Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65908
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor梁博煌
dc.contributor.authorShuo-Fu Yuanen
dc.contributor.author袁碩甫zh_TW
dc.date.accessioned2021-06-17T00:15:03Z-
dc.date.available2015-07-16
dc.date.copyright2012-07-16
dc.date.issued2012
dc.date.submitted2012-07-05
dc.identifier.citation1. Demain, A. L., Newcomb, M., and Wu, J. H. (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69, 124-154.
2. Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. S. (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66, 506-577.
3. Khandeparker, R., and Numan, M. T. (2008) Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 35, 635-644.
4. Yague, E., Beguin, P., and Aubert, J. P. (1990) Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene 89, 61-67.
5. Taylor, E. J., Goyal, A., Guerreiro, C. I., Prates, J. A., Money, V. A., Ferry, N., Morland, C., Planas, A., Macdonald, J. A., Stick, R. V., Gilbert, H. J., Fontes, C. M., and Davies, G. J. (2005) How family 26 glycoside hydrolases orchestrate catalysis on different polysaccharides: structure and activity of a Clostridium thermocellum lichenase, CtLic26A. J Biol Chem 280, 32761-32767.
6. Carvalho, A. L., Goyal, A., Prates, J. A., Bolam, D. N., Gilbert, H. J., Pires, V. M., Ferreira, L. M., Planas, A., Romao, M. J., and Fontes, C. M. (2004) The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. J Biol Chem 279, 34785-34793.
7. Karita, S., Sakka, K., Ohmiya, K. (1996) Cellulose-bindingdomainsconfer an enhancedactivity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J Ferment Bioeng 81, 553-556
8. Henrissat, B., and Davies, G. (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7, 637-644.
9. Zhang, Y. H., Cui, J., Lynd, L. R., and Kuang, L. R. (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7, 644-648.
10. Wang, H. M., Shih, Y. P., Hu, S. M., Lo, W. T., Lin, H. M., Ding, S. S., Liao, H. C., and Liang, P. H. (2009) Parallel gene cloning and protein production in multiple expression systems. Biotechnol Prog 25, 1582-1586.
11. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
12. Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428.
13. Zhang, Z., Xie, J., Zhang, F., and Linhardt, R. J. (2007) Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Anal Biochem 371, 118-120.
14. Lineweaver, H., and Burk, D. (1934) The determination of enzyme dissociation constants. J Am Chem Soc. 56, 658–666
15. Otwinowski, Z., Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326.
16. Emsley, P., Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.
17. Davies, G., and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3, 853-859.
18. Ducros, V., Czjzek, M., Belaich, A., Gaudin, C., Fierobe, H. P., Belaich, J. P., Davies, G. J., and Haser, R. (1995) Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3, 939-949.
19. Pereira, J.H., Chen, Z., McAndrew, R.P., Sapra, R., Chhabra, S.R., Sale, K.L., Simmons, B.A., Adams, P.D. (2010) Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritime. J Struct Biol 172, 372-379.
20. Vlasenko, E., Schulein, M., Cherry, J., and Xu, F. (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101, 2405-2411.
21. Sakon, J., Adney, W. S., Himmel, M. E., Thomas, S. R., and Karplus, P. A. (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35, 10648-10660.
22. Hilge, M., Gloor, S. M., Rypniewski, W., Sauer, O., Heightman, T. D., Zimmermann, W., Winterhalter, K., and Piontek, K. (1998) High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. Structure 6, 1433-1444.
23. Lo Leggio, L., and Larsen, S. (2002) The 1.62 A structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett 523, 103-108.
24. Schagerlof, U., Schagerlof, H., Momcilovic, D., Brinkmalm, G., and Tjerneld, F. (2007) Endoglucanase sensitivity for substituents in methyl cellulose hydrolysis studied using MALDI-TOFMS for oligosaccharide analysis and structural analysis of enzyme active sites. Biomacromolecules 8, 2358-2365.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65908-
dc.description.abstract纖維素及半纖維素為生質能源的主要來源;降解這些長碳鏈多醣物質至單醣分子是需要透過纖維水解酶與半纖維水解酶共同協同作用。在本篇論文中所研究熱纖梭菌Clostridium thermocellum純化出來的雙功能水解酵素Cel5E可同時降解木質纖維素的主要組成纖維素及半纖維素中的聚木醣(xylan)。其纖維水解酶降解纖維素最適溫度及酸鹼值分別為50度和pH 5.0;而聚木醣水解酶降解聚木醣最適溫度及酸鹼值分別為60度和pH 6.0。
藉由薄膜層析法與酵素動力學實驗,顯示CtCel5E分解纖維素比分解聚木醣來的有效率,而鈣、鎂及鍶離子和還原劑DTT皆能增進CtCel5E的雙功能水解活性。第209號麩胺酸(Glu209)及第314號麩胺酸(Glu314)為雙功能水解酵素的催化位置。此外,藉由與纖維雙醣水解酶(β-1,4 glucosidase)的協同作用下,可完全將CtCel5E主要水解產物中的雙醣分子降解成葡萄糖,而這些單醣分子後續可被微生物發酵利用做生產生質酒精之用。據我所知,目前並無任何文獻指出為何5號家族的內切纖維水解酶同時也可辨認異聚木醣,為了找尋哪些胺基酸對於酵素受質專一性是重要的,藉由結晶學實驗,CtCel5E的酵素結構已被成功解出,且利用單定點突變實驗去找出哪些胺基酸對於酵素的水解能力是必要的。與TmCel5A酵素(PDB: 3MMU)的立體結構做比較後,觀察到CtCel5E第274號麩胺酸(Glu274)到第290號天門冬胺酸(Asp290)的位置具有段長度較短且易擺動的結構,且第270號酪胺酸(Tyr270)對於酵素催化過程中扮演重要的角色。再者,第128號精胺酸(Arg128)對於CtCel5E在pH 4.0酸性環境下降解纖維素的過程是重要的。
該酵素與受質共結晶的實驗仍在進行中,相信該實驗未來將會提供更完整關於酵素催化反應機制的資訊,也相信該實驗對於未來生質能源工業應用上有很大的助益。
zh_TW
dc.description.abstractCellulose and hemicellulose are sources of biofuel production. Their degradation into monosaccharide requires action of cellulase (endoglucanase, exoglucanase, and β-glucosidase) and hemicellulase. Cel5E from Clostridium thermocellum belongs to family 5 of the glycoside hydrolases. It shows activity against both cellulose and hemicellulose (xylan), suggesting it is an unusual bifunctional β-1,4 endoglucanase/β-1,4 xylanase. The optimal conditions for endoglucanase and xylanase activities are 50°C, pH 5.0 and 60°C, pH 6.0, respectively.
By thin-layer chromatography (TLC) analysis and kinetic assays, CtCel5E displays a higher catalytic efficiency on hydrolysis of cellulose than on hydrolysis of xylan. In addition, some metal ions and chemical reagents such as Ca2+, Mg2+, Sr2+ as well as Dithiothreitol (DTT) can improve both endoglucanase and xylanase activities of CtCel5E. Glu209 and Glu314 were identified as the catalytic sites for its dual-activities. Besides, CtCel5E displays obvious synergistic effects with β-1,4 glucosidase, which can further degrade cellulolytic biomass into fermentable sugars. To my knowledge, there is no literature explained why family 5 endoglucanase can also hydrolyze heteroxylan. In order to investigate which amino residues are responsible for substrate specificity, CtCel5E was crystallized. Crystals of CtCel5E have been obtained using sitting drop method, and structure has been determined. To distinguish amino acids essential for catalysis, mutagenesis experiments were performed. By structures superimposition with TmCel5A (PDB: 3MMU), residues from Glu274 to Asp290 may be a shorter flexible loop and Tyr270 play crucial role in enzyme catalysis. Moreover, Arg128 is important for CtCel5E cellulase to function at pH 4.0.
Crystallization of ligand-bound CtCel5E is underway, and we believe it can provide detailed information for structure-based engineering, leading to potential biofuel industrial applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:15:03Z (GMT). No. of bitstreams: 1
ntu-101-R99b46005-1.pdf: 2136061 bytes, checksum: 920dc03fc315eddf841425622acc688c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要........................................1
ABSTRACT........................................2
ABBREVIATIONS...................................4
(1)INTRODUCTION
1.1 Looking for alternative energy source.......5
1.2 Cell wall polysaccharides...................5
1.3 Glycoside hydrolases........................6
1.4 Clostridium thermocellum....................7
1.5 Specific aim of this study..................8
(2) MATERIALS AND METHODS
2.1 Reagents..................................10
2.2 Bacterial strain and growth condition.....10
2.3 Cloning of recombinant enzymes............10
2.4 Expression and purification of recombinant enzymes....11
2.5 Determination of enzymatic activity...................12
2.6 Qualitative binding analysis of CtCel5E...............13
2.7 Determination of enzyme pH stability..................14
2.8 Measurement of melting temperature and CD spectra.....14
2.9 Effect of metal ions and chemical reagents............14
2.10 Analysis of hydrolytic end products..................15
2.11 Determination of enzyme kinetic......................16
2.12 Assessment of synergy................................16
2.13 Site-directed mutagenesis............................16
2.14 Crystallization of CtCel5E...........................17
2.15 X-ray data collection and processing.................18
2.16 Structure determination and refinement...............18
(3) RESULTS
3.1 Cloning, expression and characterization of CtCel5E catalytic derivatives..19
3.2 Carbohydrate-binding activity of CtCel5E..............20
3.3 Determination of the substrate specific activities of CtCel5E.............21
3.4 Effect of chemical reagents and metal ions............22
3.5 Analysis of hydrolytic products by thin-layer chromatography (TLC) .....23
3.6 Synergy between CtCel5E and β-glucosidase Novozyme 188............23
3.7 Identification of CtCel5E catalytic residues..........24
3.8 Overall structure of CtCel5E......................... 24
3.9 Comparison with other GH5 endoglucanases..............26
3.10 Residues from E274 to D290 of CtCel5E may play a role in substrate binding.....................................26
3.11 R128 is important for CtCel5E catalysis at pH 4.0....28
(4) DISCUSSION............................................30
REFERENCE.................................................34
TABLE.....................................................38
FIGURE....................................................42
dc.language.isozh-TW
dc.subject突變zh_TW
dc.subject纖維素&#37238zh_TW
dc.subject結晶結構zh_TW
dc.subject半纖維素&#37238zh_TW
dc.subject生質能源zh_TW
dc.subjectbiofuelen
dc.subjecthemicellulaseen
dc.subjectcellulaseen
dc.subjectcrystal structureen
dc.subjectmutagenesisen
dc.title熱纖梭菌之纖維水解與半纖維水解雙功能酵素的蛋白質結構分析與工程改造zh_TW
dc.titleStructure and Engineering of Clostridium thermocellum Cel5E, a Bifunctional Endoglucanase/Xylanaseen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙裕展,何孟樵
dc.subject.keyword纖維素&#37238,半纖維素&#37238,生質能源,結晶結構,突變,zh_TW
dc.subject.keywordcellulase,hemicellulase,biofuel,crystal structure,mutagenesis,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2012-07-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
2.09 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved