請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6580完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孟子青 | |
| dc.contributor.author | Abirami Santhanam | en |
| dc.contributor.author | "珊他那, 阿逼拉米" | zh_TW |
| dc.date.accessioned | 2021-05-17T09:14:54Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.available | 2021-05-17T09:14:54Z | - |
| dc.date.copyright | 2012-08-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | 1. Lemmon, M. A. & Schlessinger, J. (2010) Cell signaling by receptor tyrosine kinases, Cell. 141, 1117-34.
2. Tonks, N. K. (2005) Redox redux: revisiting PTPs and the control of cell signaling, Cell. 121, 667-70. 3. Schlessinger, J. (2000) Cell signaling by receptor tyrosine kinases, Cell. 103, 211-25. 4. Neel, B. G. & Tonks, N. K. (1997) Protein tyrosine phosphatases in signal transduction, Current opinion in cell biology. 9, 193-204. 5. Tonks, N. K. (2006) Protein tyrosine phosphatases: from genes, to function, to disease, Nature reviews Molecular cell biology. 7, 833-46. 6. Streuli, M., Krueger, N. X., Thai, T., Tang, M. & Saito, H. (1990) Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR, The EMBO journal. 9, 2399-407. 7. Blanchetot, C., Tertoolen, L. G., Overvoorde, J. & den Hertog, J. (2002) Intra- and intermolecular interactions between intracellular domains of receptor protein-tyrosine phosphatases, The Journal of biological chemistry. 277, 47263-9. 8. Garton, A. J., Burnham, M. R., Bouton, A. H. & Tonks, N. K. (1997) Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition, Oncogene. 15, 877-85. 9. Lahiry, P., Torkamani, A., Schork, N. J. & Hegele, R. A. (2010) Kinase mutations in human disease: interpreting genotype-phenotype relationships, Nature reviews Genetics. 11, 60-74. 10. Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., Macneill, J., Ren, J. M., Yuan, J., Bakalarski, C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S. P., Gu, T. L., Polakiewicz, R. D., Rush, J. & Comb, M. J. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer, Cell. 131, 1190-203. 11. Flint, A. J., Tiganis, T., Barford, D. & Tonks, N. K. (1997) Development of 'substrate-trapping' mutants to identify physiological substrates of protein tyrosine phosphatases, Proceedings of the National Academy of Sciences of the United States of America. 94, 1680-5. 12. Blanchetot, C., Chagnon, M., Dube, N., Halle, M. & Tremblay, M. L. (2005) Substrate-trapping techniques in the identification of cellular PTP targets, Methods. 35, 44-53. 13. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C. C., Ramachandran, C., Gresser, M. J., Tremblay, M. L. & Kennedy, B. P. (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene, Science. 283, 1544-8. 14. Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., Moghal, N., Lubkin, M., Kim, Y. B., Sharpe, A. H., Stricker-Krongrad, A., Shulman, G. I., Neel, B. G. & Kahn, B. B. (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice, Molecular and cellular biology. 20, 5479-89. 15. Cheng, A., Uetani, N., Simoncic, P. D., Chaubey, V. P., Lee-Loy, A., McGlade, C. J., Kennedy, B. P. & Tremblay, M. L. (2002) Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B, Developmental cell. 2, 497-503. 16. Myers, M. P., Andersen, J. N., Cheng, A., Tremblay, M. L., Horvath, C. M., Parisien, J. P., Salmeen, A., Barford, D. & Tonks, N. K. (2001) TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B, The Journal of biological chemistry. 276, 47771-4. 17. Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., Kim, Y. B., Elmquist, J. K., Tartaglia, L. A., Kahn, B. B. & Neel, B. G. (2002) PTP1B regulates leptin signal transduction in vivo, Developmental cell. 2, 489-95. 18. Julien, S. G., Dube, N., Read, M., Penney, J., Paquet, M., Han, Y., Kennedy, B. P., Muller, W. J. & Tremblay, M. L. (2007) Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis, Nature genetics. 39, 338-46. 19. Wiede, F., Shields, B. J., Chew, S. H., Kyparissoudis, K., van Vliet, C., Galic, S., Tremblay, M. L., Russell, S. M., Godfrey, D. I. & Tiganis, T. (2011) T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice, The Journal of clinical investigation. 121, 4758-74. 20. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. & Hatakeyama, M. (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein, Science. 295, 683-6. 21. Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., van der Burgt, I., Crosby, A. H., Ion, A., Jeffery, S., Kalidas, K., Patton, M. A., Kucherlapati, R. S. & Gelb, B. D. (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome, Nature genetics. 29, 465-8. 22. Sun, W., Shen, Y. H., Qi, D. W., Xiang, Z. H. & Zhang, Z. (2012) Molecular cloning and characterization of Ecdysone oxidase and 3-dehydroecdysone-3alpha-reductase involved in the ecdysone inactivation pathway of silkworm, Bombyx mori, International journal of biological sciences. 8, 125-38. 23. Stewart, R. A., Sanda, T., Widlund, H. R., Zhu, S., Swanson, K. D., Hurley, A. D., Bentires-Alj, M., Fisher, D. E., Kontaridis, M. I., Look, A. T. & Neel, B. G. (2010) Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis, Developmental cell. 18, 750-62. 24. Uetani, N., Chagnon, M. J., Kennedy, T. E., Iwakura, Y. & Tremblay, M. L. (2006) Mammalian motoneuron axon targeting requires receptor protein tyrosine phosphatases sigma and delta, The Journal of neuroscience : the official journal of the Society for Neuroscience. 26, 5872-80. 25. Thompson, K. M., Uetani, N., Manitt, C., Elchebly, M., Tremblay, M. L. & Kennedy, T. E. (2003) Receptor protein tyrosine phosphatase sigma inhibits axonal regeneration and the rate of axon extension, Molecular and cellular neurosciences. 23, 681-92. 26. Sapieha, P. S., Duplan, L., Uetani, N., Joly, S., Tremblay, M. L., Kennedy, T. E. & Di Polo, A. (2005) Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS, Molecular and cellular neurosciences. 28, 625-35. 27. Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein, Cell. 125, 523-33. 28. Muller, P., Kuttenkeuler, D., Gesellchen, V., Zeidler, M. P. & Boutros, M. (2005) Identification of JAK/STAT signalling components by genome-wide RNA interference, Nature. 436, 871-5. 29. Puig, O., Marr, M. T., Ruhf, M. L. & Tjian, R. (2003) Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway, Genes & development. 17, 2006-20. 30. Bier, E. (2005) Drosophila, the golden bug, emerges as a tool for human genetics, Nature reviews Genetics. 6, 9-23. 31. Kaletta, T. & Hengartner, M. O. (2006) Finding function in novel targets: C. elegans as a model organism, Nature reviews Drug discovery. 5, 387-98. 32. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M. & Bier, E. (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster, Genome research. 11, 1114-25. 33. Andersen, J. N., Del Vecchio, R. L., Kannan, N., Gergel, J., Neuwald, A. F. & Tonks, N. K. (2005) Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources, Methods. 35, 90-114. 34. Desai, C. J., Krueger, N. X., Saito, H. & Zinn, K. (1997) Competition and cooperation among receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila, Development. 124, 1941-52. 35. Johnson, K. G. & Van Vactor, D. (2003) Receptor protein tyrosine phosphatases in nervous system development, Physiological reviews. 83, 1-24. 36. Van Vactor, D. (1998) Protein tyrosine phosphatases in the developing nervous system, Current opinion in cell biology. 10, 174-81. 37. Van Vactor, D., O'Reilly, A. M. & Neel, B. G. (1998) Genetic analysis of protein tyrosine phosphatases, Current opinion in genetics & development. 8, 112-26. 38. Lamprianou, S. & Harroch, S. (2006) Receptor protein tyrosine phosphatase from stem cells to mature glial cells of the central nervous system, Journal of molecular neuroscience : MN. 29, 241-55. 39. Paul, S. & Lombroso, P. J. (2003) Receptor and nonreceptor protein tyrosine phosphatases in the nervous system, Cellular and molecular life sciences : CMLS. 60, 2465-82. 40. Sun, Q., Bahri, S., Schmid, A., Chia, W. & Zinn, K. (2000) Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo, Development. 127, 801-12. 41. Desai, C. J., Gindhart, J. G., Jr., Goldstein, L. S. & Zinn, K. (1996) Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo, Cell. 84, 599-609. 42. Jeon, M., Nguyen, H., Bahri, S. & Zinn, K. (2008) Redundancy and compensation in axon guidance: genetic analysis of the Drosophila Ptp10D/Ptp4E receptor tyrosine phosphatase subfamily, Neural development. 3, 3. 43. Jeon, M. & Zinn, K. (2009) Receptor tyrosine phosphatases control tracheal tube geometries through negative regulation of Egfr signaling, Development. 136, 3121-9. 44. Tonks, N. K. & Neel, B. G. (2001) Combinatorial control of the specificity of protein tyrosine phosphatases, Current opinion in cell biology. 13, 182-95. 45. Schindelholz, B., Knirr, M., Warrior, R. & Zinn, K. (2001) Regulation of CNS and motor axon guidance in Drosophila by the receptor tyrosine phosphatase DPTP52F, Development. 128, 4371-82. 46. Fox, A. N. & Zinn, K. (2005) The heparan sulfate proteoglycan syndecan is an in vivo ligand for the Drosophila LAR receptor tyrosine phosphatase, Current biology : CB. 15, 1701-11. 47. Johnson, K. G., Tenney, A. P., Ghose, A., Duckworth, A. M., Higashi, M. E., Parfitt, K., Marcu, O., Heslip, T. R., Marsh, J. L., Schwarz, T. L., Flanagan, J. G. & Van Vactor, D. (2006) The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development, Neuron. 49, 517-31. 48. Wills, Z., Bateman, J., Korey, C. A., Comer, A. & Van Vactor, D. (1999) The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance, Neuron. 22, 301-12. 49. Fashena, S. J. & Zinn, K. (1997) Transmembrane glycoprotein gp150 is a substrate for receptor tyrosine phosphatase DPTP10D in Drosophila cells, Molecular and cellular biology. 17, 6859-67. 50. Bugga, L., Ratnaparkhi, A. & Zinn, K. (2009) The cell surface receptor Tartan is a potential in vivo substrate for the receptor tyrosine phosphatase Ptp52F, Molecular and cellular biology. 29, 3390-400. 51. Beckstead, R. B., Lam, G. & Thummel, C. S. (2005) The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis, Genome biology. 6, R99. 52. Talbot, W. S., Swyryd, E. A. & Hogness, D. S. (1993) Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms, Cell. 73, 1323-37. 53. Lee, C. Y., Cooksey, B. A. & Baehrecke, E. H. (2002) Steroid regulation of midgut cell death during Drosophila development, Developmental biology. 250, 101-11. 54. Thummel, C. S. (2001) Steroid-triggered death by autophagy, BioEssays : news and reviews in molecular, cellular and developmental biology. 23, 677-82. 55. Chang, Y. C., Hung, W. T., Chang, H. C., Wu, C. L., Chiang, A. S., Jackson, G. R. & Sang, T. K. (2011) Pathogenic VCP/TER94 alleles are dominant actives and contribute to neurodegeneration by altering cellular ATP level in a Drosophila IBMPFD model, PLoS genetics. 7, e1001288. 56. Elliott, D. A. & Brand, A. H. (2008) The GAL4 system : a versatile system for the expression of genes, Methods Mol Biol. 420, 79-95. 57. Burridge, K. & Nelson, A. (1995) An in-gel assay for protein tyrosine phosphatase activity: detection of widespread distribution in cells and tissues, Analytical biochemistry. 232, 56-64. 58. Meng, T. C., Hsu, S. F. & Tonks, N. K. (2005) Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo, Methods. 35, 28-36. 59. Elsner, M. & Mak, H. C. (2011) A modENCODE snapshot, Nature biotechnology. 29, 238-40. 60. Graveley, B. R., Brooks, A. N., Carlson, J. W., Duff, M. O., Landolin, J. M., Yang, L., Artieri, C. G., van Baren, M. J., Boley, N., Booth, B. W., Brown, J. B., Cherbas, L., Davis, C. A., Dobin, A., Li, R., Lin, W., Malone, J. H., Mattiuzzo, N. R., Miller, D., Sturgill, D., Tuch, B. B., Zaleski, C., Zhang, D., Blanchette, M., Dudoit, S., Eads, B., Green, R. E., Hammonds, A., Jiang, L., Kapranov, P., Langton, L., Perrimon, N., Sandler, J. E., Wan, K. H., Willingham, A., Zhang, Y., Zou, Y., Andrews, J., Bickel, P. J., Brenner, S. E., Brent, M. R., Cherbas, P., Gingeras, T. R., Hoskins, R. A., Kaufman, T. C., Oliver, B. & Celniker, S. E. (2011) The developmental transcriptome of Drosophila melanogaster, Nature. 471, 473-9. 61. Chintapalli, V. R., Wang, J. & Dow, J. A. (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease, Nature genetics. 39, 715-20. 62. Arbeitman, M. N., Furlong, E. E., Imam, F., Johnson, E., Null, B. H., Baker, B. S., Krasnow, M. A., Scott, M. P., Davis, R. W. & White, K. P. (2002) Gene expression during the life cycle of Drosophila melanogaster, Science. 297, 2270-5. 63. Hsu, M. F. & Meng, T. C. (2010) Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases, The Journal of biological chemistry. 285, 7919-28. 64. Yin, V. P. & Thummel, C. S. (2004) A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila, Proceedings of the National Academy of Sciences of the United States of America. 101, 8022-7. 65. Li, T. R. & White, K. P. (2003) Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila, Developmental cell. 5, 59-72. 66. Santhanam, A., Liang, S. Y., Chen, D. Y., Chen, G. C. & Meng, T. C. (2012) Midgut-enriched receptor protein tyrosine phosphatase PTP52F is required for Drosophila development during larva-pupa transition, The FEBS journal. 67. Lam, G. & Thummel, C. S. (2000) Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila, Current biology : CB. 10, 957-63. 68. Ku, H. Y., Wu, C. L., Rabinow, L., Chen, G. C. & Meng, T. C. (2009) Organization of F-actin via concerted regulation of Kette by PTP61F and dAbl, Molecular and cellular biology. 29, 3623-32. 69. Chang, Y. C., Lin, S. Y., Liang, S. Y., Pan, K. T., Chou, C. C., Chen, C. H., Liao, C. L., Khoo, K. H. & Meng, T. C. (2008) Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy, Journal of proteome research. 7, 1055-66. 70. Amanchy, R., Zhong, J., Hong, R., Kim, J. H., Gucek, M., Cole, R. N., Molina, H. & Pandey, A. (2009) Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling, Molecular oncology. 3, 439-50. 71. Li, G., Zhao, G., Schindelin, H. & Lennarz, W. J. (2008) Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD, Biochemical and biophysical research communications. 375, 247-51. 72. Pedraza, L. G., Stewart, R. A., Li, D. M. & Xu, T. (2004) Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis, Oncogene. 23, 4754-62. 73. Takahashi, F., Endo, S., Kojima, T. & Saigo, K. (1996) Regulation of cell-cell contacts in developing Drosophila eyes by Dsrc41, a new, close relative of vertebrate c-src, Genes & development. 10, 1645-56. 74. Kussick, S. J. & Cooper, J. A. (1992) Phosphorylation and regulatory effects of the carboxy terminus of a Drosophila src homolog, Oncogene. 7, 1577-86. 75. Koike, M., Fukushi, J., Ichinohe, Y., Higashimae, N., Fujishiro, M., Sasaki, C., Yamaguchi, M., Uchihara, T., Yagishita, S., Ohizumi, H., Hori, S. & Kakizuka, A. (2010) Valosin-containing protein (VCP) in novel feedback machinery between abnormal protein accumulation and transcriptional suppression, The Journal of biological chemistry. 285, 21736-49. 76. Zhao, G., Zhou, X., Wang, L., Li, G., Schindelin, H. & Lennarz, W. J. (2007) Studies on peptide:N-glycanase-p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulum-associated degradation, Proceedings of the National Academy of Sciences of the United States of America. 104, 8785-90. 77. Yin, V. P., Thummel, C. S. & Bashirullah, A. (2007) Down-regulation of inhibitor of apoptosis levels provides competence for steroid-triggered cell death, The Journal of cell biology. 178, 85-92. 78. Rumpf, S., Lee, S. B., Jan, L. Y. & Jan, Y. N. (2011) Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1, Development. 138, 1153-60. 79. Yin, V. P. & Thummel, C. S. (2005) Mechanisms of steroid-triggered programmed cell death in Drosophila, Seminars in cell & developmental biology. 16, 237-43. 80. Matozaki, T., Murata, Y., Mori, M., Kotani, T., Okazawa, H. & Ohnishi, H. (2010) Expression, localization, and biological function of the R3 subtype of receptor-type protein tyrosine phosphatases in mammals, Cellular signalling. 22, 1811-7. 81. Noguchi, T., Tsuda, M., Takeda, H., Takada, T., Inagaki, K., Yamao, T., Fukunaga, K., Matozaki, T. & Kasuga, M. (2001) Inhibition of cell growth and spreading by stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1) through dephosphorylation of p130cas, The Journal of biological chemistry. 276, 15216-24. 82. Takada, T., Noguchi, T., Inagaki, K., Hosooka, T., Fukunaga, K., Yamao, T., Ogawa, W., Matozaki, T. & Kasuga, M. (2002) Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1, The Journal of biological chemistry. 277, 34359-66. 83. Krause, C., Wolf, C., Hemphala, J., Samakovlis, C. & Schuh, R. (2006) Distinct functions of the leucine-rich repeat transmembrane proteins capricious and tartan in the Drosophila tracheal morphogenesis, Developmental biology. 296, 253-64. 84. Broadus, J., McCabe, J. R., Endrizzi, B., Thummel, C. S. & Woodard, C. T. (1999) The Drosophila beta FTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone, Molecular cell. 3, 143-9. 85. Davis, M. B., Carney, G. E., Robertson, A. E. & Bender, M. (2005) Phenotypic analysis of EcR-A mutants suggests that EcR isoforms have unique functions during Drosophila development, Developmental biology. 282, 385-96. 86. Lessard, L., Labbe, D. P., Deblois, G., Begin, L. R., Hardy, S., Mes-Masson, A. M., Saad, F., Trotman, L. C., Giguere, V. & Tremblay, M. L. (2012) PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer, Cancer research. 72, 1529-37. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6580 | - |
| dc.description.abstract | In Drosophila, a number of cellular processes including proliferation and differentiation are regulated by protein tyrosine phosphatases (PTPs). However, to date the mechanisms by which PTPs regulate the developmental processes remain elusive especially in the case of receptor PTPs (RPTPs) which are involved in the regulation of axon guidance and synaptogenesis decisions in Drosophila embryos and larvae. To reveal the other potential functions we utilized systematic data mining approaches focusing on RPTP expression profiles during critical stages of development. This lead to the identification of a highly midgut enriched RPTP-the PTP52F especially in the larva-pupa transition during which the ecdysone action kicks in. Results from real-time PCR and cell based experiments confirmed RPTP52F as an ecdysone response gene. Genetic studies showed a critical role of PTP52F in midgut metamorphosis during larva pupa transition. Using a substrate-trapping strategy we identified, transitional endoplasmic reticulum ATPase94 (TER94), ortholog of human Valosin Containing Protein (VCP) as a bonafide substrate of PTP52F. Interestingly, tyrosine 800 of TER94 which is phosphorylated by Src kinase is targeted and dephosphorylated by PTP52F. We showed that PTP52F mediated dephosphorylation of TER94 could facilitate the ubiquitin mediated degradation of various proteins including Drosophila inhibitor of apoptosis1 (DIAP1) a key regulator controlling midgut cell death. In vivo evidences demonstrated that the forced expression of TER94 rescued the defect of midgut metamorphosis induced by knockdown of PTP52F, suggesting the importance of coordinated action between PTP52F and TER94. Our studies for the first time reveal a novel regulatory role of a RPTP that contributes to proper tissue organization of midgut formation in Drosophila metamorphosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:14:54Z (GMT). No. of bitstreams: 1 ntu-101-D95B46014-1.pdf: 3718115 bytes, checksum: ce6453496bbbebede9d62449dd8e1edc (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
ABSTRACT………………………………………………………………………….......i ABBREVIATION……………………………………………………………………….ii TABLE OF CONTENTS……………………………………………………………….iii CHAPTER 1: INTRODUCTION....................................1 1.1 Protein tyrosine phosphatases..........................2 1.2 Substrate identification and functional characterization of PTPs....................................................3 1.3 Drosophila PTPome......................................5 1.4 Drosophila RPTP and CNS development....................6 1.5 Ligands and substrates of Drosophila RPTPs.............7 1.6 Goals of the current study.............................8 CHAPTER 2: MATERIALS AND METHODS..........................10 2.1 Fly stocks............................................11 2.2 In-gel phosphatase activity assay.....................11 2.3 Microarray and Next generation sequencing (NGS) data mining....................................................12 2.4 Generation of PTP52F antibody.........................12 2.5 Cloning and expression of PTP52F, TER94, Src42a and DIAP1.....................................................12 2.6 Cell Culture, Transfection, Immunoprecipitation and immunoblotting............................................13 2.7 Phosphatase activity assay............................14 2.8 Extraction of RNA, cDNA Synthesis and RT-PCR..........14 2.9 Quantitative Real-Time PCR............................15 2.10 Mass spectrometry based substrate trapping...........16 2.11 In vivo substrate trapping from fly tissue...........17 2.12 Immunofluorescence staining..........................17 2.13 Light Microscopy.....................................18 2.14 TUNEL staining.......................................18 CHAPTER 3: RESULTS AND DISCUSSION.........................19 3.1 Profiling of PTPs during Drosophila development by in-gel phosphatase activity assay............................20 3.2 Data mining from modENCODE to depict the mRNA expression profiles of RPTPs during Drosophila development...............................................21 3.3 Tissue distribution of RPTPs during third instar larval stage.....................................................22 3.4 PTP52F is highly enriched in midgut during larva-pupa transition................................................23 3.5 PTP52F is an ecdysone response gene...................24 3.6 PTP52F mutants shows delay in midgut metamorphosis...25 3.7 Ectopically expressed PTP52F is an active, plasma membrane-localized phosphatase............................26 3.8 VCP/TER94 is a potential substrate of PTP52F and is also involved in midgut metamorphosis..........................27 3.9 Src42A is the upstream kinase of TER94................30 3.10 Src42A may not be the substrate of PTP52F............30 3.11 PTP52F dephosphorylates TER94 Tyr(Y)-800 under ecdysone ..........................................................31 3.12 TER94 tyrosine phosphorylation regulates its function in degradation of ubiquitinated substrates................32 3.13 TER94-dependent degradation of the apoptosis inhibitor DIAP1 is regulated by TER94 phosphorylation status........34 3.14 Delay in midgut metamorphosis is due to reduced cell death revealed by TUNEL staining..........................35 3.15 Summary..............................................36 3.16 Discussion...........................................37 CHAPTER 4: FUTURE STUDIES.................................40 4.1 Future directions.....................................41 CHAPTER 5: FIGURES........................................44 CHAPTER 6: REFERENCES.....................................72 APPENDIX-I................................................82 APPENDIX-II..............................................102 | |
| dc.language.iso | en | |
| dc.title | 酪氨酸磷酸水解酶PTP52F對於果蠅發育之重要性 | zh_TW |
| dc.title | Role of the midgut-enriched receptor protein tyrosine phosphatase PTP52F in Drosophila melanogaster | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳光超 | |
| dc.contributor.oralexamcommittee | 張震東,邱繼輝,陳俊宏,桑自剛 | |
| dc.subject.keyword | PTP52F,果蠅,發育, | zh_TW |
| dc.subject.keyword | Drosophila,Development,Midgut,PTP52F,metamorphosis, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 3.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
