請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65856
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林金全 | |
dc.contributor.author | Yu-Pin Chang | en |
dc.contributor.author | 張裕彬 | zh_TW |
dc.date.accessioned | 2021-06-17T00:13:46Z | - |
dc.date.available | 2013-07-27 | |
dc.date.copyright | 2012-07-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-09 | |
dc.identifier.citation | 1. Gratzel, M. Chemistry Letters 2005, 34, (1), 8-13.
2. Gratzel, M. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4, (2), 145-153. 3. O'Regan, B.; Gratzel, M. Nature 1991, 353, (6346), 737-740. 4. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Gratzel, M. Science 2011, 334, (6056), 629-634. 5. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chemistry of Materials 2003, 15, (14), 2854-2860. 6. Kamat, P. V. The Journal of Physical Chemistry C 2008, 112, (48), 18737-18753. 7. Luther, J. M.; Beard, M. C.; Song, Q.; Law, M.; Ellingson, R. J.; Nozik, A. J. Nano Letters 2007, 7, (6), 1779-1784. 8. Kim, S. J.; Kim, W. J.; Sahoo, Y.; Cartwright, A. N.; Prasad, P. N. Applied Physics Letters 2008, 92, (3), 031107-3. 9. Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M.; Bach, U. The Journal of Physical Chemistry B 2002, 106, (31), 7578-7580. 10. Sambur, J. B.; Novet, T.; Parkinson, B. A. Science 2010, 330, (6000), 63-66. 11. Ju, T.; Graham, R. L.; Zhai, G.; Rodriguez, Y. W.; Breeze, A. J.; Yang, L.; Alers, G. B.; Carter, S. A. Applied Physics Letters 2010, 97, (4), 043106-3. 12. Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. The Journal of Physical Chemistry B 2006, 110, (50), 25451-25454. 13. Viktorov, E. A.; Mandel, P.; Kuntz, M.; Fiol, G.; Bimberg, D.; Vladimirov, A. G.; Wolfrum, M. Applied Physics Letters 2007, 91, (23), 231116-3. 14. Lee, Y.-L.; Lo, Y.-S. Advanced Functional Materials 2009, 19, (4), 604-609. 15. Choi, J. J.; Lim, Y.-F.; Santiago-Berrios, M. E. B.; Oh, M.; Hyun, B.-R.; Sun, L.; Bartnik, A. C.; Goedhart, A.; Malliaras, G. G.; Abruna, H. c. D.; Wise, F. W.; Hanrath, T. Nano Letters 2009, 9, (11), 3749-3755. 16. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Progress in Photovoltaics: Research and Applications 2011, 19, (1), 84-92. 17. Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Proceedings of the National Academy of Sciences 2011, 108, (1), 29-34. 18. Michalet, X.; Weiss, S.; Jager, M. Chemical Reviews 2006, 106, (5), 1785-1813. 19. Moerner, W. E.; Fromm, D. P. Review of Scientific Instruments 2003, 74, (8), 3597-3619. 20. Gaiduk, A.; Kuhnemuth, R.; Felekyan, S.; Antonik, M.; Becker, W.; Kudryavtsev, V.; Sandhagen, C.; Seidel, C. A. M. Microscopy Research and Technique 2007, 70, (5), 433-441. 21. Xie, X. S.; Dunn, R. C. Science 1994, 265, (5170), 361-364. 22. Yip, W.-T.; Hu, D.; Yu, J.; Vanden Bout, D. A.; Barbara, P. F. The Journal of Physical Chemistry A 1998, 102, (39), 7564-7575. 23. Veerman, J. A.; Garcia-Parajo, M. F.; Kuipers, L.; van Hulst, N. F. Physical Review Letters 1999, 83, (11), 2155-2158. 24. Ambrose, W. P.; Goodwin, P. M.; Martin, J. C.; Keller, R. A. Physical Review Letters 1994, 72, (1), 160-163. 25. Flors, C.; Oesterling, I.; Schnitzler, T.; Fron, E.; Schweitzer, G.; Sliwa, M.; Herrmann, A.; van der Auweraer, M.; De Schryver, F. C.; Mullen, K.; Hofkens, J. The Journal of Physical Chemistry C 2007, 111, (12), 4861-4870. 26. Cotlet, M.; Vosch, T.; Habuchi, S.; Weil, T.; Mullen, K.; Hofkens, J.; De Schryver, F. Journal of the American Chemical Society 2005, 127, (27), 9760-9768. 27. Kulzer, F.; Kummer, S.; Matzke, R.; Brauchle, C.; Basche, T. Nature 1997, 387, (6634), 688-691. 28. Biju, V.; Micic, M.; Hu, D.; Lu, H. P. Journal of the American Chemical Society 2004, 126, (30), 9374-9381. 29. Krauss, T. D.; Peterson, J. J. The Journal of Physical Chemistry Letters 2010, 1, (9), 1377-1382. 30. Moerner, W. E.; Fromm, D. P. Review of Scientific Instruments 2003, 74, (8), 3597-3619. 31. Born, M.; Wolf, E., Principles of Optics. Cambridge University Press, 1998: 1998. 32. Holman, M. W.; Adams, D. M. ChemPhysChem 2004, 5, (12), 1831-1836. 33. Wang, Y.; Wang, X.; Ghosh, S. K.; Lu, H. P. Journal of the American Chemical Society 2009, 131, (4), 1479-1487. 34. Chen, Y.-J.; Tzeng, H.-Y.; Fan, H.-F.; Chen, M.-S.; Huang, J.-S.; Lin, K.-C. Langmuir 2010, 26, (11), 9050-9060. 35. Gaiduk, A.; Kuhnemuth, R.; Felekyan, S.; Antonik, M.; Becker, W.; Kudryavtsev, V.; Sandhagen, C.; Seidel, C. A. M. Microscopy Research and Technique 2007, 70, (5), 433-441. 36. Bohmer, M.; Pampaloni, F.; Wahl, M.; Rahn, H.-J.; Erdmann, R.; Enderlein, J. Review of Scientific Instruments 2001, 72, (11), 4145-4152. 37. Garcia-Parajo, M. F.; Veerman, J.-A.; Bouwhuis, R.; Vallee, R.; van Hulst, N. F. ChemPhysChem 2001, 2, (6), 347-360. 38. Prasad, V.; Semwogerere, D.; Eric, R. W. Journal of Physics: Condensed Matter 2007, 19, (11), 113102. 39. 吳錦榮. 利用脈衝調頻染料雷射研究單分子光譜學. 國立中山大學, 高雄市, 2001. 40. 陳鐶中. 利用共聚焦掃描顯微鏡研究螢光分子在溶液中的動力學現象. 臺灣大學, 台北市, 2007. 41. 陳怡如. 利用共聚焦顯微鏡研究Oxazine1單分子在二氧化鈦(TiO2)奈米薄膜的動力學現象. 臺灣大學, 台北市, 2006. 42. Becker, W.; Bergmann, A.; Biscotti, G. L.; Rueck, A. In Advanced time-correlated single photon counting techniques for spectroscopy and imaging in biomedical systems, San Jose, Ca, USA, 2004; Neev, J.; Schaffer, C. B.; Ostendorf, A., Eds. SPIE: San Jose, Ca, USA, 2004; pp 104-112. 43. Chakrapani, V.; Tvrdy, K.; Kamat, P. V. Journal of the American Chemical Society 2010, 132, (4), 1228-1229. 44. Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A. C.; Sun, L.; Abruna, H. D.; Wise, F. W.; Goodreau, J. D.; Matthews, J. R.; Leslie, T. M.; Borrelli, N. F. ACS Nano 2008, 2, (11), 2206-2212. 45. Jin, S.; Lian, T. Nano Letters 2009, 9, (6), 2448-2454. 46. Robel, I.; Kuno, M.; Kamat, P. V. Journal of the American Chemical Society 2007, 129, (14), 4136-4137. 47. Wu, X.; Yeow, E. K. L. Chemical Communications 2010, 46, (24), 4390-4392. 48. Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Chemical Reviews 2010, 110, (11), 6873-6890. 49. Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. Journal of the American Chemical Society 2008, 130, (12), 4007-4015. 50. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Journal of the American Chemical Society 2006, 128, (7), 2385-2393. 51. Etgar, L.; Moehl, T.; Gabriel, S.; Hickey, S. G.; Eychmuller, A.; Gratzel, M. ACS Nano 2012, 6, (4), 3092-3099. 52. Choi, H.; Nicolaescu, R.; Paek, S.; Ko, J.; Kamat, P. V. ACS Nano 2011, 5, (11), 9238-9245. 53. Li, G.-S.; Zhang, D.-Q.; Yu, J. C. Environmental Science & Technology 2009, 43, (18), 7079-7085. 54. Ma, B.; Wang, L.; Dong, H.; Gao, R.; Geng, Y.; Zhu, Y.; Qiu, Y. Physical Chemistry Chemical Physics 2011, 13, (7), 2656-2658. 55. Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C. Journal of Materials Chemistry 2011, 21, (35), 13452-13457. 56. Niitsoo, O.; Sarkar, S. K.; Pejoux, C.; Ruhle, S.; Cahen, D.; Hodes, G. Journal of Photochemistry and Photobiology A: Chemistry 2006, 181, (2–3), 306-313. 57. Lee, H. J.; Chen, P.; Moon, S.-J.; Sauvage, F. d. r.; Sivula, K.; Bessho, T.; Gamelin, D. R.; Comte, P.; Zakeeruddin, S. M.; Seok, S. I.; Gratzel, M.; Nazeeruddin, M. K. Langmuir 2009, 25, (13), 7602-7608. 58. Vogel, R.; Hoyer, P.; Weller, H. The Journal of Physical Chemistry 1994, 98, (12), 3183-3188. 59. Dibbell, R. S.; Soja, G. R.; Hoth, R. M.; Watson, D. F. Langmuir 2007, 23, (6), 3432-3439. 60. Mann, J. R.; Watson, D. F. Langmuir 2007, 23, (22), 10924-10928. 61. Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. The Journal of Physical Chemistry B 2006, 110, (50), 25451-25454. 62. Guijarro, N. s.; Lana-Villarreal, T.; Mora-Sero, I. n.; Bisquert, J.; Gomez, R. The Journal of Physical Chemistry C 2009, 113, (10), 4208-4214. 63. Sixto, G.; Ivan, M.-S.; Lorena, M.; Nestor, G.; Teresa, L.-V.; Roberto, G.; Lina, J. D.; Qing, S.; Taro, T.; Juan, B. Nanotechnology 2009, 20, (29), 295204. 64. Mora-Sero, I. n.; Bisquert, J. The Journal of Physical Chemistry Letters 2010, 1, (20), 3046-3052. 65. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Progress in Photovoltaics: Research and Applications 2011, 19, (1), 84-92. 66. Dibbell, R. S.; Watson, D. F. The Journal of Physical Chemistry C 2009, 113, (8), 3139-3149. 67. Watson, D. F. The Journal of Physical Chemistry Letters 2010, 1, (15), 2299-2309. 68. Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P. The Journal of Physical Chemistry 1994, 98, (15), 4109-4117. 69. Colvin, V. L.; Goldstein, A. N.; Alivisatos, A. P. Journal of the American Chemical Society 1992, 114, (13), 5221-5230. 70. Lawless, D.; Kapoor, S.; Meisel, D. The Journal of Physical Chemistry 1995, 99, (25), 10329-10335. 71. Zaban, A.; Mićić, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998, 14, (12), 3153-3156. 72. Karlsson, T.; Elgh-Dalgren, K.; Bjorn, E.; Skyllberg, U. Geochimica et Cosmochimica Acta 2007, 71, (3), 604-614. 73. Munro, A. M.; Jen-La Plante, I.; Ng, M. S.; Ginger, D. S. The Journal of Physical Chemistry C 2007, 111, (17), 6220-6227. 74. Ivan, M.-S.; Sixto, G.; Thomas, M.; Francisco, F.-S.; Teresa, L.-V.; Roberto, G.; Juan, B. Nanotechnology 2008, 19, (42), 424007. 75. Sambur, J. B.; Parkinson, B. A. Journal of the American Chemical Society 2010, 132, (7), 2130-2131. 76. Sambur, J. B.; Riha, S. C.; Choi, D.; Parkinson, B. A. Langmuir 2010, 26, (7), 4839-4847. 77. Dibbell, R. S.; Youker, D. G.; Watson, D. F. The Journal of Physical Chemistry C 2009, 113, (43), 18643-18651. 78. Lee, H. J.; Yum, J.-H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Gratzel, M.; Nazeeruddin, M. K. The Journal of Physical Chemistry C 2008, 112, (30), 11600-11608. 79. Munro, A. M.; Zacher, B.; Graham, A.; Armstrong, N. R. ACS Applied Materials & Interfaces 2010, 2, (3), 863-869. 80. Bakkers, E. P. A. M.; Roest, A. L.; Marsman, A. W.; Jenneskens, L. W.; de Jong-van Steensel, L. I.; Kelly, J. J.; Vanmaekelbergh, D. The Journal of Physical Chemistry B 2000, 104, (31), 7266-7272. 81. Bakkers, E. P. A. M.; Marsman, A. W.; Jenneskens, L. W.; Vanmaekelbergh, D. Angewandte Chemie International Edition 2000, 39, (13), 2297-2299. 82. Nevins, J. S.; Coughlin, K. M.; Watson, D. F. ACS Applied Materials & Interfaces 2011, 3, (11), 4242-4253. 83. Hyun, B.-R.; Bartnik, A. C.; Sun, L.; Hanrath, T.; Wise, F. W. Nano Letters 2011, 11, (5), 2126-2132. 84. Tagliazucchi, M.; Tice, D. B.; Sweeney, C. M.; Morris-Cohen, A. J.; Weiss, E. A. ACS Nano 2011, 5, (12), 9907-9917. 85. She, C.; Anderson, N. A.; Guo, J.; Liu, F.; Goh, W.-H.; Chen, D.-T.; Mohler, D. L.; Tian, Z.-Q.; Hupp, J. T.; Lian, T. The Journal of Physical Chemistry B 2005, 109, (41), 19345-19355. 86. Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Proceedings of the National Academy of Sciences 2011, 108, (1), 29-34. 87. Marcus, R. A.; Sutin, N. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 1985, 811, (3), 265-322. 88. Hopfield, J. J. Proceedings of the National Academy of Sciences 1974, 71, (9), 3640-3644. 89. Ogawa, M. Y.; Moreira, I.; Wishart, J. F.; Isied, S. S. Chemical Physics 1993, 176, (2–3), 589-600. 90. Anderson, N. A.; Ai, X.; Chen, D.; Mohler, D. L.; Lian, T. The Journal of Physical Chemistry B 2003, 107, (51), 14231-14239. 91. Moser, C. C.; Keske, J. M.; Warncke, K.; Farid, R. S.; Dutton, P. L. Nature 1992, 355, (6363), 796-802. 92. Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gratzel, M. The Journal of Physical Chemistry B 2003, 107, (34), 8981-8987. 93. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. Journal of the American Chemical Society 1993, 115, (14), 6382-6390. 94. Wang, S.; Querner, C.; Dadosh, T.; Crouch, C. H.; Novikov, D. S.; Drndic, M. Nat Commun 2011, 2, 364. 95. Fisher, B. R.; Eisler, H.-J.; Stott, N. E.; Bawendi, M. G. The Journal of Physical Chemistry B 2003, 108, (1), 143-148. 96. Jin, S.; Hsiang, J.-C.; Zhu, H.; Song, N.; Dickson, R. M.; Lian, T. Chemical Science 2010, 1, (4), 519-526. 97. Hartmann, T.; Yudson, V. I.; Reineker, P. Journal of Luminescence 2011, 131, (3), 379-381. 98. Krauss, T. D.; Peterson, J. J. The Journal of Physical Chemistry Letters 2010, 1, (9), 1377-1382. 99. Brokmann, X.; Messin, G.; Desbiolles, P.; Giacobino, E.; Dahan, M.; Hermier, J. P. New Journal of Physics 2004, 6, (1), 99. 100. Xu, Z.; Cotlet, M. Angewandte Chemie International Edition 2011, 50, (27), 6079-6083. 101. Jin, S.; Lian, T. Nano Letters 2009, 9, (6), 2448-2454. 102. Zhang, K.; Chang, H.; Fu, A.; Alivisatos, A. P.; Yang, H. Nano Letters 2006, 6, (4), 843-847. 103. Davis, W. B.; Ratner, M. A.; Wasielewski, M. R. Journal of the American Chemical Society 2001, 123, (32), 7877-7886. 104. Nijhuis, C. A.; Reus, W. F.; Barber, J. R.; Dickey, M. D.; Whitesides, G. M. Nano Letters 2010, 10, (9), 3611-3619. 105. Watson, D. F. The Journal of Physical Chemistry Letters 2010, 1, (15), 2299-2309. 106. McConnell, H. M. The Journal of Chemical Physics 1961, 35, (2), 508-515. 107. Napper, A. M.; Head, N. J.; Oliver, A. M.; Shephard, M. J.; Paddon-Row, M. N.; Read, I.; Waldeck, D. H. Journal of the American Chemical Society 2002, 124, (34), 10171-10181. 108. Choi, J. J.; Luria, J.; Hyun, B.-R.; Bartnik, A. C.; Sun, L.; Lim, Y.-F.; Marohn, J. A.; Wise, F. W.; Hanrath, T. Nano Letters 2010, 10, (5), 1805-1811. 109. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chemistry of Materials 2003, 15, (14), 2854-2860. 110. Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Proceedings of the National Academy of Sciences 2011, 108, (1), 29-34. 111. DOI: 10.1002/cphc.201200037 112. Sakata, T.; Hashimoto, K.; Hiramoto, M. The Journal of Physical Chemistry 1990, 94, (7), 3040-3045. 113. She, C.; Anderson, N. A.; Guo, J.; Liu, F.; Goh, W.-H.; Chen, D.-T.; Mohler, D. L.; Tian, Z.-Q.; Hupp, J. T.; Lian, T. The Journal of Physical Chemistry B 2005, 109, (41), 19345-19355. 114. Huang, J.; Stockwell, D.; Boulesbaa, A.; Guo, J.; Lian, T. The Journal of Physical Chemistry C 2008, 112, (13), 5203-5212. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65856 | - |
dc.description.abstract | 本實驗中,我們藉由共聚焦顯微鏡結合TCSPC系統,針對單一硒化鎘/硫化鋅量子點進行單分子實驗的觀測;藉由記錄螢光軌跡得到其螢光生命期,量測其藉由雙官能基分子鍵結至二氧化鈦薄膜後的電子傳遞速率。量子點和二氧化鈦薄膜之間的距離可以藉由不同碳鏈長度的連接分子控制。藉由有機分子將量子點和二氧化鈦連結之後,可以提供一個模組系統,探討光致電子轉移的機制。了解這些機制對於量子點敏化太陽能電池的發展以及效率的提升將有很大的幫助。
我們利用448 nm波長的脈衝雷射進行單分子實驗,發現量子點的螢光生命期隨著連接分子的長度縮短而降低,進一步由螢光生命期推導出電子傳遞的速率常數後可以發現,在連接分子碳數為3、6、11時,速率常數分別為2.8x107、1.9x107 、3.5x106 s-1,量子產率分別為67.4、45.8、7.8%。實驗數據結果顯示,電子轉移的速率常數隨著連接分子的碳鏈增長有下降的趨勢。 我們進一步利用Marcus發表的電子轉移模型去計算量子點和二氧化鈦之間的電子耦合常數,在連接分子長度為1.5、6.2、13.8 Ȧ 時,電子耦合常數分別為4.07、3.82、1.58 cm-1,如我們所預期的,連接分子的長度增長之後減弱了電子供體與受體間電子耦合的強度。 接著我們利用具芳香性的雙官能基分子連接量子點與二氧化鈦,發現其電子傳遞速度比預期中更加快速,我們推測可能是連接分子的π軌域強化了電子施體和電子受體間的電子耦合強度,導致雖然距離增長,電子傳遞速率卻變快的現象。 另外我們以不同直徑大小的量子點,藉相同長度的雙官能基分子連接到二氧化鈦薄膜上,發現在有連接分子的存在下電子傳遞速度仍舊隨著粒徑下降而上升。 | zh_TW |
dc.description.abstract | Single molecule fluorescence spectroscopy (SMS) which combined home-made confocal microscopy and time-correlated single photon counting (TCSPC) system was used to record the fluorescence trajectories and to calculate lifetimes of single semiconductor quantum dot (QD) at the single-molecule level. Electron transfer (ET) rate from single QD to TiO2 film via bifunctional linkers were obtained. CdSe/ZnS QDs were tethered to TiO2 film through bifunctional mercaptoalkanoic acid (MAAs), the interparticle distance of which is controlled by the linker length. The fabricated QD-TiO2 heterodimers provide a model system for the single-molecule exploration of photoinduced electron transfer between QDs and charge acceptors, which is essential process in quantum dot-sensitized solar cells (QDSSCs). The trajectories and lifetimes were obtained by SMS with an excitation of 448 nm pulsed laser. The differences of lifetimes provide strong evidence for chain-length-dependent ET efficiency. ET rate constants were determined to be 2.8x107, 1.9x107, and 3.5x106 s-1 for the chain-length of 1.5, 6.2 and 13.8 Ȧ, the quantum yield were also determined to be 67.4, 45.8 and 7.8 %. The results showed that ET rate constants decreased with length of linkers increased. We further calculate electron coupling elements (HDA) between QDs and TiO2 using the semiclassical Marcus expression. The HDA were determined to be 4.07, 3.82 and 1.58 cm-1 of three different chain lengths, and be close to our prediction.
We further tethered QDs by linkers with aromatic spacer. The results suggest that the presence of π orbitals accelerates ET rates between QDs and TiO2. We attributed the rapid ET rates to enhancement of electronic coupling strength. Finally, we examined the size-effect on QD-MAA-TiO2 systems. The results suggest that the size-dependence of ET dynamics is still valid regardless of the existence of linkers. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:13:46Z (GMT). No. of bitstreams: 1 ntu-101-R99223178-1.pdf: 4384259 bytes, checksum: 0ebcd5a4b7271d4c30904ba61bed01ee (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Contents
Chinese abstract i English abstract ii Contents iv List of figures vi Chapter 1 Introduction 1 1-1 Study motives 1 1-2 Study methods 2 1-3 References 4 Chapter 2 Single Molecule Spectroscopy 7 2-1 Introduction 7 2-1-1 Confocal Microscopy 9 2-1-2 Wide-field methods 11 2-2 TCSPC system 12 2-3 References 17 Chapter 3 IFET in QD 19 3-1 Introduction 19 3-2 Interfacial Electron Transfer of QD-Linker-TiO2 22 3-2-1 Linking of QDs with TiO2 using a Bifunctional Linker 22 3-2-2 Linker-Dependent Electron Transfer 25 3-2-3 Marcus Theory 26 3-3 References 29 Chapter 4 Experimental Section 35 4-1 Instruments 35 4-2 Sample Preparations 37 4-2-1 Materials 37 4-2-2 TiO2 Nanoparticles 40 4-2-3 Heterodimer Fabrication 40 4-3 References 42 Chapter 5 Results and Discussion 43 5-1 Linker-Length Dependence of ET Dynamics in QD-MAA-TiO2 43 5-2 Linker-Structure Dependence of ET Dynamics in QD-MAA-TiO2 55 5-3 Size-Dependence of ET Dynamics in QD-MAA-TiO2 59 5-4 Modeling Electron Transfer rate by Marcus Theory 67 5-5 Conclusion 70 5-6 References 72 | |
dc.language.iso | en | |
dc.title | 單一硒化鎘/硫化鋅量子點與二氧化鈦奈米粒子界面之電子轉移行為與連接分子長度的關係 | zh_TW |
dc.title | Interfacial Electron Transfer from Single CdSe/ZnS Quantum Dots to TiO2 Nanoparticles: Linker-Length Dependence at the Single-Molecule Level | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李弘文,范秀芳 | |
dc.subject.keyword | 單分子光譜,螢光,單一量子點,二氧化鈦,電子轉移,閃爍行為,螢光生命期, | zh_TW |
dc.subject.keyword | Single Molecule Spectroscopy,Single Quantum Dot,Titanium Oxide,Electron Transfer,Heterodimers,Fluorescence Lifetime, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-09 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。