請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65889完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林金全 | |
| dc.contributor.author | Ming-Yi Hsu | en |
| dc.contributor.author | 徐明義 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:14:38Z | - |
| dc.date.available | 2014-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-05 | |
| dc.identifier.citation | [1.1] M. I. AI-Joboury and D. W. Turner, J. Chem. Phys., 1962, 37, 3007.
[1.2] Y. J. Jung, Y. S. Kim, W. K. Kang, and K. H. Jung, J. Chem. Phys. 1997, 107, 7187. [1.3] K. Miiller-Dethlefs, M. Ssander,and E. W. Schlag, Z. Naturforsch., 1984, 39a, 1089. [1.4] L. Zhu,and P. Johnson, J. Chem Phys., 1991, 94, 5769. [1.5] J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 1972, 8, 143. [1.6] A. J. R. Heck, W. M. Huo, R. N. Zare and D. W. Chandler, J . Mol .Spectrosc ., 1995, 173, 452. [1.7] G. Porter, Proc. R. Soc. London, Ser. A, 1950, 9, 60. [1.8] J. K. Cashion and J. C. Polanyi, J. Chem. Phys., 1959, 30, 317. [1.9] R. N. Zare and P. J. Dagdigian, Science, 1974, 185, 739. [1.10] J. L. Kinsey, Annu. Rev. Phys. Chem., 1977, 28, 349. [1.11] J. J. Valentini, Spectrometric Techniques, Academic, Lodon, 1985. [1.12] M. N. R. Ashfold and J. D. Howe, Annu. Rev. Phys. Chem., 1994, 45, 57, and references therein. [1.13] R. W. Diesen, J. C. Wahr and S. E. Adler, J. Chem. Phys., 1969, 50, 3635. [1.14] S. J. Riley and K. R. Wilson, Faraday Discuss. Chem. Soc., 1972, 53, 132. [1.15] A. J. Orr-Ewing and R. N. Zare, Annu. Rev. Phys. Chem., 1994, 45, 315. [1.16] L. Schnieder, W. Meier, K. H. Welge, M. N. R. Ashfold and C. M. Western, J. Chem. Phys., 1990, 92, 7027. [1.17] R. N. Dixon, D. W. Hwang, X. F. Yang, S. Harich, J. J. Lin and X. Yang, Science, 1999, 285, 1249. [1.18] J. A. Mueller, S. A. Rogers and P. L. Houston, J. Phys. Chem. A, 1998, 102, 9666. [1.19] C. Lin, M. F. Witinski and H. F. Davis, J. Chem. Phys., 2003, 119, 251. [1.20] R. N. Zare and D.R. Herschbach, Proc. IEEE, 1963, 51, 173. [1.21] R. N. Zare PhD thesis, Cambridge: Harvard Univ., 1964 [1.22] R. Schmiedl, H. Dugan, W. Meier and K. Welgc, Z. Phys. A, 1982, 304, 137. [1.23] J. L. Kinsey, J. Chem. Phys., 1977, 66, 2560. [1.24] R. N. Zare and D. R. Herschbach, Proc. IEEE, 1963, 51, 173. [1.25] L. McDonnell,and A. J. R. Heck, J. Mass Spectroscopy, 1998, 33, 415. [1.26] S. Yang,and R. Bersohn, J. Chem. Phys., 1974, 61, 4400. [1.27] G. Inoue, M. Kawasaki, H. Szto, T. Kikuchi, S. Kobayashi,and T. Arikawa, J. Chem. Phys., 1987, 87, 5722. [1.28] G. E. Busch, R. T. Mahoney, R. I. Morse, and K. R. Wilson, J. Chem. Phys., 1969, 51, 449, 837. [1.29] R. N. Zare, Mol. Photochem, 1972, 4, 1. [1.30] J. C. Polanyi, Acct. Chem. Res., 1972, 5, 161. [1.31] M. D. Person, P.W. Kash, S. A. Schofield, and L. J. Butler, J. Chem. Phys., 1991, 95, 3843. [1.32] M. D. Person, P. W. Kash, and L. J. Butler, J. Chem. Phys., 1992, 97, 355. [1.33] P. W. Kash, G. C. G. Waschewsky, L. J. Butler, and M. M. Francl, J. Chem. Phys., 1993, 99, 4479. [1.34] P. W. Kash, G. C. G. Waschewsky, R. E. Morse, L. J. Butler, and M. M. Francl, J. Chem. Phys., 1994, 100, 3463. [1.35] P. W. Kash, G. C. G. Waschewsky, and L. J. Butler, J. Chem. Phys.,1994, 100, 4017. [1.36] F. Zhang, W.-J. Ding, and W.-H. Fang, J. Chem. Phys., 2006, 125, 184305. [1.37] W.-J. Ding, W.-H. Fang, R.-Z. Liu, and De-Cai Fang, J. Chem. Phys., 2002, 117, 8745. [1.38] A. J. Marks, J. Chem. Phys., 2004, 120, 1271. [1.39] M.-C. Bacchus-Montabonel, N. Vaeck, B. Lasorne, and M. Desouter-Lecomte, Chem. Phys. Lett., 2003, 374, 307. [1.40] B. Lasorne, M.-C. Bacchus-Montabonel, N. Vaeck, and M. Desouter-Lecomte, J. Chem. Phys., 2004, 120, 1271. [1.41] R. Valero and D. G. Truhlar, J. Chem. Phys., 2006, 125,194305. [1.42] C. Zhu and H. Nakamura, J. Chem. Phys., 1994, 101, 10630. [1.43] C. Zhu and H. Nakamura, J. Chem. Phys., 1995, 102, 7448. [1.44] H. Nakamura and D. G. Truhlar, J. Chem. Phys., 2001, 115, 10353. [1.45] H. Nakamura and D. G. Truhlar, J. Chem. Phys., 2002, 117, 5576. [1.46] H. Nakamura and D. G. Truhlar, J. Chem. Phys., 2003, 118, 6816. [2.1] J. Solomon, J. Chem. Phys., 1967, 47, 889. [2.2] L. McDonnell,and A. J. R. Heck, J. Mass Spectroscopy, 1998, 33, 415. [2.3] D. W. Chandler,and P. L. Houston, J. Chem. Phys., 1987, 87, 1445. [2.4] A. Eppink and D. H. Parker, Rev. Sci. Instrum., 1997, 68, 3477. [2.5] E. Wrede, S. Laubach, S. Schulenberg, A. Brown, A. J. Orr-Ewing and M. N. R. Ashfold, J. Chem. Phys., 2001, 114, 2629. [2.6] N. Yonekura, C. Gebauer, H. Kohguchi and T. Suzuki, Rev. Sci. Instrum., 1999, 70, 3265. [2.7] A. I. Chichinin, T. S. Einfeld, C. M. Maul and K. H. Gericke, Chem. Phys. Lett., 2004, 390, 50. [2.8] D. H. Parker, R. F. Delmdahl, B. Bakker and H. P. Loock, J. Chin. Chem. Soc., 2001, 48, 327. [2.9] R. L. Toomes, P. C. Samartzis, T. P. Rakitzis and T. N. Kitsopoulos, Chem. Phys., 2004, 301, 209. [2.10] A. E. Pomerantz and R. N. Zare, Chem. Phys. Lett., 2003, 370, 515. [2.11] O. Kaufmann, A. Ekers, K. Bergmann, N. Bezuglov, K. Miculis, M. Auzinsh and W. Meyer, J. Chem. Phys., 2003, 119, 3174. [2.12] H. L. Offerhaus, C. Nicole, F. Lepine, C. Bordas, F. Rosca-Pruna and M. J. J. Vrakking, Rev. Sci. Instrum., 2001, 72, 3245. [2.13] A. V. Davis, R. Wester, A. E. Bragg and D. M. Neumark, J. Chem. Phys., 2003, 118, 999. [2.14] B. Y. Chang, R. C. Hoetzlein, J. A. Mueller, J. D. Geiser and P. L. Houston, Rev. Sci. Instrum., 1998, 69, 1665. [2.15] A. J. R. Heck and David Chandler, Annu. Rev. Phys. Chem., 1995, 46, 355. [2.16] M. J. J. Vrakking, Rev. Sci. Instrum., 2001, 72, 4084. [2.17] S. Manzhos and H. P. Loock, Comput. Phys. Commun., 2003, 154, 76. [2.18] V. Dribinski, A. Ossadtchi, V. A. Mandelshtam and H. Reisler, Rev. Sci. Instrum., 2002, 73, 2634. [2.19] C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulosand T. N. itsopoulos, Rev. Sci. Instrum., 2001, 72, 3848. [2.20] D. A. Chestakov, S. M. Wu, G. R. Wu, D. H. Parker, A. T. J. B. Eppink and T. N. Kitsopoulos, J. Phys. Chem. A, 2004, 108, 8100. [2.21] J. J. Lin, J. Zhou, W. Shui, K. Liu, Rev. Sci. Instrum., 2003, 74, 2495. [2.22] D. Townsend, M. P. Minitti,and A. G. Suits, Rev. Sci. Instrum., 2003, 74, 2530. [2.23] K. Tonokura and T. Suzuki, Chem. Phys. Lett., 1994, 224, 1. [2.24] T. Kinugawa and T. Arikawa, J. Chem. Phys., 1992, 96, 4801. [3.1] T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum., 1997, 68, 3477. [3.2] D. H. Parker and A. T. J. B. Eppink, J. Chem. Phys., 1997, 107, 2357. [4.1] R. Valero and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194305. [4.2] R. N. Zare and D. R. Herschbach, Proc. IEEE, 1963, 51, 173. [4.3] R. N. Zare, Mol. Photochem., 1972, 4, 1. [4.4] Y. Liu and L. J. Butler, J. Chem. Phys., 2004, 121, 11016. [4.5] J. T. Muckerman, J. Phys. Chem., 1989, 93, 179. [4.6] S. Aprepalli, N. Presser, D. Robie, and R. J. Gordon, Chem. Phys. Lett., 1985, 118, 88. [4.7] M.-S. Park, Y.-J. Jung, S.-H. Lee, D.-C. Kim, K.-H. Jung, Chem. Phys. Lett., 2000, 322, 429. [5.1] M. D. Person, P. W. Kash, and L. J. Butler, J. Chem. Phys., 1992, 97, 355. [5.2] P. W. Kash, G. C. G. Waschewsky, L. J. Butler, and M. M. Francl, J. Chem. Phys., 1993, 99, 4479. [5.3] F. Zhang, W.-J. Ding, and W.-H. Fang, J. Chem. Phys., 2006, 125, 184305. [5.4] W.-J. Ding, W.-H. Fang, R.-Z. Liu, and De-Cai Fang, J. Chem. Phys., 2002, 117, 8745. [5.5] R. Valero and D. G. Truhlar, J. Chem. Phys., 2006, 125,194305. [5.6] G. E. Busch and K. R. Wilson, J. Chem. Phys., 1972, 56, 3626. [5.7] W. S. McGivern, R. Li, P. Zou, and S. W. North, J. Chem. Phys., 1999, 111, 5771. [5.8] K. W. Lee, Y.-J. Jee, and K.-H. Jung, J. Chem. Phys., 2002, 116, 4490. [5.9] W. S. McGivern, R. Li, P. Zou, and S. W. North, J. Chem. Phys., 1999, 111, 5771. [5.10] K. W. Lee, Y.-J. Jee, and K.-H. Jung, J. Chem. Phys., 2002, 116, 4490. [5.11] Z.-R. Wei, X.-P. Zhang, W.-B. Lee. B. Zhang, and K.-C. Lin, J. Chem. Phys., 2009, 130, 014307. [5.12] X. Tang, B. J. Ratliff, B. L. FitzPatrick, L. J. Butler, J. Phys. Chem. B, 2008, 112, 16050. [5.13] L. R. McCunn, M. J. Krisch, K. Takematsu, L.J. Butler, and J. N. Shu, J. Phys. Chem. A, 2004, 108,7889. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65889 | - |
| dc.description.abstract | 在本論文中利用(2+1)共振增強多光子游離(resonance-enhanced multiphoton ionization,REMPI)結合離子速度影像(velocity ion imagimg),來研究一系列的溴化醯氯分子在234~235nm波長下的Norrish type I光分解反應。反應物吸光後經由1[n(O)π*(C=O)]躍遷至S1激發態,斷鍵生成Cl或Br原子。我們所測得的溴乙醯氯、2-溴丙醯氯與3-溴丙醯氯的C-Br/C-Cl斷鍵分支比(branching ratio)依序是0.47、0.35與0.047,參考Butler所發表的文獻中,溴乙醯氯與3-溴丙醯氯的C-Br/C-Cl斷鍵分支比分別為0.4與<0.05,顯示我們的實驗值符合其他文獻。但根據統計理論計算的預測,溴乙醯氯與2-溴丙醯氯的C-Br/C-Cl斷鍵分支比應約為30與2,因此只考慮分子在絕熱位能面(adiabatic PES)下光解的位能障礙是不夠的,還必須考慮非絕熱躍遷(nonadiabatic transition)對斷鍵選擇性造成的影響。
原子碎片的分支比主要受兩點影響:(1)光解路徑(2)分子內Br與CO發色團的距離。正如先前文獻所解釋的,因為n(O)π*(C=O)與np(Cl)σ*(C-Cl)位能面的非絕熱耦合能(diabatic coupling)很大,使得C-Cl斷鍵來自於分子躍遷至S1激發態後沿著絕熱路徑分解;另一方面n(O)π*(C=O)與np(Br)σ*(C-Br)的非絕熱耦合能很小,對於溴乙醯氯和2-溴丙醯氯而言,C-Br斷鍵會傾向於S1激發態經由非絕熱路徑產生激發態產物,而非先前文獻所推測的此通道被抑制了,然而3-溴丙醯氯光分解後的可用能量不足以生成激發態產物,造成此通道被抑制了。以上所推測的光解路徑均有原子碎片的動能分佈圖與激發態產物能量計算來佐證。 除此之外本論文還測得二次分解所產生的CO碎片,以及基態與激發態原子碎片的分支比,而此分支比必須仰賴含有自旋軌道耦合作用力(spin-orbit coupling)的理論計算才可解釋。 | zh_TW |
| dc.description.abstract | We conduct the photodissociation experiments of bromoacetyl chloride and two isomers of bromopropionyl chlorides by using (2+1) resonance-enhanced multiphoton ionization (REMPI) technique combined with velocity map ion imaging. Our goal is to study Norrish type I a-bond cleavage at 234~235 nm via a 1[n(O) --> p*(C=O)] transition. The parent molecules are photoexcited to lowest electronic excited state S1 causing the C-Br or C-Cl bond breaking and we can measure the bond fission branching by the ion intensity. The bromoacetyl chloride, 2- and 3-bromopropionyl chlorides yielding the branching ratios of C-Br/C-Cl bond fission is 0.47, 0.35, and 0.047 respectively. Results from this study qualitatively agree with Bulter’s previous studies at 193 nm. Their branching ratios of C-Br/C-Cl are 0.4 and <0.05 for bromoacetyl chloride and 3-bromopropionyl chloride, where they utilized similar method but the statistical predictions is 30 and 2 respectively. They conclude that its results are not controlled by the relative exit barriers of adiabatic PESs, but by the probatility of nonadiabaticity. As suggested previously, the C-Cl bond fission is anticipated to follow an adiabatic reaction curve, for a strong diabatic coupling between the n(O)π*(C=O) and np(Cl)σ*(C-Cl) bands. In contrast, for the C-Br bond fission which is subject to much weaker coupling strength between n(O)π*(C=O) and np(Br)σ*(C-Br), a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride leading to the excited state products that are energetically accessible. For 3-bromopropionyl chloride, the available energy cannot reach the excited state products such that the C-Br bond fission has to proceed via the adiabatic pathway with severe nonadiabatic suppression. The proposed mechanisms are supported by observation of a small fraction of Br translational energy disposal and the energy calculations of excited state products. The spin-orbit state-specific translational energy and angular distributions of halogen atoms resulting from the competitive bond fission are also obtained. Aside from the atomic fragments, the CO fragments are detected and believed to result from a secondary decomposition of the moieties with enough internal energy deposition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:14:38Z (GMT). No. of bitstreams: 1 ntu-101-R99223168-1.pdf: 3659047 bytes, checksum: 0b1e76305da4bf7e6086658056ebfd01 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 光分解概述 1 1-2 光游離概述 4 1-3 光解動力學的歷史發展 9 1-4 常見的光分解問題探討 13 1-4-A 光解碎片的角度分佈 13 1-4-B 光解碎片分支比 16 1-4-C 光解碎片的能量分配 17 1-5 溴化醯氯光解簡介與研究動機 19 參考文獻 22 第二章 離子影像技術簡介 25 2-1 離子影像技術的歷史發展 25 2-2 速度離子影像的原理 28 2-2-A 光分解 29 2-2-B 光游離 30 2-2-C 二維投影 31 2-2-D 還原三維分佈 33 2-3 切片離子影像技術 36 2-4-A 延遲脈衝場切片(delay pulsed-field extraction slicing) 36 2-4-B 直流場切片(DC slicing) 38 2-4-C 光學切片(optical slicing) 39 2-4-D 都卜勒切片(Doppler slicing) 40 參考文獻 42 第三章 儀器裝置與理論計算簡介 44 3-1 雷射系統 44 3-2 真空系統 46 3-3 超音速分子束 47 3-4 離子透鏡 49 3-5 偵測系統 50 3-6 理論計算簡介 52 3-6-A Hatree-Fock theory (HF) 53 3-6-B Density functional theory 54 3-6-C 基底函數(Basis set) 56 參考文獻 59 第四章 實驗與結果 60 4-1 實驗方法 60 4-2 理論計算 62 4-3 結果 63 4-3-A 光解碎片與雷射光強度的依賴性 64 4-3-B 光解碎片Cl與Cl*的離子影像 65 4-3-C 光解碎片Br與Br*的離子影像 71 4-3-D 光解碎片的分支比 76 參考文獻 79 第五章 討論 80 5-1 光解機制 80 5-2 光解碎片的總動能 87 5-3 光解碎片的角度分佈 89 5-4 CO的生成途徑 90 參考文獻 92 第六章 結論 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 溴乙醯氯 | zh_TW |
| dc.subject | 光分解 | zh_TW |
| dc.subject | 共振增強多光子游離 | zh_TW |
| dc.subject | 速度離子影像 | zh_TW |
| dc.subject | 分子動態學 | zh_TW |
| dc.subject | veloticy map ion image | en |
| dc.subject | photodissociation | en |
| dc.subject | bromoacetyl chloride | en |
| dc.subject | REMPI | en |
| dc.subject | molecular dynamics | en |
| dc.title | 光分解之非絕熱機制與斷鍵選擇性探討 | zh_TW |
| dc.title | Nonadiabatic Effect on the Branching Ratio between C-Br and C-Cl Bond Fission in Photodissociations of Bromoacetyl Chloride, 2- and 3-Bromopropionyl Chlorides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 倪其焜,林志民 | |
| dc.subject.keyword | 溴乙醯氯,光分解,共振增強多光子游離,速度離子影像,分子動態學, | zh_TW |
| dc.subject.keyword | bromoacetyl chloride,photodissociation,REMPI,veloticy map ion image,molecular dynamics, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
