Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65820
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳德玉
dc.contributor.authorYung-Jen Chenen
dc.contributor.author陳永任zh_TW
dc.date.accessioned2021-06-17T00:12:51Z-
dc.date.available2017-07-19
dc.date.copyright2012-07-19
dc.date.issued2012
dc.date.submitted2012-07-10
dc.identifier.citation[1] Jian Li, “Current-mode control: Modeling and its digital application,” Ph. D. dissertation, Virginia Tech, 2009.
[2] Jian Li, Lee F.C. “New Modeling Approach for Current-Mode Control,” Applied Power Electronics Conference and Exposition, 2009. APEC 2009, pp. 305-311
[3] K. Lee, “Dynamic performance analysis of current sharing control for DC/DC converters,” Ph. D dissertation, Virginia Tech, 2008.
[4] M. Lee, D. Chen, K. Huang, C. W. Liu, and B. Tai, “Modeling and design for a Novel Adaptive Voltage Positioning (AVP) Scheme for Multiphase VRMs,” IEEE Trans. on Power Electronics, vol. 23, no. 4, pp. 1733-1742, Jul. 2008
[5] M. Lee, D. Chen, K. Huang, E. Tseng, and B. Tai, “Comparisons of three control schemes for adaptive voltage position (AVP) droop for VRMs applications,” in Proc. IEEE EPE-PEMC, 2006, pp. 206–211.
[6] C. J. Chen, D. Chen, C. S. Huang, M. Lee and K. L. Tseng, “Modeling and Design Considerations of a Novel High-Gain Peak Current Control Scheme to Achieve Adaptive Voltage Positioning for DC Power Converters,” IEEE Trans. Power Electronics, vol. 24, no. 12, pp. 2942 - 2950, Dec. 2009.
[7] M. Lee, D. Chen, C.-W. Liu, K. Huang, E. Tseng, and B. Tai, “Compensator design for adaptive voltage positioning (AVP) for multiphase VRMs,” in Proc. IEEE Power Electron. Spec. Conf., 2006, pp. 1–7.
[8] K. Yao, M. Xu, Y. Meng, and F. C. Lee, “Design considerations for VRM transient response based on the output impedance,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1270–1277, Nov. 2003.
[9] Voltage Regulator Module (VRM) and Enterprise Voltage Regulator-Down (EVRD) 11.0, Intel, CA, USA, Nov. 2009.
[10] Yu-Cheng Lin, Ching-Jan Chen, Dan Chen,and Brian Wang, “A Novel Ripple-Based Constant On-Time Control with Virtual Inductance and Offset Correction for DC Power Converters”, in Proc. IEEE ECCE Conf. 2011, pp. 1244–1250.
[11] Ching-Jan Chen, D. Chen, C.-W. Tseng, C.-T. Tseng, Y.-W. Chang, and K.-C. Wang, “A novel ripple-based constant on-time control with virtual inductor current ripple for Buck converter with ceramic output capacitors,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), 2011, pp. 1488-1493.
[12] R.B. Ridly, “A new small-signal model for current-mode control,” Ph. D. dissertation, Virginia Tech, 1990.
[13] R.B. Ridly, “A new continuous-time model for current-mode control,” IEEE Trans. Power Electron, vol.6, no.2, pp.271-280, April 1991.
[14] J. R. Huang, S. C.-H. Wang, C. J. Lee, E. K.-L. Tseng, and D. Chen, “Native AVP control method for constant output impedance of DC power converters,” in Proc. IEEE Power Electron. Spec. Conf., 2007, pp. 2023–2028.
[15] M. Lee, D. Chen, K. Huang, E. Tseng, and B. Tai, “Comparisons of three control schemes for adaptive voltage position (AVP) droop for VRMs applications,” in Proc. IEEE EPE-PEMC, 2006, pp. 206–211.
[16] K. Yao, K. Lee, M. Xu, and F. C. Lee, “Optimal design of the active droop control method for the transient response,” in Proc. IEEE Appl. Power Electron. Conf., 2003, vol. 2, pp. 718–723.
[17] Feng Yu, Fred C. Lee, “Design Oriented Model for Constant On-time V2 Control,” Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, pp. 3115-3122.
[18] “Richtek Technology RT8859M datasheet,” Richtek Technology Corp.
[19] Fairchild Semiconductor ,“NE555 datasheet.”
[20] TOSHIBA, ”TLP250 Datasheet.”
[21] Ridley Engineering, “AP 200 Application note”
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65820-
dc.description.abstract穩壓器(Voltage Regulator)目前已被廣泛使用在許多電腦相關產品上,來提供能量給中央處理器(CPU)。提升轉換器在重載情況下的轉換效率一直是過去設計的重點所在。直到近幾年,考慮到許多直流轉直流電壓轉換器大多時間是運作在輕載或是待機的狀態,在現今電腦產品大量應用的時代,輕載時的能量損失加總起來就變得非常可觀。
為了解決上述的挑戰,固定導通時間的控制方法近幾年來工業界受到高度的重視。固定導通時間的控制架可以提升輕載時的轉換效率,同時又保持重載時原本的效率。有許多的電路架構都可以使用固定導通時間的控制方法,而本論文主要探討固定導通時間電流模式的控制架構,並應用在降壓型直流電源轉換器上,同時有著適應性電壓定位的功能。其中,電流模式可以達到相電流平衡的優點,而適應性電壓定位則是為了符合INTEL與節能的規範。
本篇論文中主要探討電路回授的穩定性與達成固定輸出阻抗,固定輸出阻抗為達到應性電壓定為功能的主要考量。電路的小訊號模型將藉由描述函數(Describing-function) 來推導,過程雖然較複雜,但是卻是了解固定導通時間電流模式控制之特性所不可或缺的。模擬與實驗的結果將呈現在本篇論文中,並且與其他固定導通時間之電路架構也會做個比較。
zh_TW
dc.description.abstractVoltage regulators have been widely used in many computer applications for powering the central processing units (CPU). Converter efficiency has always been a design priority but most emphasis had been placed on the efficiency under the heavy-load conditions until recent years. Considering the fact that most of the DC converters are operating under light-load or standby conditions most of the time, the total energy loss is significant especially considering the number of computers used today.
To meet the challenges described above, constant on-time (COT) control scheme has received much attention by industry recently. COT control scheme features improved light-load efficiency while preserving heavy-load efficiency. There are various of constant on-time control schemes. The focus of the present thesis is on the current-mode COT scheme (COTCM) applied to a buck converter with adaptive voltage positioning (AVP) feature. Current mode control is considered because it features inherent channel current balancing. AVP is considered because that’s the feature imposed by computer chip maker INTEL Corp. for the purpose of energy saving.
In this thesis, the focus of investigation is on the circuit feedback stability and the converter output impedance which is an important consideration to achieve AVP function. A small-signal model is developed based on describing-function approach which is complicated but necessary to uncover the inherent nature of this control scheme. Experimental results will be shown. A comparison with other COT control schemes will also be given.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:12:51Z (GMT). No. of bitstreams: 1
ntu-101-R99921019-1.pdf: 4576515 bytes, checksum: 0aa2299d21d7a6c1f261429786f9b8a8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
中文摘要 III
Abstract V
Table of Contents VII
List of Figures IX
List of Tables XI
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Multi-Phase DC-DC Converters 3
1.1.2 Adaptive Voltage Positioning (AVP) Function 6
1.1.3 The Issue of Light-Load Efficiency 7
1.2 Description of a COTCM Buck Converters 9
1.3 Thesis Organization 11
Chapter 2 Review of Small-Signal Models for Current Mode Control 13
2.1 Review of Peak Current Mode Control Models 13
2.1.1 Average Model for Constant-Frequency Peak Current Control 13
2.1.2 Extending the Constant-Frequency Average Model for COT Control 16
2.2 COTCM Control Small-Signal Model Based on Describing Function Approach 19
2.3 Verification of COTCM Small-Signal Model 23
Chapter 3 Modeling and Stability Analysis of OCCOTCM-AVP Control Circuit 26
3.1 Description if OCCOTCM-AVP Control Circuit 27
3.1.1 DC-offset Voltage Problem in the COTCM-AVP Control Circuit 27
3.1.2 Introduce of a DC-offset Correction Circuit to the COTCM-AVP Control 29
3.1.3 Small Signal Control Model for the OCCOTCM-AVP Circuit 30
3.1.3.1 Effect of DC-Offset Correction Circuit on Output Impedance 33
3.1.3.2 Effect of DC-Offset Correction Circuit on Line Regulation 34
3.2 Derivation of Stability Criteria 36
3.2.1 Inner-Loop Stability Criterion 36
3.2.1.1 Derivation by Using Describing Function Approach 36
3.2.1.2 Derivation by Using Time-Domain Approach 42
3.2.2 Outer-Loop Stability Criterion 45
3.3 OCCOTCM-AVP with External Ramp Circuit 47
3.3.1 Effect of External Ramp on Inner-Loop Stability Criterion 48
3.3.2 Effect of External Ramp on Output Impedance 50
3.4 Comparison of COTCM Control Scheme with a Ripple-Based Constant
On-Time (RBCOT) Control Scheme 52
Chapter 4 Design and Verification of the OCCOTCM-AVP Circuit 55
4.1 Experimental Circuit 55
4.1.1 Verification of DC-Offset Correction Function 57
4.1.2 Verification of AVP Function 58
4.2 Simulation Verification of OCCOTCM-AVP Circuit 59
4.2.1 Verification of DC-Offset Correction and AVP function 59
4.2.2 Verification of Closed-Loop Output Impedance 61
4.2.3 Comparison of the Line Regulation between COTCM-AVP and OCCOTCM-AVP 61
4.3 Verification of Loop Gain T1 and T2 62
4.4 Verification of Stability Criterion 63
4.4.1 Inner-Loop Stability Criterion without External Ramp 63
4.4.2 Inner-Loop Stability Criterion with External Ramp 64
4.4.3 Outer-Loop Stability Criterion 66
4.5 Verification of the Effect of External Ramp on Output Impedance 67
Chapter 5 Conclusions and Suggestions for Future Research 69
5.1 Conclusions 69
5.2 Future Work 70
Appendix 71
Appendix I 71
Appendix II 75
Appendix III 84
References 85
dc.language.isoen
dc.subject適應性電壓定位zh_TW
dc.subject穩壓器zh_TW
dc.subject固定導通時間控制zh_TW
dc.subject描述函數zh_TW
dc.subject穩定度條件zh_TW
dc.subject電流模式zh_TW
dc.subject輸出阻抗zh_TW
dc.subjectDescribing Functionen
dc.subjectAdaptive Voltage Position (AVP)en
dc.subjectConstant on-time controlen
dc.subjectCurrent mode controlen
dc.subjectOutput impedanceen
dc.subjectVoltage Regulator (VR)en
dc.subjectStability criteriaen
dc.title具直流校正與適應性電壓定位功能之定導通時間電流模式控制穩壓器之建模zh_TW
dc.titleModeling of a Constant On-Time Current-Mode Control Scheme with Offset-Correction and Adaptive Voltage Positioning Functions for Voltage Regulatorsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳耀銘,呂錦山,邱煌仁
dc.subject.keyword穩壓器,適應性電壓定位,固定導通時間控制,電流模式,輸出阻抗,描述函數,穩定度條件,zh_TW
dc.subject.keywordVoltage Regulator (VR),Adaptive Voltage Position (AVP),Constant on-time control,Current mode control,Output impedance,Describing Function,Stability criteria,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2012-07-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved