Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱浩華(Hao-Hua (Hao)
dc.contributor.authorBo-Jhang Hoen
dc.contributor.author何柏樟zh_TW
dc.date.accessioned2021-06-17T00:13:39Z-
dc.date.available2012-07-18
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-09
dc.identifier.citationARDUINO. ARDUINO UNO MICROCONTROLLER BOARD, http://arduino.cc/en/Main/arduinoBoardUno
BAYATI, M., SHAH, D., SHARMA, M. 2005. Maximum Weight Matching via Max-Product Belief Propagation, In Proc. IEEE International Symposium on Information Theory, pp. 1763-1767, Sep. 2005, Adelaide, Australia
BERGES, M. et al. 2008. Training Load Monitoring Algorithms on Highly Sub-Metered Home Electricity Consumption Data. In: Tsinghua Science & Technology, vol. 13, Oct. 2008, pp. 406–411
BERGES, M., SOIBELMAN, L., MATTHEWS, H.S. 2010.Building Commissioning as an Opportunity for Training Non-Intrusive Load Monitoring Algorithms. In: 16th Int’l Conf. Innovation in Architecture, Engineering and Construction
BRADSKI, G., KAEHLER, A. 2008. Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly
CENT-A-METER. Wireless Electricity Monitor, http://www.centameter.com.au/
FLIR. Thermal Imaging of High Speed Targets. http://www.flir.com/thermography/americas/us/content/?id=17934
FROEHLICH, J., LARSON, E., GUPTA, S., COHN, G., REYNOLDS M. S., PATEL S. N. 2011. Disaggre-gated End-Use Energy Sensing for the Smart Grid. In: IEEE Pervasive Computing, Volume 10 Issue1, pp. 28-39
GUPTA, S., REYNOLDS, M.S., PATEL, S.N. 2010. ElectriSense: single-point sensing using EMI for electrical event detection and classification in the home. In: 12th ACM international conference on Ubiquitous computing, pp. 139-148. ACM, Co-penhagen, Denmark
HARLE, R. K., HOPPER A. 2008. The Potential for Location-Aware Power Manage-ment. In: 10th international conference on Ubiquitous computing, pp. 302-311. ACM, Seoul, Korea
HARRIS, C., CAHILL, V. 2005. Exploiting User Behavior for Context-Aware Power Management. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 122-130 Vol. 4, Montreal, Canada
HARRIS, C., CAHILL, V. 2007. An Empirical Study of the Potential for Context-Aware Power Manage-ment. In: 9th international conference on Ubiquitous compu-ting, pp. 235-252. ACM, Innsbruck, Austria
HART, G.W. 1992. Nonintrusive appliance load monitoring. Proceedings of the IEEE 80, 1870-1891
HAY, S., RICE, A. 2009. The case for apportionment. In: 1st ACM Workshop on Em-bedded Sensing Systems for Energy-Efficiency in Buildings, pp. 13-18. ACM, Berkeley, California
HSU, J., MOHAN, P., JIANG, X., ORTIZ, J., SHANKAR, S., DAWSON-HAGGERTY, S., CULLER, D. 2010. HBCI: human-building-computer interaction. In: 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, pp. 55-60. ACM, Zurich, Switzerland
JIANG, X., DAWSON-HAGGERTY, S., DUTTA, P., CULLER, D. 2009. Design and implementation of a high-fidelity AC metering network. In: 2009 International Con-ference on Information Processing in Sensor Networks, pp. 253-264. IEEE Comput-er Society, San Francisco, USA
KILL-A-WATT. An Electricity Usage Monitor, http://www.p3international.com/products/special/P4400/P4400-CE.html
KIM, Y., SCHMID, T., CHARBIWALA, Z.M., SRIVASTAVA, M.B. 2009. Vi-ridiScope: design and imple-mentation of a fine grained power monitoring system for homes. In: 11th international conference on Ubiquitous computing, pp. 245-254. ACM, Orlando, Florida, USA
MAEKAWA, T., KISHINO, Y., SAKURAI, Y., SUYAMA, T. 2011. Recognizing the Use of Portable Electrical Devices with Hand-Worn Magnetic Sensors. In: 9th Inter-national Conference on Pervasive Computing, pp. 276-293. Springer, Heidelberg
NILSSON J. W., RIEDEL S. Electric Circuits, 8th Edi-tion, Prentice Hall (2007).
NORFORD, L.K., LEEB, S.B. 1996. Non-intrusive electrical load monitoring in com-mercial buildings based on steady-state and transient load-detection algorithms. En-ergy and Buildings 24, 51-64
PATEL, S.N., ROBERTSON, T., KIENTZ, J.A., REYNOLDS, M.S., ABOWD, G.D. 2007. At the Flick of a Switch: Detecting and Classifying Unique Electrical Events on the Residential Power Line. In: UbiComp 2007, pp. 271-288
PATEL, S.N., GUPTA, S., REYNOLDS, M.S. 2010. The design and evaluation of an end-user-deployable, whole house, contactless power consumption sensor. In: 28th international conference on Human factors in computing systems, pp. 2471-2480. ACM, Atlanta, Georgia, USA
PHILIPOSE, M., FISHKIN, K.P., PERKOWITZ, M. 2004. Inferring activities from interactions with objects. In: IEEE Pervasive Computing, Volume 3 Issue 4, pp. 50-57
ROBERTS, M., KUHNS, H. 2010. Towards Bridging the Gap between the Smart Grid and Smart Energy Consumption. In: 2010 ACEEE Summer Study on Energy Effi-ciency in Buildings.
ROWE, A., BERGES, M., RAJKUMAR, R. 2010. Contactless sensing of appliance state transitions through variations in electromagnetic fields. In: the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, pp. 19-24. ACM, Zurich, Switzerland
STRENGERS, Y. 2011. Designing Eco-Feedback Systems for Everyday Life. In: Pro-ceedings of the 2011 annual conference on Human factors in computing systems, Vancouver, BC, Canada
TAPIA, E.M., INTILLE, S.S., LARSON, K. 2004. Activity recognition in the home using simple and ubiquitous sensors. In: The International Conference on Pervasive Computing, pp.158-175, Springer, Heidelberg
TED. The Energy Detective, http://www.theenergydetective.com/
VAN KASTEREN, T., NOULAS, A., ENGLEBIENNE, G., KROSE, B. 2008. Accurate activity recognition in a home setting. In: 10th international conference on Ubiquitous computing, pp. 1-9, ACM, Seoul, Korea
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65851-
dc.description.abstract由於人類的行為與電器的用電量兩者之間有極強的關聯存在,去探測每個人的用電量可以了解一個人用了多少電,並從中可以給予個人化的回饋與建議幫助使用者節省能源。這篇碩士論文首先提出HeatProbe 系統,它的目標是利用熱感應的技術將總電表的用電資訊細分成每個電器的用電量。ThermalProbe系統為HeatProbe的延伸,藉由熱感應的方式去識別使用者,ThermalProbe希望在多人共同使用的空間,能達到區分出每人在用電資訊。在識別使用者的部分,使用者需配戴一個會發出熱能訊號的裝置,而每個裝置因發出訊號不同而可以被識別。而ThermalProbe也實作了以距離的方式去計算每個使用者總共用了多少電,舉個最單純的情況,將電量歸給最靠近這個電器的使用者。兩個系統都經設計、實作,並且用實驗去評估這個系統。HeatProbe分類每個電器的用電量,其精準度達到了80.2%,而使用的時間誤差平均為125秒。而ThermalProbe在探測每個人的用電量,則達到平均誤差為12.66%。zh_TW
dc.description.abstractGiven the strong link between energy consumption and human behavior, metering per-user energy consumption is critical for understanding individual energy behavior and for customizing personalized feedback to promote everyday energy-saving behavior. This thesis first proposes an energy metering system called the HeatProbe system that uses thermal-imaging to sense and disaggregate per-appliance energy consumption. By building on top of the thermal-based HeatProbe system, this thesis further develops the ThermalProbe system that meters per-user energy consumption by using thermal-identification to track and disaggregate energy usage among individual occupants in a shared working/living space. In thermal identification, each occupant wears a thermal tag that emits a unique temperature signature for user identification. The system intro-duces location-based per-user energy disaggregation that accounts per-appliance energy usage to individual energy consumer(s), i.e., occupant(s) nearby activated appliances. We have designed, prototyped, and tested both HeatProbe and ThermalProbe systems. Results show that the HeatProbe system achieves 80.2% appliance-level power account-ing accuracy with 125-second average error and the ThermalProbe system meters per-user energy consumption with an average error of 12.66%.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:13:39Z (GMT). No. of bitstreams: 1
ntu-101-R00922039-1.pdf: 2776945 bytes, checksum: 0c6ab6e9a222eb252667588d783ce69c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAcknowledgement..........................................................................................................I
Abstract.........................................................................................................................II
摘要..............................................................................................................................III
Contents.......................................................................................................................IV
List of Figures..............................................................................................................VI
List of Tables..............................................................................................................VII
Chapter 1 Introduction...................................................................................................1
Chapter 2 The HeatProbe System Design......................................................................6
2.1 Theory of Operation.............................................................................................6
2.2 System Design.....................................................................................................8
2.2.1 In-line Power Meter and Thermal Camera.................................................12
2.2.2 Heatmap Segmentation...............................................................................12
2.2.3 Power Usage Detection...............................................................................15
2.2.4 Appliance Usage Detection.........................................................................17
2.2.5 Appliance Operating Duration Resolution..................................................21
2.2.6 Appliance Power Accounting.....................................................................25
Chapter 3 The ThermalProbe System Design..............................................................27
3.1 System Overview...............................................................................................27
3.2 Thermal Identification........................................................................................30
3.2.1 Thermal Encoding.......................................................................................30
3.2.2 Thermal Decoding.......................................................................................32
3.3 Location-based Per-user Power Disaggregation................................................35
3.3.1 Default Location-based Accounting...........................................................35
3.3.2 User-Specified Accounting.........................................................................36
Chapter 4 Implementation and limitation....................................................................37
4.1 Implementation details.......................................................................................37
4.2 Assumptions and Limitations............................................................................40
Chapter 5 Evaluation....................................................................................................42
5.1 Appliance Usage Scenarios................................................................................42
5.2 Evaluation Metrics and Result in HeatProbe.....................................................45
5.3 Evaluation Metrics and Result in ThermalProbe...............................................50
Chapter 6 Related work................................................................................................53
Chapter 7 Conclusion & Future Work.........................................................................57
References....................................................................................................................59
dc.language.isoen
dc.subject設計zh_TW
dc.subject實驗zh_TW
dc.subject歸類到每個使用者的電量zh_TW
dc.subject歸類到每個電器的電量zh_TW
dc.subject電量的測量zh_TW
dc.subjectPer-User Energy Consumptionen
dc.subjectDesignen
dc.subjectExperimentationen
dc.subjectMeasurementen
dc.subjectPower Consumption Monitoringen
dc.subjectPer-appliance Power Disaggregationen
dc.title利用熱感應之技術測量電器各別用電量及個人用電狀況zh_TW
dc.titleThermal Sensing for Metering Per-Appliance and Per-User Power Usageen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃寶儀(Polly Huang),陳伶志(Ling-Jyh Chen),金仲達(Chung-Ta King),金仲達(Yu-Chee Tseng)
dc.subject.keyword設計,實驗,電量的測量,歸類到每個電器的電量,歸類到每個使用者的電量,zh_TW
dc.subject.keywordDesign,Experimentation,Measurement,Power Consumption Monitoring,Per-appliance Power Disaggregation,Per-User Energy Consumption,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2012-07-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved