請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65866
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉懷勝(Hwai-Shen Liu) | |
dc.contributor.author | Yun-Chi Chen | en |
dc.contributor.author | 陳勻錡 | zh_TW |
dc.date.accessioned | 2021-06-17T00:14:02Z | - |
dc.date.available | 2017-07-20 | |
dc.date.copyright | 2012-07-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-09 | |
dc.identifier.citation | Anfinsen C.B., Anson M.L., Edsall J.T., Richards F.M., Advances in protein chemistry, Academic press, New York and London, 1968; 23; 122-127
Anfinsen C.B., Haber E., Sela M., White F. H., Kinetics of formation of native ribonuclease during oxidation of reduced polypeptide chain, Proceedings of the national academy of sciences of the United States of America, 1961; 47; 1309-1314 Anfinsen C.B., Principles that govern folding of protein chains, Science, 1973; 181; 223-230 Armstrong F. B., Biochemistry, Oxford university press, New York, 1989 Baldwin R.L., Rose G.D., Is protein folding hierarchic? II. Folding intermediates and transition states, Trends in biochemical sciences, 1999; 24; 77-83 Baneyx F., Recombinant protein expression in Escherichia coli, Current opinion in biotechnology, 1999; 10; 411-421 Batas B., Chaudhuri J.B., Considerations of sample application and elution during size-exclusion chromatography-based protein refolding, Journal of chromatography A, 1999; 864; 229-236 Batas B., Chaudhuri J.B., Protein refolding at high concentration using size-exclusion chromatography, Biotechnology and bioengineering, 1996; 50; 17-23 Batas B., Jones H.R., Chaudhuri J.B., Studies of the hydrodynamic volume changes that occur during refolding of lysozyme using size-exclusion chromatography, Journal of chromatography A, 1997; 766; 109-119 Batas B., Schiraldi C., Chaudhuri J.B., Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography, Biotechnology, 1999; 68; 149-158 Benkerroum N. Antimicrobial activity of lysozyme with special relevance to milk, African journal of biotechnology 2008; 7; 4856-4867 Blake C.C.F., Koenig D.F., Mair G.A., North A.C.T., Phillips D.C., Sarma V.R., Structure of hen egg-white lysozyme: a 3-dimensional fourier synthesis at 2a resolution, Nature, 1965; 206; 757-761 Boys B.L., Konermann L., Folding and assembly of hemoglobin monitored by electrospray mass spectrometry using an on-line dialysis system, American society for mass spectrometry, 2007; 18; 8-16 Bulaj G., Kortemme T., Goldenberg D.P., Ionization-reactivity relationships for cysteine thiols in polypeptides, Biochemistry, 1998; 37; 8965-8972 Buswell A.M., Middelberg A.P.J., A new kinetic scheme for lysozyme refolding and aggregation, Biotechnology and Bioengineering, 2003; 83; 567-577 Cabrita L.D., Dobson C.M., Christodoulou J., Protein folding on the ribosome, Current opinion in structural biology, 2010; 20; 33-45 Campbell M. K., Biochemistry, Saunders college pub., Philadelphia, 1999 Campbell M.K., Biochemistry, Thomson/Brooks/Cole, United States, 2009 Canfield R.E., Liu A.K., Disulfide bonds of egg white lysozyme, Journal of biological chemistry, 1965; 240; 1997-2002 Canfield R.E., Osserman E., Beychok S., Lysozyme, Academic press, New York, 1974. Cao P., Mei J.J., Diao Z.Y., Zhang S.Q., Expression, refolding, and characterization of human soluble BAFF synthesized in Escherichia coli, Protein expression and purification, 2005; 41; 199-206 Castellanos I.J., Crespo R., Griebenow K., Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres, Journal of controlled release, 2003; 88; 135-145 Chang C.C., Yeh X.C., Lee H.T., Lin P.Y., Kan L.S., Refolding of lysozyme by quasistatic and direct dilution reaction paths: a first-order-like state transition, Physical review E, 2004; 70; 011904 Chen J., Liu Y., Li X., Wang Y., Ding H., Ma G., Su Z., Cooperative effects of urea and L-arginine on protein refolding, Protein expression and purification, 2009; 66; 82-90 Chen Y. and Leong S.S.J., High productivity refolding of an inclusion body protein using pulsed-fed size exclusion chromatography, Process biochemistry, 2010; 45; 1570-1576 Clark E.D., Protein refolding for industrial processes. Current opinion in biotechnology, 2001; 12; 202-207 Clark E.D.B., Hevehan D., Szela S., Maachupalli-Reddy J., Oxidative renaturation of hen egg-white lysozyme. Folding vs aggregation, Biotechnology Progress, 1998; 14; 47-54 Clark E.D.B., Refolding of recombinant proteins, Current opinion in biotechnology, 1998; 9; 157-163 Cleland W.W., Dithiothreitol, a new protective reagent for SH groups, Biochemistry, 1964; 3; 480-482 Creighton E.T., Protein folding coupled to disulphide-bond formation. Mechanisms of protein folding, Edited by R. H. Pain, 2000; 250-278 Cunningham F.E., Proctor V.A., Goetsch S.J., Egg-white lysozyme as a food preservative, Worlds poultry science journal, 1991; 47; 141-163 Delfini C., Cersosimo M., Del Prete V., Strano M., Gaetano G., Pagliara A., Ambro S., Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts, Journal of agricultural and food chemistry, 2004; 52; 1861-1866 Dickerson R.E., The structure and action of proteins, Harper & row, New York, 1969 Ding Y., Chuan Y.P., He L., Middelberg A.P.J., Dispersive mixing and intraparticle partitioning of protein in size-exclusion chromatographic refolding, Journal of chromatography A, 2011; 1218; 8503-8510 Dinner A.R., Sali A., Smith L.J., Dobson C.M., Karplus M., Understanding protein folding via free-energy surfaces from theory and experiment, Trends in biochemical sciences, 2000; 25; 331-339 Divsalar A., Saboury A.A., Moosavi-Movahedi A.A., Mansoori-Torshizi H.,Comparative analysis of refolding of chemically denatured-lactoglobulin types A and B using the dilution additive mode, International journal of biological macromolecules, 2006; 38; 9-17 Dobson C. M., Protein folding and misfolding, Nature, 2003; 426; 884-890 Dobson C.M., Evans P.A., Radford S.E., Understanding how proteins fold: the lysozyme story so far, Trends in biochemical sciences, 1994; 19; 31-37 Dong X.Y., Huang Y., Sun Y., Refolding kinetics of denatured-reduced lysozyme in the presence of folding aids, Journal of biotechnology, 2004; 114; 135-142 Duan H.Y., Zeng X.D., Tang B.Y., Liu X.T., Lan G.H., Wei W.Z., Luo S.L. Cooperative effect of guanidinium chloride and urea on lysozyme refolding, Analytical letters, 2009; 42; 2625-263 Englander S.W., Protein folding intermediates and pathways studied by hydrogen exchange, Annual review of biophysics and biomolecular structure, 2000; 29; 213-238 Ersoy M., Matic S., Schmidt S.R., On-column refolding of corticotropin-releasing factor receptor 1 extracellular domain by size exclusion chromatography, Biomedical chromatography, 2009; 23; 1121-1128 Esposito G., Garcia J., Mangione P., Giorgetti S., Corazza A., Viglino P., Chiti F., Andreola A., Dumy P., Booth D., Hawkins P.N., Bellotti V., Structural and folding dynamic properties of the T70N variant of human lysozyme, Journal of biological chemistry, 2003; 278; 25910-25918 Fahlgren A., Hammarström S., Danielsson Å., Hammarström M.L., Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis, Clinical and experimental immunology, 2003; 131; 90-101 Fan X.D., Xu D.S., Lu B., Xia J., Wei D.Z., Improving the refolding of NTA protein by urea gradient and arginine gradient size-exclusion chromatography, Journal of biochemical and biophysical methods, 2008; 70; 1130-1138 Fan X.D., Xu D.S., Lu B., Xia J., Wei D.Z., Refolding and purification of rhNTA protein by chromatography, Biomedical chromatography, 2009; 23; 257-266 Farshbaf M., Katoh Y., Morimoto T., Udaka T., Katsuda T., Katoh S., Control of aggregate formation in refolding of carbonic anhydrase at high urea concentrations and effects of urea removal, Journal of chemical engineering of Japan, 2001; 34; 743-747 Fischer B., Sumner I., Goodenough P., Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia-coli as inclusion-bodies, Biotechnology and bioengineering, 1993; 41; 3-13 Fleming A. On a remarkable bacteriolytic element found in tissues and secretions, Proceedings of the royal society of London series b-containing papers of a biological character, 1922; 93; 306-317 Freydell E.J., Bulsink Y., van Hateren S., van der Wielen L.A.M., Eppink M.H.M., Ottens M. Size-exclusion simulated moving bed chromatographic protein refolding, Chemical engineering science, 2010b; 65; 4701-4713 Freydell E.J., van der Wielen L.A.M., Eppink M.H.M., Ottens M., Ion-exchange chromatographic protein refolding, Journal of chromatography A, 2010a; 1217; 7265-7274 Freydell E.J., van der Wielen L.A.M., Eppink M.H.M., Ottens M., Size-exclusion chromatographic protein refolding fundamentals, modeling and operation, Journal of chromatography A, 2010c; 1217; 7723-7737 Fursova K.K., Laman A.G., Melnik B.S., Semisotnov G.V., Kopylov P.Kh., Kiseleva N.V., Nesmeyanov V.A., Brovko F.A., Refolding of scFv mini-antibodies using size-exclusion chromatography via arginine solution layer, Journal of chromatography B, 2009; 877; 2045-2051 Gao Y.G., Guan Y.X., Yao S.J., Cho M.G., Refolding of lysozyme at high concentration in batch and fed-batch operation, Korean journal of chemical engineering, 2002; 19; 871-875 Garrett R., Biochemistry, Thomson Brooks/Cole, Belmont, Califonia, 2007 Geng X., Wang C., Protein folding liquid chromatography and its recent developments, Journal of chromatography B, 2007; 849; 69-80 Ghezzi P., Regulation of protein function by glutathionylation, Free radical research, 2005; 39; 573-580 Goldberg M.E., Rudolph R., Jaenicke R., A kinetic study of the competition between renaturation and aggregation during the refolding of denatured reduced egg white lysozyme, Biochemistry, 1991; 30; 2790-2797 Goto M., Fujita T., Sakono M., Furusaki S., Important parameters affecting efficiency of protein refolding by reversed micelles, Biotechnology progress, 2000; 16; 1079-1085 Grznarova G., Polakovic M., Acai P., Gorner T., Extra-column dispersion of macromolecular solutes in aqueous-phase size-exclusion chromatography, Journal of chromatography A, 2004; 1040; 33-43 Gu Z., Su Z., Janson J.C. Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding, Journal of chromatography A, 2001; 918; 311-318 Gu Z., Zhu X. N., Ni S.W., Zhou H.M., Su Z., Inhibition of aggregation by media selection, sample loading and elution in size exclusion chromatographic refolding of denatured bovine carbonic anhydrase B, Journal of biochemical and biophysical methods, 2003; 56; 165-175 Gu Z.Y., Zhu X., Ni S.W., Su Z., Zhou H.M, Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation, International journal of biochemistry & cell biology, 2004; 36; 795-805 Guan Y.X., Pan H.X., Gao Y.G., Yao S.J., Cho M.G., Refolding and purification of recombinant human interferon-γ expressed as incousion bodies in Escherichia coli using size exclusion chromatography, Biotechnology and bioprocess engineering, 2005; 10; 122-127 Gurbhele-Tupkar M.C., Perez L.R., Silva Y., Lees W.J., Rate enhancement of the oxidative folding of lysozyme by the use of aromatic thiol containing redox buffers, Bioorganic & medicinal chemistry, 2008; 16; 2579-2590 Haber E., Anfinsen C.B., Regeneration of enzyme activity by air oxidation of reduced subtilisin-modified ribonuclease, Journal of biological chemistry, 1961; 236; 422-424 Hagen A.J., Hatton T.A., Wang D.I.C., Protein refolding in reversed micelles, Biotechnology and bioengineering, 1990a; 35; 955-965 Hagihara Y., Aimoto S., Fink A.L., Goto Y., Guanidine hydrochloride-induced folding of proteins, Journal of molecular biology, 1993; 231; 180-184 Hamada H., Shiraki K., L-argininamide improves the refolding more effectively than L-arginine, Journal of biotechnology, 2007; 130; 153-160 Harrowing S. R., Chaudhuri J.B., Effect of column dimensions and flow rates on size-exclusion refolding of beta-lactamase, Journal of biochemical and biophysical methods, 2003; 56; 177-188 Hash J. H., Lysozyme, Academic Press, New York, 1974 Hevehan D.L., Clark E.D.B., Oxidative renaturation of lysozyme at high concentrations, Biotechnology and bioengineering, 1997; 54; 221-230 Huw L., Zhou R., Thirumalai D., Berne B.J., Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding, Proceedings of the national academy of sciences of the United States of America, 2008; 105; 16928-16933 Hunter T., Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation an dsignaling, Cell, 1995; 80; 225-236 Hwang S.M., Kang H.J., Bae S.W., Chang W.J., Koo Y.M., Refolding of lysozyme in hydrophobic interaction chromatography: effects of hydrophobicity of absorbent and salt concentration in mobile phase, Biotechnology and bioprocessing engineering, 2010; 15; 213-219 Ibrahim H.R., Aoki T., Pellegrini A., Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules, Current pharmaceutical design, 2002; 8; 671-693 Ishii Y., Teshima T., Kondo A., Murakami K., Sonezaki S., Ogawa H. I., Kato Y., Fukuda H., Operation conditions of enzyme refolding by chaperonin and recycle system using ultrafiltration, Chemical engineering journal, 1997; 65; 151-157 Jaenicke R., Folding and association of proteins, Progress in biophysics & molecular biology, 1987; 49; 117-237 Jaenicke R., Reassociation and reactivation of lactic-dehydrogenase from unfolded subunits, European journal of biochemistry, 1974; 46; 149-155 Johnson L.N., Phillips D.C., Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 a resolution, Nature, 1965; 206; 761-763 Juneja J., Udgaonkar J.B., NMR studies of protein folding, Current science, 2003; 84; 157-172 Jungbauer A., Chromatographic media for bioseparation, Journal of chromatography A, 2005; 1065; 3-12 Jungbauer A., Kaar W., Current status of technical protein refolding, Journal of biotechnology, 2007; 128; 587-596 Katoh S., Sezai Y., Yamaguchi T., Katoh Y., Yagi H., Nohara D., Refolding of enzymes in a fed-batch operation, Process biochemistry, 1999; 35; 297-300 Katoh Y., Farshbaf M., Kurooka N. Nohara D., Katoh S., High yield refolding of lysozyme and carbonic anhrdrase at high protein concentrations, Journal of chemical engineering of Japan, 2000; 33; 773-777 Kiefhaber T., Rudolph R., Kohler H.H., Buchner J., Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation, Biotechnology, 1991; 9; 825-829 Kim K.R., Kwon D.Y., Yoon S.H., Kim W.O., Kim K.H., Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase, Protein expression and purification, 2005; 39; 124-129 Lai W., Middelberg A., The production of human papillomavirus type 16 L1 vaccine product from Escherichia coli inclusion bodies, Bioprocess and biosystems engineering, 2002; 25; 121-128 Lanckriet H, Middelberg APJ., Continuous chromatographic protein refolding, Journal of chromatography A, 2004; 1022; 103-113 Lee R.C., Despa F., Guo L., Betala P., Kuo A., Thiyagarajan P., Surfactant copolymers prevent aggregation of heat denatured lysozyme, Annals of biomedical engineering, 2006; 34; 1190-1200 Li M., Su Z.G., Janson J.C., In vitro protein refolding by chromatographic procedures, Protein expression and purification, 2004; 33; 1-10 Lilie H., Schwarz E., Rudolph R., Advances in refolding of proteins produced in E-coli, Current opinion in biotechnology, 1998; 9; 497-501 Liu H.S., Chang C.K., Chaperon solvent plug to enhance protein refolding in size exclusion chromatography, Enzyme and microbial technology, 2003; 33; 424-429 London J, Skrzynia C., Goldberg M.E., Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers, European journal of biochemistry, 1974; 47; 409-415 Lu D., Liu Z., Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation, Journal of physical chemistry B, 2008; 112; 15127-15133 Lyles M.M., Gilbert H.F., Catalysis of the oxidative folding of ribonuclease-a by protein disulfide Isomerase: dependence of the rate on the composition of the redox buffer, Biochemistry, 1991; 30; 613-619 Maachupalli-Reddy J., Kelley B.D., Clark E.D.B., Effect of inclusion body contaminants on the oxidative renaturation of hen egg white lysozyme, Biotechnology progress, 1997; 13; 144-150 Madar D.J., Patel A.S., Lees W.J., Comparison of the oxidative folding of lysozyme at a high protein concentration using aromatic thiols versus glutathione, Journal of biotechnology, 2009; 142; 214-219 Maeda Y., Koga H., Yamada H., Ueda T., Imoto T., Effective renaturation of reduced lysozyme by gentle removal of urea, Protein engineering, 1995; 8; 201-205 Maeda Y., Yamada H., Ueda T., Imoto T., Effect of additives on the renaturation of reduced lysozyme in the presence of 4 M urea, Protein rngineering, 1996; 9; 461-465 Makrides S.C., Strategies for achieving high-level expression of genes in Escherichia coli, Microbiological reviews, 1996; 60; 512-538 Malchesky P.S., Artificial orangs 2011: a year in review, Artificial organs, 2012; 36; 291-323 Mannall G.J., Titchener-Hooker N.J., Dalby P.A., Factors affecting protein refolding yields in a fed-batch and batch-refolding system, Biotechnology and bioengineering, 2007; 97; 1523-1534 Marchal R., Chaboche D., Douillard R., Jeandet P., Influence of lysozyme treatments on champagne base wine foaming properties, Journal of agricultural and food chemistry, 2002; 50; 1420-1428 Marden M., Griffon N., Poyart C., Oxygen delivery and autoxidation of hemoglobin, Transfusion clinique et biologique, 1995; 2; 473-480 Marston F.A.O., The purification of eukaryotic polypeptides synthesized in Escherichia-coli, Biochemical journal, 1986; 240; 1-12 Masschalck B., Michiels C.W., Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria, Critical reviews in microbiology, 2003; 29; 191-214 Matsubara M., Nohara D., Kurimoto E., Kuroda Y., Sakai T., Loose folding and delayed oxidation procedures successfully applied for refolding of fully reduced hen egg-white lysozyme, Chemical & pharmaceutical bulletin, 1993; 41; 1207-1210 Matsubara M., Nohara D., Sakai T., Difference between guanidinium chloride and urea as denaturants of globular-proteins: the possibility of application to improved refolding processes, Chemical & pharmaceutical bulletin, 1992; 40; 550-552 Mckee T., Biochemistry, Oxford university press, New York, 2009 Meyer A.J., Hell R. Glutathione homeostasis and redox-regulation by sulfhydryl groups, Photosynthesis research, 2005; 86; 435-457 Moraitakis G., Goodfellow J.M., Simulations of human lysozyme: probing the conformations triggering amyloidosis, Biophysical journal, 2003; 84; 2149-2158 Neurath H., Greenstein J.P., Putnam F.W., Erickson J.O., The chemistry of protein denaturation, Chemical reviews, 1944; 34; 157-265 Orsini G., Skrzynia C., Goldberg M.E., Renaturation of reduced polyalanyl-chymotrypsinogen and chymotrypsinogen, European journal of biochemistry, 1975; 59; 433-440 Park B.J., Koo Y.M., Lee C.H., Development of novel protein refolding using simulated moving bed chromatography, Korean journal of chemical engineering, 2005; 22; 425-432 Park B.J., Lee C.H., Mun S., Koo Y.M., Novel application of simulated moving bed chromatography to protein refolding, Process biochemistry, 2006; 41; 1072-1082 Phillips D.C., Hen egg-white lysozyme molecule, Proceedings of the national academy of sciences of the United States of America, 1967; 57; 484-495 Proctor V.A., Cunningham F.E., The chemistry of lysozyme and its use as a food preservative and a pharmaceutical, Critical reviews in food science and nutrition, 1988; 26; 359-395 Radford S.E., Dobson C.M., Evans P.A., The folding of hen lysozyme involves partially structured intermediates and multiple pathways, Nature, 1992; 358; 302-307 Rajan R.S., Li T., Aras M., Sloey C., Sutherland W., Arai H., Briddell R., Kinstler O., Lueras A.M.K., Zhang Y., Yeghnazar H., Treuheit M., Brems D.N., Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study, Protien science, 2006; 15; 1063-1075 Raman B., Ramakrishna T., Rao C.M., Refolding of denatured and denatured/reduced lysozyme at high concentrations, Journal of biological chemistry, 1996; 271; 17067-17072 Reddy R.C., Lilie H., Rudolph R., Lange C., L-arginine increases the solubility of unfolded species of hen egg white lysozyme, Protein Science, 2005; 14; 929-935 Roger H.P., Mechanisms of protein folding, Oxford university press, New York, 2000 Rudolph R., Lilie H., In vitro folding of inclusion body proteins, The FASEB journal, 1996; 10; 49-56 Rothwarf D.M., Scheraga H.A., Equilibrium and kinetic constants for the thiol disulfide interchange reaction between glutathione and dithiothreitol, Biochemistry, 1992; 89; 7944-7948 Rupley J.A., Binding and cleavage by lysozyme of N-acetylglucosamine oligosaccharides, Proceedings of the royal society of London series B-biological sciences, 1967; 167; 416-428 Sadana A., Protein refolding and inactivation during bioseparation-bioprocessing implications, Biotechnology and bioengineering, 1995; 48; 481-489 Salazar O., Asenjo J.A., Enzymatic lysis of microbial cells. Biotechnology letters, 2007; 29; 985-994 Salton M.R.J., Cell wall of micrococcus-lysodeikticus as the substrate of lysozyme, Nature, 1952; 170; 746-747 Saxena V.P., Wetlaufe D. B., Formation of 3-dimensional structure in proteins. 1. Rapid nonenzymic reactivation of reduced lysozyme, Biochemistry, 1970; 9; 5015-5022 Schlegl R., Iberer G., Machold C., Necina R., Jungbauer A., Continuous matrix-assisted refolding of proteins, Journal of chromatography A, 2003; 1009; 119-132 Schlegl R., Necina R., Jungbauer A., Continuous matrix-assisted refolding of inclusion–body proteins: effect of recycling, Chemical engineering and technology, 2005; 28; 1375-1386 Schneider N., Werkmeister K., Becker C.M., Pischetsrieder M, Prevalence and stability of lysozyme in cheese, Food chemistry, 2011; 128; 145-151 Sharon N., Chemical structure of lysozyme substrates and their cleavage by enzyme, Proceedings of the royal society of London series B-biological sciences, 1967; 167; 402-415 Sharapova O.A., Yurkova M.S., Laurinavichyute D.K., Andronova S.M., Fedorov A.N., Severin S.E., Severin E.S., Efficient refolding of a hydrophobic protein with multiple S-S bonds by on-resin immobilized metal affinity chromatography, Journal of chromatography A, 2011; 1218; 5115-5119 Smeenk J.M., PSchon., Otten M.B.J., Speller S., Stunnenberg H.G., van Hest J.C.M., Fibril formation by triblock copolymers of silklike beta-sheet polypeptides and poly(ethylene glycol), Macromolecules, 2006; 39; 2987-2997 St John R.J., Carpenter J.F., Randolph T.W., High-pressure refolding of disulfide-cross-linked lysozyme aggregates: thermodynamics and optimization, Biotechnology progress, 2002; 18; 565-571 Sun M.M., Dai X.X., Zheng Y.P., Wang J.W., Hou L.L., Du J.A., Hu H.G., On-column refolding purification of DT389-hIL13 recombinant protein expressed in Escherichia coli, Protein expression and purification, 2011; 75; 83-88 Szajewski R. P., Whitesides G. M., Rate constants and equilibrium-constants for thiol-disulfide interchange reactions involving oxidized glutathione, Journal of the American chemical society, 1980; 102; 2011-2026 Teipel, J.W., Koshland D.E., Kinetic aspects of conformational changes in proteins. 1. Rate of regain of enzyme activity from denatured proteins, Biochemistry, 1971a; 10; 792-797 Teipel, J.W., Koshland D.E., Kinetic aspects of conformational changes in proteins. 2. Structural changes in renaturation of denatured proteins, Biochemistry 1971b; 10; 798-805 Tran-Moseman A., Schauer N., Clark E.D., Renaturation of Escherichia coli-derived recombinant human macrophage colony-stimulating factor, Protein expression and purification, 1999; 16; 181-189 Treuheit M.J., Kosky A.A., Brems D.N., Inverse relationship of protein concentration and aggregation, Pharmaceutical research, 2002; 19; 511-516 Udgaonkar J.B, Multiple routes and structural heterogeneity in protein folding, Annual review of biophysics, 2008; 37; 489-510 Umetsu M., Tsumoto K., Hara M., Ashish K., Goda S., Adschiri T., Kumagai I., How additives influence the refolding of immunoglobulin-folded protein in a stepwise dialysis system, The journal of biological chemistry, 2003; 278; 8979-8987 Umetsu M., Tsumoto K., Hara M., Ashish K., Goda S., Adschiri T., Kumagai I., How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system: Spectroscopic evidence for highly efficient refolding of a single-chain FV fragment, Journal of biological chemistry, 2003; 278; 8979-8987 van den Berg B., Chung E.W., Robinson C.V., Dobson C.M., Characterization of the dominant oxidative folding intermediate of hen lysozyme, Journal of molecular biology, 1999; 290; 781-796 Vandenbroeck K., Martens E., Dandrea S., Billiau A., Refolding and single-step purification of porcine interferon-gamma from Escherichia-coli inclusion bodies: conditions for reconstitution of dimeric Ifn-gamma. European journal of biochemistry, 1993; 215; 481-486 Vandermeulen G.W.M., Tziatzios C., Klok H.A., Reversible self-organization of poly(ethylene glycol)-based hybrid block copolymers mediated by a De Novo four-stranded alpha-helical coiled coil motif, Macromolecules, 2003; 36; 4107-4114 Vergara A., Paduano L., Sartorio R., Mechanism of protein-poly(ethyleneglycol) interaction from a diffusive point of view, Macromolecules, 2002; 35; 1389-1398 Wang C., Cheng Y., Urea-gradient protein refolding in size exclusion chromatography, Current pharmaceutical biotechnology, 2010; 11; 289-292 Wang C., Wang L., Geng X., High recovery refolding of rhG-CSF from Escherichia coli, using urea gradient size exclusion chromatography, Biotechnology progress, 2008; 24; 209-213 Wang C., Wang L., Geng X., Renaturaion of recombinant human granulocyte colony-stimulating factor produced from Escherichia coli using size exclusion chromatography, Journal of liquid chromatography and related technologies, 2006a; 29; 203-216 Wang S.S.-S., Chang C.K., Liu H.S., Effect of sample loop dimension on lysozyme refolding in size-exclusion chromatography, Journal of chromatography A, 2007; 1161; 56-63 Wang S.S.-S., Chang C.K., Liu H.S., Step change of mobile phase flow rates to enhance protein folding in size exclusion chromatography, Biochemical engineering journal, 2006b; 29; 2-11 Wang S.S.-S., Chang C.K., Peng M.J., Liu H.S., Effect of glutathione redox system on lysozyme refolding in size exclusion chromatography, Food bioproducts processing, 2006c; 84; 18-27 Wright E., Serpersu E.H., Isolation of aminoglycoside nucleotidyltransferase (2')-Ia from inclusion bodies as active, monomeric enzyme, Protein expression and purification, 2004; 35; 373-380 Xue Q.G., Schey K.L., Volety A.K., Chu F.L.E., La Peyre J.F., Purification and characterization of lysozyme from plasma of the eastern oyster (cassostrea virginica), Comparative bochemistry and pysiology b-biochemistry & molecular biology, 2004; 139; 11-25 Yamamoto E., Yamaguchi S., Nagamune T., Synergistic effects of detergents and organic solvent on protein refolding: control of aggregation and folding rates, Journal of bioscience and bioengineering, 2011; 111; 10-15 Yasuda M., Murakami Y., Sowa A., Ogino H., Ishikawa H., Effect of additives on refolding of a denatured protein, Biotechnology progess, 1998; 14; 601-606 Yutani K., Yutani A., Imanishi A., Isemura T., Mechanism of refording of reduced random coil form of lysozyme, Journal of biochemistry, 1968; 64; 449-455 Zettlmeissl G., Rudolph R., Jaenicake R., Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation, Biochemistry, 1979; 18; 5567-5571 Zettlmeissl G., Rudolph R., Jaenicake R., Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 2. Reactivation of irreversibly denatured aggregates, Biochemistry, 1979; 18; 5572-5575 廖彗媚,復性緩衝液中氧化還原反應對溶菌酶復性之研究,台灣大學碩士論文,2003 張哲魁,以大小排阻層析法進行蛋白質復性之研究,台灣大學博士論文,2005 張棨翔,二硫代蘇糖醇對溶菌酶變性及復性程序之影響,台灣大學碩士論文,2007a 張亦廷,大小排阻層析法操作程序對蛋白質復性之影響,台灣大學碩士論文,2007b 周若莟,變性劑中各成份在透析操作中移除方式的設計對溶菌酶復性效果之影響,台灣大學碩士論文,2008 林右晨,殘留之二硫代蘇糖醇與尿素對溶菌酶復性之影響,台灣大學碩士論文,2009 林煒泰,溶菌酶復性程序中氧化還原對之研究,台灣大學碩士論文,2010 冼祐安,低倍率之溶菌酶復性,台灣大學碩士論文,2011 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65866 | - |
dc.description.abstract | 在蛋白質復性程序中,錯誤的摺疊與聚集體的形成是使復性效率不能提高的主要原因,因此於傳統的直接稀釋復性法中,皆利用大量的復性劑降低蛋白質之濃度並且稀釋變性劑之濃度,以利蛋白質之復性。但於本研究中,利用透析復性法,證實除了錯誤的摺疊與聚集體之外,復性溶液中之還原態二硫代蘇糖醇(dithiothreitol,DTTred)亦是影響蛋白質復性效率的重要因子。有鑑於此,本研究提出一於低稀釋倍率下之高效率復性策略:亦即於低稀釋倍率下,藉由添加氧化態榖胱甘肽(glutathione,GSSG)與DTTred反應,進而提升最終復性產率為傳統操作之13倍,並同時降低操作成本為傳統操作成本之40 %。
此外,本研究亦利用大小排阻層析法(size exclusion chromatography,SEC)可以於復性初期即將影響復性效果之DTTred分離的特性,對高濃度蛋白質進行復性。為了避免蛋白質因濃度過高而於管柱前端形成聚集體影響復性,本研究提出chaperon solvent plug復性方法,並提出最適當之chaperon solvent plug體積及樣品載入之時間,有效地抑制注射閥與管柱間之聚集體形成,避免影響復性效率。並透過對多段式流速復性法及尿素梯度復性法之了解後,提出一較佳之SEC復性策略:在高流速及chaperon solvent plug之保護下,將變性蛋白質載入至系統中,待其進入至SEC管柱後,則於管柱內提供尿素梯度之環境以避免聚集體或錯誤摺疊之蛋白質的形成,並且藉由低流速之操作,增加蛋白質於低尿素濃度區域之滯留時間,使變性蛋白質摺疊回具有活性、正確構型之復性蛋白質。 | zh_TW |
dc.description.abstract | Misfolding and aggregation are the main obstacles of refolding efficiency in protein renaturation process. With the conventional dilution refolding method, large amount of refolding buffer is required to prevent aggregation and to dilute denaturant. In this investigation, via dialysis, besides midfolding and aggregates, reduced dithiothreitol (DTTred) was also proved to be a crucial factor in renaturation. Thus, we proposed a low dilution factor and high efficiency refolding strategy by adding high oxidized glutathione (GSSG) in the refolding buffer to react with carry-over DTTred, resulting in a 13 times of productivity and 60 % reduction of cost, compared to the conventional dilution refolding process.
Because of the benefit of separating DTTred in the beginning of renaturation, lysozyme could be refolded at high concentration by size exclusion chromatography (SEC). We further proposed the optimal volume of chaperon solvent plug and the loading time of sample to prevent aggregations before the column inlet. In addition, we also combined the chaperon solvent plug strategy, urea gradient strategy and step change of mobile phase flowrate strategy to offer an optimal SEC refolding environment. That is, at the beginning of injection, denatured lysozyme was loaded at a high flow rate with chaperon solvent plug. After denatured lyszoyme entered into the column inlet, low flow rate was adjusted to maintain enough retention time of denatured lysozyme in the urea gradient region and low urea concentration region to refold to active lysozyme. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:14:02Z (GMT). No. of bitstreams: 1 ntu-101-F95524088-1.pdf: 6958193 bytes, checksum: fb9a40031ada347a305d418228c22b6a (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 摘要……………………………………………………………………………………I
目錄………………………………………….……….………...…………………….III 圖目錄………………………..………………………………...…………………...VII 表目錄………………………………………………….….....……...……………...XII 第一章 緒論…………………………………………..………………………………1 1-1 研究背景與方向…………….………….…………………..………...……..1 1-2 論文內容…………………….……….……………………..………...……..2 第二章 文獻回顧………………………………….…………………………….……4 2-1 蛋白質工程………………….…..………………………..………...……..4 2-2 蛋白質變性..………………………………………………………………..6 2-3 蛋白質復性…………………………………………………………………9 2-4 蛋白質復性方法………………………………………………...…………15 2-4-1 直接稀釋復性法……………………………………………..…….15 2-4-2 大小排阻層析復性法………………………………………..…….19 2-4-3 透析復性法…………………………………………………..……27 2-5 溶菌酶……….……………………………………………………………30 2-5-1 溶菌酶簡介…………………………………...……………………30 2-5-2 溶菌酶結構………………………………………………………...34 2-5-3 溶菌酶活性..…………….…………………………………………34 第三章 實驗裝置、藥品與方法 ……………………………………………..….….38 3-1 實驗裝置…….…………………………………………………..…………38 3-2 實驗藥品…………………………………………………….……………..39 3-3 實驗方法……………………………………………………….…….….....41 3-3-1 實驗試劑製備..……..…………………………………………….....41 3-3-2 溶菌酶之活性測定……………………………………………….....43 3-3-2-1 分光光譜儀之偵測………..……………………………......43 3-3-2-2 連續波長分析儀之偵測………..……………….……….....43 3-3-3 溶菌酶之變性…………………………………………………….....43 3-3-4 溶菌酶之復性…………………………………………………….....44 3-3-4-1 直接稀釋復性法…………..………….……..………….…..44 3-3-4-2 大小排阻層析復性法…………………….……………….44 3-3-4-3 透析復性法…………………………….…………………..45 3-3-5 全波長測量...…………………….………………………………….46 3-3-6 氧化態DTT濃度之測量………………………………….…..…….46 3-3-7 經24小時變性後,變性蛋白質溶液中氧化態DTT濃度之測量….46 3-3-8 不可溶聚集體濃度之測量…...….………………………………….47 3-4 復性效率之定義…………………………………….……………….….....47 第四章 直接稀釋復性法..…..…………………………………………...……….....48 4-1 實驗動機…………………………………………………………...............48 4-2 直接稀釋法流程………………………………………….……………......48 4-3 復性系統中DTTs對蛋白質復性之影響…………….……………………52 4-3-1 變性24小時後之DTT………………………..……………………55 4-3-2 復性系統中之DTT…………………………………..……………59 4-3-3 復性系統中,DTTred濃度對蛋白質復性之影響……………..……64 4-4 高效率、低倍率之稀釋復性法…………………………………….………66 4-5 高效率稀釋復性法中之聚集體…………………………………….……..71 4-6 結論…………………………………………………………….…………..77 第五章 大小排阻層析復性法…………………………………………….…...........78 5-1實驗動機………………………………………………………...................78 5-2 實驗方法………………………………………………………...................79 5-2-1 高效能液相層析儀…………………………………………...........79 5-2-2 繞流系統……………………………………………………...........80 5-2-3 Chaperon solvent plug之操作程序………………………………....81 5-3 傳統SEC復性法及chaperon solvent plug復性法…………………….….83 5-4 注射閥至管柱前端之聚集體……………………………………….……..86 5-4-1 傳統復性法下,注射閥至管柱前端之聚集體…...………………..86 5-4-2 Chaperon solvent plug復性法對管柱前端聚集體之影響…..……..89 5-5 Chaperon solvent plug之設計對注射閥至管柱前端聚集體之影響……...90 5-6 Chaperon solvent plug之設計對蛋白質復性之影響………………….…..95 5-6-1 Chaperon solvent plug之設計對蛋白質質量回復率之影響…........97 5-6-2 Chaperon solvent plug之設計對蛋白質活性回復率之影響…..…100 5-7 流動相之更換對蛋白質復性之影響………………………….…………109 5-8結論………………………………………………….….…………………112 第六章 大小排阻層析管柱內復性環境對復性之影響………..…………………114 6-1實驗動機………………..………………………………….……...............114 6-2 SEC管柱中,蛋白質於不同尿素濃度區域之滯留時間之估算……........116 6-3 SEC管柱中,不同尿素濃度之復性環境對蛋白質復性之影響………....122 6-3-1不同chaperon solvent plug前段體積對SEC管柱內復性環境之影響..…………………………………..…………….….………………..…122 6-3-2 SEC管柱內,高尿素濃度環境對蛋白質復性之影響.…….……..124 6-3-3 chaperon solvent plug復性法中,管柱內低尿素濃度環境對蛋白質復性之影響……………………………..…………...…….…………..…133 6-3-4 SEC管柱內,蛋白質停滯於低尿素區域對復性之影響.…….…140 6-4 SEC管柱中,尿素梯度對蛋白質復性之影響……………………….....145 6-4-1實驗動機………………..……………….………………................145 6-4-2梯度復性法之操作程序…………..…….…………………............146 6-4-3尿素梯度復性法對管柱前端聚集體之影響……………...............146 6-4-4 SEC管柱內,尿素梯度對蛋白質復性之影響……………............148 6-4-5尿素梯度復性法中,管柱內低尿素濃度區域對蛋白質復性之影響.…………………………………..………………………………..….152 6-5結論………………………………………………….……….…………156 第七章 總結…..…………..……..……………………..………..…………………158 第八章 參考文獻………....……..……………………..………..…………………160 附錄A…………………………………………………………….…………………178 個人著作……………………………………………………….…………………...180 | |
dc.language.iso | zh-TW | |
dc.title | 溶菌酶復性程序效率提升之研究 | zh_TW |
dc.title | The Improvement of Efficiency in the Lysozyme Renaturation Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王勝仕(Steven Sheng-Shih Wang),蔡偉博(Wei-Bor Tsai),謝學真(Hsyue-Jen Hsieh),王孟菊(Meng-Jiy Wang),李振綱(Cheng-Kang Lee) | |
dc.subject.keyword | 蛋白質復性,溶菌酶,直接稀釋法,大小排阻層析法,Chaperon solvent plug, | zh_TW |
dc.subject.keyword | Protein renaturation,Lysozyme,Direct dilution,Size exclusion chromatography,Chaperon solvent plug, | en |
dc.relation.page | 180 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 6.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。