMA/CA protocol,' IEEE/ACM Transactions on Networking, vol. 15, pp. 533-545, 2007.
[30] C. Cordeiro, K. Challapali, D. Birru, and S. Shankar, 'IEEE 802.22: an introduction to the first wireless standard based on cognitive radios,' Journal of Communications, vol. 1, pp. 38-47, 2006.
[31] C. Stevenson, G. Chouinard, L. Zhongding, H. Wendong, S. Shellhammer, and W. Caldwell, 'IEEE 802.22: the first cognitive radio wireless regional area network standard,' IEEE Communications Magazine, vol. 47, pp. 130-138, 2009.
[32] Y. Xing, R. Chandramouli, S. Mangold, and S. S. N, 'Dynamic spectrum access in open spectrum wireless networks,' IEEE Journal on Selected Areas in Communications, vol. 24, pp. 626-637, 2006.
[33] X. R. Zhu, L. F. Shen, and T. S. P. Yum, 'Analysis of cognitive radio spectrum access with optimal channel reservation,' IEEE Communications Letters, vol. 11, pp. 304-306, 2007.
[34] J. Liu and S. Singh, 'ATCP: TCP for mobile ad hoc networks,' IEEE Journal on Selected Areas in Communications, vol. 19, pp. 1300-1315, 2001.
[35] E. H. K. Wu and M. Z. Chen, 'JTCP: jitter-based TCP for heterogeneous wireless networks,' IEEE Journal on Selected Areas in Communications, vol. 22, pp. 757-766, 2004.
[36] C. Casetti, M. Gerla, S. Mascolo, M. Sanadidi, and R. Wang, 'TCP Westwood: end-to-end congestion control for wired/wireless networks,' Wireless Networks, vol. 8, pp. 467-479, 2002.
[37] S. Mascolo, L. Grieco, R. Ferorelli, P. Camarda, and G. Piscitelli, 'Performance evaluation of Westwood+ TCP congestion control,' Performance Evaluation, vol. 55, pp. 93-111, 2004.
[38] I. F. Akyildiz, G. Morabito, and S. Palazzo, 'TCP-Peach: a new congestion control scheme for satellite IP networks,' IEEE/ACM Transactions on Networking, vol. 9, pp. 307-321, 2001.
[39] I. F. Akyildiz, X. Zhang, and J. Fang, 'TCP-Peach+: enhancement of TCP-Peach for satellite IP networks,' IEEE Communications Letters, vol. 6, pp. 303-305, 2002.
[40] A. Lahanas and V. Tsaoussidis, 'Improving TCP performance over networks with wireless components using 'probing devices',' in Proc. IEEE Wireless Communications and Networking Conference, vol. 2, 2002, pp. 642-648.
[41] K. Xu, Y. Tian, and N. Ansari, 'TCP-Jersey for wireless IP communications,' IEEE Journal on Selected Areas in Communications, vol. 22, pp. 747-756, 2004.
[42] F. Wang and Y. Zhang, 'Improving TCP performance over mobile ad-hoc networks with out-of-order detection and response,' in Proc. ACM MOBIHOC, Lausanne, Switzerland, 2002, pp. 217-225.
[43] A. K. Singh and K. Kankipati, 'TCP-ADA: TCP with adaptive delayed acknowledgement for mobile ad hoc networks,' in Proc. Wireless Communications and Networking Conference, vol. 3, 2004, pp. 1685-1690
[44] C. P. Fu and S. C. Liew, 'TCP Veno: TCP enhancement for transmission over wireless access networks,' IEEE Journal on Selected Areas in Communications, vol. 21, pp. 216-228, 2003.
[45] S. Biaz and N. H. Vaidya, 'De-randomizing congestion losses to improve TCP performance over wired-wireless networks,' IEEE/ACM Transactions on Networking, vol. 13, pp. 596-608, 2005.
[46] G. Holland and N. Vaidya, 'Analysis of TCP performance over mobile ad hoc networks,' Wireless Networks, vol. 8, pp. 275-288, 2002.
[47] T. Goff, J. Moronski, D. S. Phatak, and V. Gupta, 'Freeze-TCP: a true end-to-end TCP enhancement mechanism for mobile environments,' in Proc. IEEE International Conference on Computer Communications, vol.3, 2000, pp. 1537-1545.
[48] M. Chinta, A. Helal, and C. Lee, 'ILC-TCP: an interlayer collaboration protocol for TCP performance improvement in mobile and wireless environments,' in Proc. IEEE Wireless Communications and Networking, vol. 2, 2003, pp. 1004-1010.
[49] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, 'A feedback-based scheme for improving TCP performance in ad hoc wireless networks,' IEEE Personal Communications, vol. 8, pp. 34-39, 2001.
[50] E. Altman and T. Jimenez, 'Novel delayed ACK techniques for improving TCP performance in multihop wireless networks,' Personal Wireless Communications, pp. 237-250, 2003.
[51] S. Bhandarkar, N. E. Sadry, A. L. N. Reddy, and N. H. Vaidya, 'TCP-DCR: a novel protocol for tolerating wireless channel errors,' IEEE Transactions on Mobile Computing, pp. 517-529, 2005.
[52] T. Issariyakul, L. S. Pillutla, and V. Krishnamurthy, 'Tuning radio resource in an overlay cognitive radio network for TCP: greed isn't good,' IEEE Communications Magazine, vol. 47, pp. 57-63, 2009.
[53] Y. C. Cheng, E. H. Wu, and G. H. Chen, 'A new wireless TCP issue in cognitive radio networks,' in Proc. International Conference on Networking and Computing, 2010, pp. 49-54.
[54] R.-R. Chen and X. Liu, 'Coexisting with CSMA-based reactive primary users,' in Proc. IEEE Symposium on New Frontiers in Dynamic Spectrum, 2010, pp. 1-7.
[55] M. Thoppian, S. Venkatesan, and R. Prakash, 'CSMA-based MAC protocol for cognitive radio networks,' in Proc. IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2007, pp. 1-8.
[56] S. D. Jones, N. Merheb, and I. J. Wang, 'An experiment for sensing-based opportunistic spectrum access in CSMA/CA networks,' in Proc. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005, pp. 593-596.
[57] Y. Yang, Y. Liu, Q. Shang, and L. Ni, 'Cooperative boundary detection for spectrum sensing using dedicated wireless sensor networks,' in Proc. IEEE International Conference on Computer Communications, 2010, pp. 1-9.
[58] A. W. Min, X. Y. Zhang, and K. G. Shin, 'Spatio-temporal fusion for small-scale primary detection in cognitive radio networks,' in Proc. IEEE International Conference on Computer Communications, 2010, pp. 1-5.
[59] H. Kim and K. G. Shin, 'In-band spectrum sensing in IEEE 802.22 WRANs for incumbent protection,' IEEE Transactions on Mobile Computing, vol. 9, pp. 1766-1779, 2010.
[60] S. M. Mishra, A. Sahai, and R. W. Brodersen, 'Cooperative sensing among cognitive radios,' in Proc. IEEE International Conference on Communications, 2006, pp. 1658-1663.
[61] J. Unnikrishnan and V. V. Veeravalli, 'Cooperative sensing for primary detection in cognitive radio,' IEEE Journal of Selected Topics in Signal Processing, vol. 2, pp. 18-27, 2008.
[62] G. Ganesan and Y. Li, 'Cooperative spectrum sensing in cognitive radio networks,' in Proc. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005, pp. 137-143.
[63] C. You, H. Kwon, and J. Heo, 'Cooperative TV spectrum sensing in cognitive radio for Wi-Fi networks,' IEEE Transactions on Consumer Electronics, vol. 57, pp. 62-67, 2011.
[64] E. Peh and Y. C. Liang, 'Optimization for cooperative sensing in cognitive radio networks,' in Proc. IEEE Wireless Communications and Networking Conference, 2007, pp. 27-32.
[65] K. Kim, I. A. Akbar, K. K. Bae, J. S. Urn, C. M. Spooner, and J. H. Reed, 'Cyclostationary approaches to signal detection and classification in cognitive radio,' in Proc. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2007, pp. 212-215.
[66] K. L. Du and W. H. Mow, 'Affordable cyclostationarity-based spectrum sensing for cognitive radio with smart antennas,' IEEE Transactions on Vehicular Technology, vol. 59, pp. 1877-1886, 2010.
[67] Z. Lu, Y. Ma, and R. Tafazolli, 'A first-order cyclostationarity based energy detection approach for non-cooperative spectrum sensing,' in Proc. International Symposium on Personal Indoor and Mobile Radio Communications, 2010, pp. 554-559.
[68] C. Luo, F. R. Yu, H. Ji, and V. C. M. Leung, 'Cross-layer design for TCP performance improvement in cognitive radio networks,' IEEE Transactions on Vehicular Technology, vol. 59, pp. 2485-2495, 2010.
[69] R. Cole and J. Rosenbluth, 'Voice over IP performance monitoring,' ACM SIGCOMM Computer Communication Review, vol. 31, pp. 9-24, 2001.
[70] G. Bianchi, 'Performance analysis of the IEEE 802.11 distributed coordination function,' IEEE Journal on Selected Areas in Communications, vol. 18, pp. 535-547, 2000.
[71] Network Simulator Version 2. Available: http://www.isi.edu/nsnam/ns
[72] K. C. Leung and V. O. K. Li, 'Transmission control protocol (TCP) in wireless networks: issues, approaches, and challenges,' IEEE Communications Surveys & Tutorials, vol. 8, pp. 64-79, 2006.
[73] T. Lakshman and U. Madhow, 'The performance of TCP/IP for networks with high bandwidth-delay products and random loss,' IEEE/ACM Transactions on Networking, vol. 5, pp. 336-350, 1997.
[74] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas, 'Packet delay analysis of IEEE 802.11 MAC protocol,' Electronics Letters, vol. 39, pp. 1358-1359, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65959-
dc.description.abstract近年來各種軟硬體的提升,使得無線網路通訊技術得以蓬勃發展。然而,這亦使一個問題逐漸浮上檯面,也就是無線網路資源的限制以及現狀的浪費。根據FCC的報告指出,已發出執照的頻譜利用率在離峰時段近乎浪費,而全天平均也僅有15%~85%的利用率。這說明了一件事,也就是無線網路可使用的資源在現在的環境下是被浪費的。若無線網路的利用持續增加,在可預見的將來,這些低使用率的頻譜將會成為一種資源浪費。於是,一種新的無線網路技術在近年逐漸受到關注,也就是所謂的感知型無線電(Cognitive Radio)技術。此一技術使得無照使用者得以利用有照使用者浪費掉的資源,藉以提升整體的使用率。
然而,此一技術的使用必然對於有照使用者帶來影響。於是,再避免對有照使用者產生影響的前提下如何提升整體頻譜使用率,就是感知型無線電的技術發展重點。有鑑於此,我們針對感知型無線電的使用進行了問題的研究,主要面臨下列挑戰。
在媒體存取控制(MAC)層來說,我們有以下挑戰
(1) 如何進行流量的控制以及頻道的選擇以減低對有照使用者的影響
(2) 如何在複數不同配備的感知型無線電使用者之間達成公平議題
在傳輸控制協定(TCP)層來說,我們有以下挑戰
(3) 感知型無線電如何對TCP造成影響,我們是否有辦法解決
本論文的目的在於發展一套高效能感知型無線電的媒體存取控制和傳輸控制協定方法,以期提升頻譜的使用率。對於問題(1),我們提出兩個方法來控制:分別為RTS-CTS-CRTS協定和主動式流量控制。前者對於頻道選擇能產生更好的結果,而後者則可以避免對有照使用者造成過大傷害。我們運用了馬可夫鏈(Markov Chain)來進行數學分析,並且用NS2來進行模擬實驗。
對於問題(2),我們考慮兩種不同的公平性議題:不均勢的主要使用者偵測能力以及不均勢的頻譜單位大小。我們同樣利用馬可夫鏈和NS2來進行分析與驗證。針對此問題,我們提出一個以干擾控制為主的媒體存取控制層解法。主要用意在於藉此避免異質感知型無線電系統下的硬體限制。
對於問題(3),我們利用NS2模擬與自建模型的分析,將感知型無線電環境對於傳輸控制協定造成的影響定義為下列三個事件:主要使用者干涉丟失事件,輕度壅塞事件RTT變動事件。針對此三事件,我們提出三個對應解法,並設計事件處理器來進行改善。最後結果顯示在感知型無線電網路的環境下,我們可以提升相當的效能。
zh_TW
dc.description.abstractWith the increasing of wireless in this dissertation, Radio spectrum is a kind of limited natural resource as well as water and crude oil. Its use is licensed and assigned by governmental agencies. However, according to the statistics of the Federal Communications Commission (FCC), temporal and geographical variations in the utilization of the assigned spectrum range from 15% to 85%. The temporally unused spectrum is referred to as spectrum hole or white space.
A new wireless technology called Cognitive Radio (CR) is introduced to reduce the waste of spectrum resources. CR system dynamically accesses the spectrums to improve overall spectrum usage of frequency bands. However, the access of unlicensed users to licensed spectrums causes interference to the licensed users on the bands.
Therefore, the key of CR design is to improving overall spectrum usage in the constraint of avoiding harmful interference to the licensed users. To achieve our CR design, we focus on the following challenges.
In the MAC layer, we have:
(1) To control CR users’ traffic and channel selection for avoiding interference to licensed users.
(2) To achieve fairness between heterogeneous users in different CR systems
In the TCP layer, we have:
(3) To analysis and solve the impact of CR link to TCP layer
In this dissertation, we develop efficient CR MAC and TCP protocols to improve spectrum utilization. To th first problem, we present two functions: RTS-CTS-CRTS handshaking and active traffic control mechanisms. The RTS-CTS-CRTS handshake mechanism can select a channel with better transmission quality. Then, the active traffic control mechanism is used to control the amount of DATA packets transmitted on the selected channel. We analysis the problem and solution by Markov chains and simulate by NS2.
To the second problem, we study two fairness issues: uncoordinated of PU-detection ability and uncoordinated of spectrum unit size. We propose several Markov-chain models to study the potential unfairness problems. The proposed solution is a jamming-based MAC-layer approach, called probing function, to enhance PU-detection ability and fairness feature. A MAC protocol, called CCR-MAC, is proposed based on the combination of probing function and our previous work on CR MAC to avoid hardware limitation and protect PU’s traffic at the same time.
To problem (3), we verify the ineffectiveness of WTCP in CR environment by NS2 simulation. Afterward, we analysis the cause of throughput decay conditions and concluding them into three events: PU-Interference Loss, Mild-Congestion and RTT-Variance events. To improve TCP throughput, three event handlers are proposed: PU-Interference handler, Faster-Recovery mechanism and RTT-Adjustment function. By applying the three handlers, a cognitive TCP that adapting CR environment, called CR-TCP, is proposed. The results show that CR-TCP improve throughput over 50% in both stable and varying environment while WTCP solutions only improve 10% to TCP-Reno.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:16:43Z (GMT). No. of bitstreams: 1
ntu-101-D95922004-1.pdf: 2489537 bytes, checksum: 5f9533931334f85833098f6849d2e602 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsChapter 1
Motivation 1
1.1 Cognitive Radio (CR) Networks 2
1.2 Related Work 5
1.3 Problems 9
1.3.1 MAC Protocols in CR Networks with Unlicensed Bands 9
1.3.2 MAC Protocols in Heterogeneous CR Networks 11
1.3.3 TCP in CR Networks 15
1.4 Dissertation Overview 18
Chapter 2
MAC Protocols in CR Networks with Unlicensed Bands 19
2.1 Pervious Work 19
2.1.1 Channel Models 20
2.1.2 MAC Protocols 23
2.2 Design of a New MAC Protocol 24
2.2.1 Opportunistic Access 26
2.2.2 Primary User Protection 28
2.3 Performance Evaluation 31
2.3.1 Analytical Results 32
2.3.2 Simulation Results 34
Chapter 3
MAC Protocols in Heterogeneous CR Networks 40
3.1 Pervious Work 40
3.1.1 Heterogeneous CR Networks 41
3.1.2 Unfairness in Heterogeneous CR Networks 41
3.1.3 Channel Models 47
3.2 Design of a New MAC Protocol 50
3.2.1 A Probing Function 52
3.2.2 An Enhanced Probing Function 57
3.3 Performance Evaluation 59
3.3.1 Analytical Results 59
3.3.2 Simulation Results 62
Chapter 4
TCP in CR Networks 70
4.1 Previous Work 70
4.2 Design of a Cognitive TCP 75
4.2.1 Events of CR Networks 75
4.2.2 Bandwidth Capacity Generator and Threshold Finder 78
4.2.3 Event Handlers 82
4.3 Performance Evaluation 88
Chapter 5
Discussion and Conclusion 98
References 101
dc.language.isoen
dc.subject無線網路zh_TW
dc.subject傳輸控制協定zh_TW
dc.subject媒介存取控制zh_TW
dc.subject感知型無線電zh_TW
dc.subjectCognitive Radioen
dc.subjectMACen
dc.subjectTCPen
dc.subjectWireless Networken
dc.title感知型無線網路之隨機傳輸方法zh_TW
dc.titleOpportunistic Transmission Schemes
for Cognitive Radio Systems
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡子傑(Tzu-Chieh Tsai),吳曉光(Eric Hsiaokuag Wu),周承復(Cheng-Fu Chou),胡家正(Chia-Cheng Hu),逄愛君(Ai-Chun Pang)
dc.subject.keyword感知型無線電,媒介存取控制,傳輸控制協定,無線網路,zh_TW
dc.subject.keywordCognitive Radio,MAC,TCP,Wireless Network,en
dc.relation.page107
dc.rights.note有償授權
dc.date.accepted2012-07-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved