請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65885
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝志豪 | |
dc.contributor.author | Yi-Chun Yeh | en |
dc.contributor.author | 葉怡君 | zh_TW |
dc.date.accessioned | 2021-06-17T00:14:33Z | - |
dc.date.available | 2014-07-16 | |
dc.date.copyright | 2012-07-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-05 | |
dc.identifier.citation | Agogué H, Lamy D, Neal PR, Sogin ML, Herndl GJ. (2011). Water mass‐specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 20: 258-274.
Andersson AF, Riemann L, Bertilsson S. (2010). Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J 4: 171-181. Azam F. (1998). Microbial control of oceanic carbon flux: the plot thickens. Science 280: 694-695. Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML. (2006). The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985-2991. Borcard D, Legendre P, Drapeau P. (1992). Partialling out the spatial component of ecological variation. Ecology 73: 1045-1055. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108: 4516-4522. Casamayor EO, Barberán A. (2010). Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Microb Ecol 59: 1-10. Chamberlain SA, Hovick SM, Dibble CJ, Rasmussen NL, Van Allen BG, Maitner BS et al. (2012). Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta‐analysis. Ecol Lett 15: 627-636. Chang J, Chiang KP, Gong GC. (2000). Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium, Trichodesmium, in southern East China Sea. Cont Shelf Res 20: 479-492. Chiang KP, Kuo MC, Chang J, Wang RH, Gong GC. (2002). Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Cont Shelf Res 22: 3-13. Cottenie K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8: 1175-1182. Cushman SA, McGarigal K. (2004). Patterns in the species–environment relationship depend on both scale and choice of response variables. Oikos 105: 117-124. De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D et al. (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15: 740-747. De Wit R, Bouvier T. (2006). ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8: 755-758. Drakare S, Liess A. (2010). Local factors control the community composition of cyanobacteria in lakes while heterotrophic bacteria follow a neutral model. Freshwat Biol 55: 2447-2457. Edgar R. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113. Edgar RC. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. Fenchel T, Finlay BJ. (2004). The ubiquity of small species: patterns of local and global diversity. Bioscience 54: 777-784. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. (2009a). Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA 106: 22427-22432. Galand PE, Potvin M, Casamayor EO, Lovejoy C. (2009b). Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J 4: 564-576. Gong GC, Lee Chen YL, Liu KK. (1996). Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Cont Shelf Res 16: 1561-1590. Gong GC, Wen YH, Wang BW, Liu GJ. (2003). Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res II 50: 1219-1236. Griffith DA, Peres-Neto PR. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87: 2603-2613. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. (2008). Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5: 235-237. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. (2012). Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Micro 10: 497-506. Holyoak M, Leibold MA, Holt RD (2005). Metacommunities: Spatial Dynamics And Ecological Communities. The University of Chicago Press. Howeth JG, Leibold MA. (2010). Species dispersal rates alter diversity and ecosystem stability in pond metacommunities. Ecology 91: 2727-2741. Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA et al. (2007). Microbial population structures in the deep marine biosphere. Science 318: 97-100. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM. (2007). Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8: R143. Keymer DP, Lam LH, Boehm AB. (2009). Biogeographic patterns in genomic diversity among a large collection of Vibrio cholerae isolates. Appl Environ Microbiol 75: 1658-1666. Langenheder S, Ragnarsson H. (2007). The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 88: 2154-2161. Langenheder S, Berga M, Ostman O, Szekely AJ. (2012). Temporal variation of β-diversity and assembly mechanisms in a bacterial metacommunity. ISME J 6: 1107-1114. Lee HJ, Chao SY. (2003). A climatological description of circulation in and around the East China Sea. Deep Sea Res II 50: 1065-1084. Lee S, Fuhrman JA. (1987). Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53: 1298-1303. Legendre P, Anderson MJ. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69: 1-24. Leibold M, Holyoak M, Mouquet N, Amarasekare P, Chase J, Hoopes M et al. (2004). The metacommunity concept: a framework for multi‐scale community ecology. Ecol Lett 7: 601-613. Lindström ES, Langenheder S. (2012). Local and regional factors influencing bacterial community assembly. Environ Microbiol Reports 4: 1-9. Logue JB, Mouquet N, Peter H, Hillebrand H. (2011). Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26: 482-491. Lozupone C, Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71: 8228-8235. Papke RT, Ward DM. (2004). The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48: 293-303. Pedrós-Alió C. (2012). The Rare Bacterial Biosphere. Annu Rev Mar Sci 4: 449-466. Peres-Neto PR, Legendre P, Dray S, Borcard D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614-2625. Price MN, Dehal PS, Arkin AP. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26: 1641-1650. Riemann L, Steward GF, Azam F. (2000). Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66: 578-587. Smith VH. (2007). Microbial diversity–productivity relationships in aquatic ecosystems. FEMS Microbiol Ecol 62: 181-186. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR et al. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103: 12115-12120. Staley JT. (1997). Biodiversity: are microbial species threatened? Curr Opin Biotechnol 8: 340-345. Tada Y, Taniguchi A, Nagao I, Miki T, Uematsu M, Tsuda A et al. (2011). Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol 77: 4055-4065. Teira E, Gasol JM, Aranguren-Gassis M, Fernández A, González J, Lekunberri I et al. (2008). Linkages between bacterioplankton community composition, heterotrophic carbon cycling and environmental conditions in a highly dynamic coastal ecosystem. Environ Microbiol 10: 906-917. Verreydt D, De Meester L, Decaestecker E, Villena M-J, Van Der Gucht K, Vannormelingen P et al. (2012). Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities. Ecol Lett 15: 218-226. Wang Q, Garrity GM, Tiedje JM, Cole JR. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-5267. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. (2002). Phylogenies and community ecology. Annu Rev Ecol Syst 33: 475-505. Winegardner AK, Jones BK, Ng I, Siqueira T, Cottenie K. (2012). The terminology of metacommunity ecology. Trends Ecol Evol 27: 253-254. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65885 | - |
dc.description.abstract | 細菌是否具有生物地理分布一直受到許多討論,傳統認為細菌族群量大、播遷能力高及世代交替時間短,因此其播遷應不受任何地理屏障的限制,當地的環境條件才是唯一的影響因子。但已有研究發現即便在海洋環境,細菌的群集分布仍受水團限制,顯示出海洋中的物理屏障會影響細菌的分布。而聯合群集理論是檢視環境因子與物種播遷對於聯合群集的相對影響力。因此本篇研究即以南東海海域的細菌聯合群集為對象,測試決定其聯合群集結構的影響因子是否受季節性水文變化的影響。南東海海域是一個具有季節性水文變化的環境,其環境的異質性及水團的混合程度皆隨季節而有所不同,我們將群集以整體為單位檢視春、夏、冬三個季節的聯合群集結構,並進一步將群集區分成四個主要的優勢群(包含Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria and Actinobacteria)探討不同的分類群受環境因子的影響與其播遷能力是否有所不同。為了探討此議題,我們提出一個新的分析方法,此一分析方法將生物的系統演化資訊納入生物多樣性的考量,以distance-based redundancy analysis將生物多樣性的變異區分成可被環境以及空間解釋的兩個成分,並以環境及空間解釋的顯著力判定兩者的影響力。結果顯示,整體群集結構在五月(春天)顯著的被環境及空間因子所解釋,但在十二月(冬天)與八月(夏天)環境和空間對於群集結構皆沒有任何解釋力。當我們將群集區分成四個分類群以檢視不同分類群是否有不同的群集結構時,結果顯示五月(春天)所有分類群都受環境因子解釋,其中Alphaproteobacteria同時被環境與空間所解釋。而十二月(冬天)的各分類群則展現不同的聯合群集結構,其中以Gammaproteobacteria 受空間因子解釋;而Alphaproteobacteria 的分布則被環境因子所影響。在八月(夏天)的各分類群則都不被空間及環境因子解釋。本篇研究結果顯示聯合群集的決定因子會有季節性的變化,原因可能是洋流的季節性變化造成南東海海域的環境異質性及水團混合度不同所造成的。此外不同分類群所展現的不同聯合群集結構也顯示出分類群間具有不同的播遷能力。 | zh_TW |
dc.description.abstract | Metacommunities theory examines the relative contribution of local environmental conditions versus dispersal processes in shaping community structure. We test the hypothesis that the determinism of bacterial metacommunities dynamics in the southern East China Sea (ECS) varies depending on seasonal hydrography, as the degree of environmental heterogeneity and connectivity among habitat patches is determined by circulation pattern. We analyzed metacommunities for the whole community as well as four dominant taxonomic groups (i.e. Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria and Actinobacteria). We proposed a new analytical framework to include phylogenetic information into estimating β-diversity and used the distance-based redundancy analysis to partition the β-diversity into environmental and geographic components. When considering the whole community, environmental and spatial predictors were both significant in explaining β-diversity in May, during which the connectivity is intermediate. When connectivity is low (December) or too high (August), neither predictor was significant. Concerning the responses of different taxonomic groups, we found that all groups were explained by the environmental component in May, except for Alphaproteobacteria, which was influenced by both environmental and spatial effects. However in December, different groups exhibited different metacommunities structures; Alphaproteobacteria were influenced by environmental component, but Gammaproteobacteria were significantly explained by spatial component. In August, only Gammaproteobacteria was explained by environmental component. In conclusion, our results suggested that the determinism of metacommunities dynamics varied seasonally likely depending on the degree of the connectivity. Moreover, mechanisms vary among different taxonomic groups, suggesting that differential dispersal capacity among phylogenetic groups should be integrated into community assembly theory. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:14:33Z (GMT). No. of bitstreams: 1 ntu-101-R99241207-1.pdf: 2348963 bytes, checksum: 4aa1c812afa8c6e96cd2ec0902e03c77 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試論文審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents vi Introduction 1 Materials and Methods 6 Environmental settings in the East China Sea 6 Sequencing analysis 7 Environmental factors 8 Data Analysis 9 Results 14 Distribution of class groups across the southern East China Sea 14 Similarity of communities across spatial-temporal scale 14 Relative contribution of environmental and spatial predictors in explaining the whole community 15 Relative contribution of environmental and spatial predictors in explaining different class groups 16 Discussion 17 Seasonal variation in metacommunities dynamics of the whole community 17 Differential metacommunities dynamics of different taxonomic groups 18 Determinisms of metacommunities dynamics depends on hydrography 20 The difference between β-diversity in unweighted and weighted Unifrac 21 The implications to further observational metacommunities studies 22 Figure references 24 Table references 32 References 34 Appendix 41 | |
dc.language.iso | en | |
dc.title | 南東海的季節性水文環境對細菌聯合群聚的影響 | zh_TW |
dc.title | Determinism of bacterial metacommunities dynamics in the southern East China Sea varies depending on seasonal hydrography | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 三木健,夏復國,于宏燦,陳俊堯 | |
dc.subject.keyword | 細菌生物地理分布,環境篩選,播遷限制,洋流,聯合群集理論,系統演化,焦磷酸定序, | zh_TW |
dc.subject.keyword | bacterial biogeography,environmental filtering,dispersal limitation,circulation,metacommunities theory,phylogeny,pyrosequencing, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。