Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65841
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平(Din Ping Tsai)
dc.contributor.authorKuang-Yu Yangen
dc.contributor.author楊光宇zh_TW
dc.date.accessioned2021-06-17T00:13:22Z-
dc.date.available2012-07-18
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-09
dc.identifier.citation第一章
[1] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith1, 'Metamaterial electromagnetic cloak at microwave frequencies,' Science 314, 977 (2006).
[2] K. L. Tsakmakidis1, A. D. Boardman and O. Hess1, '‘Trapped rainbow’ storage of light in metamaterials,' Nature 450, 397 (2007).
[3] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Zeno Gaburro, 'Light propagation with phase discontinuities: gerneralized laws of reflection and refraction,' Science 334, 333 (2011).
[4] X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, V. M. Shalaev, 'Broadband light bending with plasmonic nanoantennas,' Science 335, 427 (2012).
[5] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li and L. Zhou, 'Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,' Nature materials 11, 426 (2011).
[6] S. John, 'Strong localization of photons in certain disordered dielectric superlattices,' Physical Review Letters 58, 2486 (1987).
[7] P. Russell, 'Photonic crystal fibers,' Science 299, 358 (2003).
[8] B.-S. Song, S. Noda, T. Asano and Y. Akahane, 'Ultra-high-Q photonic double-heterostructure nanocavity,' Nature materials 4, 207 (2005).
[9] S. Foteinopoulou and C. M. Soukoulis, 'Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects,' Physical Review B 72, 165112 (2005).
[10] X. Wang, M. Kuwahara, K. Awazu, P. Fons, J. Tominaga and Y. Ohki, 'Proposal of a grating-based optical reflection switch using phase change materials,' Optics Express 17, 16947 (2009).
[11] J. B. Pendry, D. Schurig and D. R. Smith, ' Controlling Electromagnetic fields,' Science 312, 1780 (2006).
[12] V. G. Veselago, 'Electrodynamics of media with simultaneously negative electric permittivity and magnetic permeability,' Soviet Physucs Uspekhi-Ussr 10, 509 (1968).
[13] R. A. Shelby, D. R. Smith and S. Schultz, 'Experimental verification of a negative index of refraction ,' Science 292, 77 (2001).
[14] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer,R. Quidant, N. F. van Hulst, 'Unidirectional emission of a quantum dot coupled to a nanoantenna,' Science 329, 930 (2010).
[15] T. Kosako, Y. Kadoya and H. F. Hofmann, 'Directional control of light by a nano-optical Yagi-Uda antenna,' Nature photonics 4, 312 (2010).
[16] T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson and M. Käll, 'A bimetallic nanoantenna for directional color routing,' Nature communications, 2:481 doi:10.1038/ncomms1490 (2011).
[17] T. Shegai, P. Johansson, C. Langhammer and M. Käll, 'Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,' Nano Letters 12, 2464 (2012).
第二章
[1] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. -P. Tetienne, F. Capasso, Zeno Gaburro, 'Light propagation with phase discontinuities: gerneralized laws of reflection and refraction,' Science 334, 333 (2011).
[2] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro and F. Capasso, 'Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,' Nano Letters 12, 1702 (2012).
[3] X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, V. M. Shalaev, 'Broadband light bending with plasmonic nanoantennas,' Science 335, 427 (2012).
[4] L. Zhou, W. Wen, C. T. Chan and P. Sheng, 'Multiband subwavelength magnetic reflectors based on fractals,' Applied Physics Letters 83, 3257 (2003).
[5] L. Zhou, H. Li, Y. Qin, Z. Wei and C. T. Chen, 'Directive emissions from subwavelength metamaterial-based cavities,' Applied Physics Letters 86, 101101 (2005).
[6] H. Li, J. Hao, L. Zhou, Z. Wei, L. Gong, H. Chen and C. T. Chen, 'All-dimensional subwavelength cavities made with metamaterials,' Applied Physics Letters 89, 104101 (2006).
[7] J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan and Lei Zhou1, 'Manipulating electromagnetic wave polarizations by anisotropic metamaterials,' Physical Review Letters 99, 063908 (2007).
[8] J. M. Hao, L. Zhou and C. T. Chen, 'An effective-medium model for high-impedance surfaces,' Applied Physics A 87, 281 (2007).
[9] Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst and D. R. Smith, 'Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,' Optics Express 19,24411 (2011).
[10] Y.-J. Tsai, S. Larouche, T. Tyler, N. M. Jokerst and D. R. Smith, 'Infrared metamaterial phase holograms,' Nature materials 11,450 (2012).
[11] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li and L. Zhou, 'Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,' Nature materials 11, 426 (2011).
第四章
[1] V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev and A. V. Kildishev, ' Negative index of refraction in optical metamaterials,' Optics Letters 30, 3356 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65841-
dc.description.abstract超穎材料(plasmonic metamaterials)由次波長(sub-wavelength)尺寸的侷域共振結構組成,這些共振結構隨電磁波激發產生電偶(electric dipole)及磁偶極矩(magnetic dipole)共振,並展現一些特殊的電磁波特性如負折射(negative refraction)、完美成像(perfect imaging)等。近年來藉由一種介面梯度超穎材料(graded metamaterial systems),實現許多新穎的現象如影形斗篷(invisibility cloaking)及侷域彩虹(trapped rainbow)等。近年來N. Yu等人根據Generalized Snell’s law的理論基礎設計了尺寸漸變的奈米天線(optical antenna)振列,並在近紅外光(8微米)波段實現異常(anomalous)穿透與反射的調控效果。X. Ni等人以類似的結構將尺寸縮小使之於波長2微米工作,並具有寬頻(broadband)工作的特性。 Sun 等人透過一種反射式的結構於微波(microwave)波段將入射的傳遞波近乎100%轉為表面波。這系列研究主要是透過不同尺寸的超穎材料在介面上不同位置產生漸變的電磁波相位(phase),並在遠場干涉(interference)後建構出特定指向的平面波前(wave front)。
在此研究中透過模擬設計介面結構,使結構將正向入射平面波高效率(78%)調控到異常反射角度,並在850nm光頻段工作下具有200nm的寬頻調控效果。此設計結構的調控特性可應用於分光元件(beam splitter)、表面電漿波耦合器(SPP coupler)及光吸收元件(light absorber)等。
zh_TW
dc.description.abstractPlasmonic metamaterials are artificial composites made by sub-wavelength local resonance structures of electric and/or magnetic type(s) exhibiting novel electromagnetic properties, such as negative refraction, perfect imaging, etc. In last several years, various graded metamaterial systems have brought us new fascinating phenomena such as invisibility cloaking [1], trapped rainbow [2], etc. Recently, N. Yu et. al. showed that a graded optical antenna array could realize anomalous reflection and refraction for light at infra-red (8 micrometer), following a generalized Snell’s law [3], and X. Ni et. al. soon pushed the idea to 2-micrometer wavelength with a relative broad operation bandwidth [4]. Sun et. al. further proved that a particular gradient-index meta-surface can convert a propagating wave to a surface wave with nearly 100% efficiency [5], and demonstrated the idea in microwave frequency regime. The key idea behind this set of works is to utilize the local reflection/refraction phase properties of a gradient metamaterial, so that coherent beams can be formed by constructive interference.
In this work, we push the idea to visible frequencies. We designed and fabricated a graded meta-surface working around 850 nm, and demonstrated that an incident beam can be redirected to a non-specular channel after reflection by our system. The measured conversion efficiency from the incident beam to the anomalous reflection one is quite high (up to 78%), and the working bandwidth is very broad (about 200 nm). We believe that our systems can have broad applications including beam splitter, SPP coupler, light absorber, etc.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:13:22Z (GMT). No. of bitstreams: 1
ntu-101-R99245004-1.pdf: 3323478 bytes, checksum: 50c9784b2b76625d2327227aa46c1560 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
中文摘要 V
英文摘要 VII
誌謝 VIXI
圖目錄 X
表目錄 XVII
第一章 電磁波調控發展 1
1.1 前言 1
1.2 光子晶體與介面光柵之電磁波調控 2
1.3 超穎材料之電磁波調控 4
1.3.1奈米天線 (plasmonic nanoantenna) 之光調控 8
1.4 參考資料 14
第二章 介面梯度超穎材料之光調控 17
2.1 Generalized Snell’s Law介紹 17
2.2 V形結構組成之介面超穎材料 18
2.3 金屬-介電值-金屬磁偶共振子組成之介面超穎材料 23
2.4 反射式磁偶共振子組成之介面超穎材料 26
2.5 研究動機 27
2.6 參考資料 31
第三章 樣品設計、製作與量測方法 33
3.1 樣品結構設計 33
3.2 樣品製作 38
3.2.1 電子束直寫微影系統 38
3.2.2 製作流程介紹 40
3.2.3 樣品量測 45
第四章 結果、分析與討論 48
4.1 前言 48
4.2模擬方法 48
4.3入射與異常反射角的關係 (波長850 nm) 49
4.4結構寬頻工作特性56
4.5梯度板的應用 60
4.5.1 波長分光元件 61
4.5.2 偏振分光元件 61
4.6參考資料 64
第五章 總結與未來展望 65
附錄 66
dc.language.isozh-TW
dc.subject負折射zh_TW
dc.subject超穎材料zh_TW
dc.subject介面梯度超穎材料zh_TW
dc.subjectNegative refractionen
dc.subjectMetamaterialsen
dc.subjectGradient-index meta-surfaceen
dc.subjectPlasmonic metamaterialsen
dc.title介面梯度超穎材料之電磁波調控研究zh_TW
dc.titleManipulate light propagation based on gradient-phase meta-interfacesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱士維(Shi-Wei Chu),周趙遠鳳(Yuan-Fong Chau),黃鼎偉(Ding-Wei Huang)
dc.subject.keyword超穎材料,負折射,介面梯度超穎材料,zh_TW
dc.subject.keywordPlasmonic metamaterials,Negative refraction,Metamaterials,Gradient-index meta-surface,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2012-07-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved