Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65891
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorJian-Yu Chenen
dc.contributor.author陳建宇zh_TW
dc.date.accessioned2021-06-17T00:14:40Z-
dc.date.available2012-07-18
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-06
dc.identifier.citationReferences
Chapter 1
1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science, 1992, 258, 1474-1476.
2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789-1791.
3. R. H. Friend, G. J. Denton, J. J. M. Halls, N. T. Harrison, A. B. Holmes, A. Kohler,
A. Lux, S. C. Moratti, K. Pichler, N. Tessler, K. Towns, and H. F. Wittmann, Solid
State Commun. 102, 249 (1997).
4. T. J. Savenije, J. M. Warman, and A. Goossens, Chem. Phys. Lett. 287, 148 (1998).
5. D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen and D. S. Ginley, Thin Solid Films, 2006, 496, 26-29.
6. N. Sekine, C. H. Chou, W. L. Kwan and Y. Yang, Org. Electron., 2009, 10, 1473-1477.
7. E. J. D. Klem, D. D. MacNeil, P. W. Cyr, L. Levina and E. H. Sargenta, Applied Physics Letters, 2007, 90.
8. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero and J. van de Lagemaat, Applied Physics Letters, 2008, 92.
9. S. Berson, R. De Bettignies, S. Bailly and S. Guillerez, Adv. Funct. Mater., 2007, 17, 1377-1384.
10. R. A. Hatton, N. P. Blanchard, V. Stolojan, A. J. Miller and S. R. P. Silva, Langmuir, 2007, 23, 6424-6430.
11. Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray and L. P. Yu, Adv. Mater., 2010, 22, E135-+.
12. T. Y. Chu, J. P. Lu, S. Beaupre, Y. G. Zhang, J. R. Pouliot, S. Wakim, J. Y. Zhou, M. Leclerc, Z. Li, J. F. Ding and Y. Tao, J. Am. Chem. Soc., 2011, 133, 4250-4253.
Chapter 2
1. http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx
2. J.Rostalski, D.Meissner, Solar Energy Materials and Solar cells, 61, 87 (2000).
3. http://blog.chron.com/sciguy/2011/05/new-technology-could-capture-solar-energy-now-wasted/
4. G.A.Chamberlain: Organic solar cell: A review. Solar Cells 8, 47 (1983).
5. D.Wohrle and D.Meissner: Organic solar cells. Adv. Mater. 3, 129 (1991).
6. H.Hooppe et al.: Organic solar cells : An overview. J.Mater.Res. Vol.19, No.7, Jul (2004).
7. G. Juˇska, K. Arlauskas, M. Vili‾unas, Phys. Rev. Letts. 84, 21 (2000).
8. Jason B. Baxter, Eray S. Aydil , Journal of Crystal Growth 274 (2005) 407–411.
9. N.E. Hsu, W.K. Hung, and Y.F. Chen, J. Appl. Phys. 96, 4671 (2004).
10. http://www.uni-potsdam.de/u/physik/fprakti/ANLEIW4.pdf .
11. P.Peumans, A.Yakimov, and S.R.Forrest: Small molecular weight organic thin-filmphotodetectors and solar cells. J.Appl.Phys.93,3693 (2003).
12. L.A.A.Pettersson, L.S.Roman, and O.Inganas: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J.Appl.Phys.86,487 (1999).
13. C.W.Tang: Two-layer organic photovoltaic cell. Appl. Phys.Lett.48,183 (1986).
14. J.Rostalski and D.Meissner: Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol.Energy Mater.sol.Cells 63,37 (2000).
15. N.S.Sariciftci, L.smilowitz, A.J.Heeger, and F.Wudl: Photoinduced electron transfer from a conducting polymer to buck-minsterfullerene. Science 258,1474(1992).
16. M. Hiramoto, Y. Kishigami, and M.Yokoyama: Doping effect on the two-layer organic solar cell. Chem.Lett.19,119 (1990).
17. J.J.M.Halls, K.Pichler, R.H. Friend, S.C.Moratti, and A.B. Holmes:Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68, 3120 (1996).
18. J.J.M.Halls and R.H.Friend: The photovoltaic effect in a poly (p-phenylenevinylene)/perylene heterojunction.Synth.Met.85,1307 (1997).
19. N.S.Sariciftci, D.Braun, C.Zhang, V.I.Srdanov, A.J. Heeger, G.Stucky, and F.Wudl:Semiconducting polymerbuckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells.Appl.Phys.Lett.62,585 (1993).
20. L.S.Roman, W.Mammo, L.A.A.Petterson, M.R.Anderson, and O.Inganas: High quantum efficiency polythiophene/C60 photodiodes.Adv.Mater.10,774 (1998).
Chapter 3
1. V. K. Zworyjin, J. Hiller, and R. L. Snyder, ASTM Bull. 117, 15 (1942).
2. G.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin,
Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York
and London (1981).
Chapter 4
1. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem. 2009, 19, 5442–5451.
2. F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, Sol. Energy Mater. Sol. Cells 2009, 93, 422–441.
3. R. H. Friend, G. J. Denton, J. J. M. Halls, N. T. Harrison, A. B. Holmes, A. Kohler, A. Lux, S. C. Moratti, K. Pichler, N. Tessler, K. Towns, and H. F. Wittmann, Solid State Commun. 1997, 102, 249–258.
4. T. J. Savenije, J. M. Warman, and A. Goossens, Chem. Phys. Lett. 1998, 287, 148–153.
5. D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, Thin Solid Films 2006, 496 , 26–29.
6. H. Y. Chen,J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y.Wu, and G. Li, Nat. Photonics 2009, 3, 649–653.
7. J. Weickert, F. Auras, T. Bein, L. Schmidit-Mende, J. Phys. Chem. C 2011, 115, 15081–15088.
8. Y. Y. Lin, T. H. Chu, S. S. Li, C. H. Chang, C. H. Chang, W. F. Su, C. P. Chang, M. W. Chu, C. W. Chen, J. Am. Chem. Soc. 2009, 131, 3644–3649.
9. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, Appl. Phys. Lett. 2006, 89, 143517-1–143517-3.
10. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Appl. Phys. Lett. 2009, 93, 221107-1–221107-3.
11. F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrom, and M. S. Pedersen, Energy Environ. Sci. 2010, 3, 512–525.
12. F. C. Krebs, T. Tromholt, and M. Jorgensen, Nanoscale 2010, 2, 873–886.
13. F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 465–475.
14. F. C. Krebs, Org. Electron. 2009, 10, 761–768.
15. P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, J. Phys. Chem. B 2006, 110, 7635–7639.
16. J. S. Huang, C. Y. Chou, M. Y. Liu, K. H. Tsai, W. H. Lin, and C. F. Lin, Org. Electron. 2009, 10, 1060–1065.
17. K. Takanezawa, K. Hirota, Q. Wei, K. Tajima, and K. Hashimoto, J. Phys. Chem. C 2007, 111, 7218–7223.
18. A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O’Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, J. Mater. Chem. 2006, 16, 2088–2096.
19. N. Sekine, C. H. Chou, W. L. Kwan, and Y. Yang, Org. Electron. 2009, 10, 1473–1477.
20. Y. Y. Lin, Y. Y. Lee, L. Chang, J. J. Wu, and C. C. Chen, Appl. Phys. Lett. 2009, 94, 063308-1–063308-3.
21. R. Thitima, C. Patcharee, S. Takashi, and Y. Susumu, Solid State Electron. 2009, 53, 176–180.
22. T. C. Monson, M. T. Lloyd, D. C. Olson, Y. J. Lee, and J. W. P. Hsu, Adv. Mater. 2008, 20, 4755–4759.
23. X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, Adv. Func. Mater. 2010, 20, 4381–4387.
24. R. K. Pandey, K. A. Suresh, and V. Lakshminarayanan, J. Colloid Interf. Sci. 2007, 315 , 528–536.
25. J. Ouyang, Nano Reviews 2010, 1, 5118-DOI:10,3402/nano.v1io.5118.
26. J. Veres, S. Ogier, G. Lloyd, and D. de Leeuw, Chem. Mater. 2004, 16, 4543–4555.
27. R. J. Kline, M. D. McGehee, and M. F. Toney, Nat. Mater. 2006, 2, 222–228.
28. M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films 1997, 306, 78–85.
29. L. Vayssieres, Adv. Mater. 2003, 15, 464–466.
30. J. Singh, J. Im, J.E. Whitten, J.W. Soares, D.M. Steeves, Langmuir 2009, 25, 9947–9953.
31. N. R. Armstrong, P. A. Veneman, E. Ratcliff, D. Placenica, M. Brumbach, Acc. Chem. Res. 2009, 42, 1748–1757.
32. C. J. Barbec, N. S. Sariciftci, and J. C. Hummelen, Adv. Func. Mater. 2011, 11, 15–26.
33. Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T. –S. Wee, and R. H. Friend, Appl. Phys. Lett. 2010, 97, 033309-1–033309-3.
34. S. K. Hau, H. L. Yip, H. Ma, and A. K. Y. Jen, Appl. Phys. Lett. 2008, 93, 233304-1–23304-3.
35. Y. M. Sung, F. C. Hsu, C. T. Chen,W. F. Su, and Y. F. Chen, Sol. Energy Mater. Sol. Cells, 2012, 98, 103–109.
36. The lowest unoccupied molecular level (LUMO and the highest occupied molecular level (HOMO) of 2-NT molecule was obtained based on our cyclic voltammetry measurement.
37. T. C. Monson, M. T. Lloyd, D. C. Olson, Y. J. Lee, and J. W. P. Hsu, Adv. Mater. 2008, 20, 4755–4759.
38. X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, Adv. Func. Mater. 2010, 20, 4381–4387.
39. G. Juška, K. Arlauskas, M. Viliūnas, and J. Kočka, Phys. Rev. Lett. 2000, 22, 4946–4949.
40. A. J. Mozer, N. S. Sarciftci, A. Pivrikas, R. Osterbacka, G. Juška, L. Brassat, and H. Bassler, Phys. Rev. B 2005, 71, 035214-1–035214-9.
41. A. J. Mozer, N. S. Sariciftci, L. Lutsen, D. Vanderzande, R. Osterbacka, M. Westerling, and G. Juška, Appl. Phys. Lett. 2005, 86, 112104-1–112104-3.
42. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864 – 868.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65891-
dc.description.abstract介面的性質是聚合物/金屬氧化物混摻太陽能電池的一項重要課題,其對有機太陽能電池效能的表現有著重大的影響。在本實驗中,我們選用2-萘硫醇(2-Naphthalenethiol,2-NT)這種可溶性的導電小分子作為修飾氧化鋅奈米柱表面的特性。接著在修飾過後的氧化鋅奈米柱上用旋轉塗佈的方式鋪上混和均勻的高分子(P3HT:PCBM)為主動層,最後鍍上銀電極完成元件。
我們發現此種分子會提升主動層和氧化鋅之間的相容性;能在氧化鋅表面鍵結形成電偶極,藉由此電偶極能夠有效的改善激子分離的效率並且加速電荷從主動層到氧化鋅奈米柱的轉移;以及能增加電荷傳輸網絡的路徑。這幾項優點能夠使得短路電流密度(Jsc)、開路電壓(Voc)和填充因子(FF)大幅提升,與未用此分子修飾過的太陽能電池元件相比,效率從 1.86% 增加至 3.71%,整整提升100%,目前為止,我們的研究在全世界 ITO/ZnO-nanorod/ (P3HT:PCBM)/Ag 的系統下為最高的紀錄。
zh_TW
dc.description.abstractInterface property is one of the important issues in optimizing the performance of hybrid polymer/metal-oxide solar cells. We select a soluble conductive small molecule, 2-naphthalenethiol (2-NT), to modulate the surface property of the oriented ZnO-nanorod arrays before contacting with the polymer blend in an inverted hybrid solar cell configuration. This conductive molecule enhances the compatibility between polymer blend and metal-oxide; enlarges the exciton separation efficiency and subsequent charge transfer rate into the bulk of nanorods by the bond dipole field; improves the ordering of charge transport network. As a result, there is a substantial improvement in photocurrent, open circuit voltage, and fill factor leading to double the power conversion efficiency of the unmodified device from 1.86% to 3.71%. This value sets the record of the highest efficiency reported to date based on ITO/ZnO-nanorod/poly(3-hexythiophene):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM)/Ag configuration.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:14:40Z (GMT). No. of bitstreams: 1
ntu-101-R98245001-1.pdf: 10754180 bytes, checksum: 67f2cfd4fe59ad257e1c5addbb39c2a0 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
口試委員會審定書 ……………………………………………………Ⅰ
致謝 ……………………………………………………………………Ⅱ
中文摘要 ………………………………………………………………Ⅲ
英文摘要 ………………………………………………………………Ⅳ
Chapter 1 Introduction ………………………………………………1
Reference ………………………………………………………………4
Chapter 2 Theoretical Background …………………………………6
2.1 The Principle of Solar Cells ………………………………6
2.1.1 Solar Spectrum ………………………………………………6
2.1.2 Photovoltaic Effect ………………………………………8
2.1.3 Short Circuit Current ……………………………………9
2.1.4 Open Circuit Voltage ……………………………………11
2.1.5 Filling Factor and Efficiency …………………………12
2.1.6 Device Analysis ……………………………………………13
2.1.7 Mobility Measurement by CELIV …………………………13
2.2 Semiconductor and Organic Semiconductors ………………15
2.2.1 ZnO Nanorods ………………………………………………15
2.2.2 Organic Materials …………………………………………17
2.3 Organic Solar Cells Structure ……………………………19
2.3.1 Bilayer Heterojunction …………………………………19
2.3.2 Bulk Heterojunction ………………………………………20
Reference ………………………………………………………………22
Chapter 3 Equipment and Material Design ………………………24
3.1 Scanning Electron Microscopy ………………………………24
3.2 Thermal Evaporation …………………………………………26
3.3 Incident Photon-to-Current Efficiency …………………27
3.4 J-V Measurement System and Solar Simulator ……………28
3.5 Photoluminescence ……………………………………………30
3.6 Time-Resolved Photoluminescence …………………………32
Reference ………………………………………………………………35
Chapter 4 Enhanced Performance in Hybrid Polymer/ZnO-nanorod Solar Cells Assisted by Conductive Small Molecules………………………………………………………………36
4.1 Introduction ……………………………………………………36
4.2 Experiment ………………………………………………………39
4.3 Results and Discussion ………………………………………41
4.4 Summary …………………………………………………………50
4.5 Figures …………………………………………………………51
4.6 Tables ……………………………………………………………55
Reference ………………………………………………………………56
Chapter 5 Conclusion ………………………………………………61
dc.language.isoen
dc.subject有機無機混摻太陽能電池zh_TW
dc.subject表面修飾zh_TW
dc.subject導電分子zh_TW
dc.subject氧化鋅奈米柱zh_TW
dc.subject介面電偶極zh_TW
dc.subjectorganic/inorganic hybrid solar cellsen
dc.subjectsurface modificationen
dc.subjectconductive moleculeen
dc.subjectZnO-nanorodsen
dc.subjectinterfacial dipolesen
dc.title藉由導電小分子之高效率有機/氧化鋅奈米柱混摻太陽能電池zh_TW
dc.titleHigh Performance of Organic/ZnO-nanorod Hybrid Solar Cells Assisted by Conductive Small Moleculesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor許芳琪(Fang-Chi Hsu)
dc.contributor.oralexamcommittee林唯芳(Wei-Fang Su)
dc.subject.keyword有機無機混摻太陽能電池,表面修飾,導電分子,氧化鋅奈米柱,介面電偶極,zh_TW
dc.subject.keywordorganic/inorganic hybrid solar cells,surface modification,conductive molecule,ZnO-nanorods,interfacial dipoles,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2012-07-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
10.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved