Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬
dc.contributor.authorChen-Yu Chenen
dc.contributor.author陳震宇zh_TW
dc.date.accessioned2021-06-17T00:12:24Z-
dc.date.available2012-07-19
dc.date.copyright2012-07-19
dc.date.issued2012
dc.date.submitted2012-07-11
dc.identifier.citation[1] World Health Organisation. International of Diseases and Related Health Problems, 10th Revision, Vol. 2. Geneva, WHO 1993.
[2] Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84.
[3] Steer, P. The epidemiology of preterm labor–a global perspective. J. Perinat. Med. 2005, 33, 273–276.
[4] Goldenberg, R.L.; Rouse, D.J. The prevention of premature birth. N. Engl. J. Med. 1999, 339, 313–320.
[5] Hack, M.; Fanaroff, A.A. Outcomes of children of extremely low birth weight and gestational age in the 1990’s. Early Hum. Dev. 1999, 53, 193–218.
[6] Garite, T.M. Premature rupture of the membranes. In: Creasy RK, Resnik R, editors. Maternal fetal medicine. 5th edition. Philadelphia: WB Saunders; 2004. p. 723–739.
[7] Romero, R.; Espinoza, J.; Kusanovic, J.P.; Gotsch, F.; Hassan, S.; Erez, O.; Chaiworapongsa, T.; Mazor, M. The preterm parturition syndrome. BJOG 2006, 113, 17–42.
[8] http://www.waybuilder.net/sweethaven/MedTech/ObsNewborn/
[9] Macones, G.A.; Hankins, G.D.; Spong, C.Y.; Hauth, J.; Moore, T. The 2008 National Institute of Child Health and Human Development workshop report on electronic fetal monitoring: update on definitions, interpretation, and research guidelines. Obstet. Gynecol. 2008, 112, 661–666.
[10] Bernardes, J.; Costa-Pereira, A.; Ayres-do-Campos, D.; Van Geijn, H.P.; Pereira-Leite, L. Evaluation of interobserver agreement of cardiotocograms. Int. J Gynecol. Obstet. 1997, 57, 33–37.
[11] Figueras, F.; Albela, S.; Bonino, S.; Palacio, M.; Barrau, E.; Hernandez, S.; Casellas, C.; Coll, O.; Cararach, V. Visual analysis of antepartum fetal heart rate tracings: inter- and intra-observer agreement and impact of knowledge of neonatal outcome. J. Perinat. Med. 2005, 33, 241–245.
[12] Nielsen, P.V.; Stigsby, B.; Nickelsen, C.; Nim, J. Intra- and interobserver variability in the assessment of intrapartum cardiotocograms. Acta Obstet. Gynecol. Scand. 1987, 66, 421–424.
[13] Donker, D.K.; van Geijn, H.P.; Hasman, A. Interobserver variation in the assessment of fetal heart rate recordings. Eur. J. Obstet. Gynecol. Reprod. Biol. 1993, 52, 21–28.
[14] Bracero, L.A.; Morgan, S.; Byrne, D.W. Comparison of visual and computerized interpretation of nonstress test results in a randomized controlled trial. Am. J. Obstet. Gynecol. 1999, 81, 1254–1258.
[15] Blumofe, K.A.; Broussard, P.M.; Walla, C.A.; Platt, L.D. Computerized versus visual analysis of fetal heart rate—a reduction in testing time. Am. J. Obstet. Gynecol. 1992, 166, 415.
[16] Buscicchio, G.; Giannubilo, S.R.; Bezzeccheri, V.; Scagnoli, C.; Rinci, A.; Tranquilli, A.L. Computerized analysis of the fetal heart rate in pregnancies complicated by preterm premature rupture of membranes (pPROM). J. Matern. Fetal Neonatal Med. 2006, 19, 39–42.
[17] Todros, T.; Preve, C.U.; Plazzotta, C.; Biolcati, M.; Lombardo, P. Fetal heart rate tracings: observers versus computer assessment. Eur. J. Obstet. Gynecol. Reprod. Biol. 1996, 68, 83–86.
[18] Huhn, E.A.; Lobmaier, S.; Fischer, T.; Schneider, R.; Bauer, A.; Schneider, K.T.; Schmidt, G. New computerized fetal heart rate analysis for surveillance of intrauterine growth restriction. Prenat. Diagn. 2011, 31, 509–514.
[19] Signorini, M.G.; Magenes, G.; Cerutti, S.; Arduini, D. Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Trans. Biomed. Eng. 2003, 50, 365–74.
[20] Chudaček, V.; Spilka, J.; Janků, P.; Koucky, M.; Lhotska, L.; Huptych, M. Automatic evaluation of intrapartum fetal heart rate recordings: a comprehensive analysis of useful features. Physiol. Meas. 2011, 32, 1347–1360.
[21] Maeda, K.; Noguchi, Y.; Matsumoto, F. Evaluation of prolonged fetal monitoring with normal and pathologic outcome probabilities determined by artificial neural network. Fetal Diagn. Ther. 2003, 18, 370–375.
[22] Ayres-de-Campos, D.; Sousa, P.; Costa, A.; Bernardes, J. Omniview-SisPorto 3.5 – a central fetal monitoring station with online alerts based on computerized cardiotocogram + ST event analysis. J. Perinat. Med. 2008, 36, 260–264.
[23] Serra, V.; Bellver, J.; Moulden, M.; Redman, C.W. Computerized analysis of normal fetal heart rate pattern throughout gestation. Ultrasound Obstet. Gynecol. 2009, 34, 74–79.
[24] Parer, J.T.; Hamilton, E.F. Comparison of 5 experts and computer analysis in rule-based fetal heart rate interpretation. Am. J. Obstet. Gynecol. 2010, 203, 451.e1–7.
[25] Boehm, F.H.; Haire, M.F. Xerox telecopier transmission of fetal monitor tracings: a 4-year experience. Obstet. Gynecol. 1979, 53, 520–523.
[26] Horio, H.; Murakami, M.; Chiba, Y.; Inada, H. Fetal monitor for non-stress-test screening at home. Biomed. Instrum. Technol. 1998, 32, 39–47.
[27] Kerner, R.; Yogev, Y.; Belkin, A.; Ben-Haroush, A.; Zeevi, B.; Hod, M. Maternal self-administered fetal heart rate monitoring and transmission from home in high-risk pregnancies. Int. J. Gynaecol. Obstet. 2004, 84, 33–39.
[28] Di Lieto, A.; De Falco, M.; Campanile, M.; Papa, R.; Torok, M.; Scaramellino, M. Four years’ experience with antepartum cardiotocography using telemedicine. J. Telemed. Telecare. 2006, 12, 228–233.
[29] Ippolito, A.; De Falco, M.; Triassi, M.; Di Lieto, A. A cost study of prenatal telemedicine. J. Telemed. Telecare. 2003, 9, 288–291.
[30] Colton, T.; Kayne, H.L.; Zhang, Y.; Heeren, T. A meta-analysis of home uterine activity monitoring. Am. J. Obstet. Gynecol. 1995, 173, 1499–1505.
[31] Corwin, M.J.; Mou, S.M.; Sunderji, S.G.; Gall, S.; How, H.; Patel, V.; Gray, M. Multicenter randomized clinical trial of home uterine activity monitoring: pregnancy outcomes for all women randomized. Am. J. Obstet. Gynecol. 1996, 175, 1281–1285.
[32] Wapner, R.J.; Cotton, D.B.; Artral, R.; Librizzi, R.J.; Ross, M.G. A randomized multicenter trial assessing a home uterine activity monitoring device used in the absence of daily nursing contact. Am. J. Obstet. Gynecol. 1996, 172, 1026–1034.
[33] Newman, R.B. Uterine contraction assessment. Obstet. Gynecol. Clin. North Am. 2005, 32, 341–367.
[34] The Collaborative Home Uterine Monitoring Study Group. A multicenter randomized controlled trial of home uterine monitoring: active versus sham device. Am. J. Obstet. Gynecol. 1995, 173, 1120–1127.
[35] Reichmann, J.P. Home uterine activity monitoring: the role of medical evidence. Obstet. Gynecol. 2008, 112, 325–327.
[36] Morrison, J.C.; Chauhan, S.P. Current status of home uterine activity monitoring. Clin. Perinatol. 2003, 30, 757–801.
[37] Goldenberg, R.L.; Goepfert, A.R.; Ramsey, P.S. Biochemical markers for the prediction of preterm birth. Am. J. Obstet. Gynecol. 2005, 192, S36–46.
[38] Goepfert, A.R.; Goldenberg, R.L.; Mercer, B.; Iams, J.; Meis, P.; Moawad, A.; Thom, E.; VanDorsten, J.P.; Caritis, S.N.; Thurnau, G.; Miodovnik, M.; Dombrowski, M.; Roberts, J.M.; McNellis, D. The Preterm Prediction Study: quantitative fetal fibronectin values and the prediction of spontaneous preterm birth. Am. J. Obstet. Gynecol. 2000, 83, 1480–1483.
[39] Goepfert, A.R.; Goldenberg, R.L.; Andrews, W.W.; Hauth, J.C.; Mercer, B.; Iams, J.; Meis, P.; Moawad, A.; Thom, E.; VanDorsten, J.P.; Caritis, S.N.; Thurnau, G.; Miodovnik, M.; Dombrowski, M.; Roberts, J.; McNellis, D. The Preterm Prediction Study: association between cervical interleukin 6 concentration and spontaneous preterm birth. Am. J. Obstet. Gynecol. 2001, 84, 483–488.
[40] Jacobsson, B.; Holst, R.M.; Wennerholm, U.B.; Andersson, B.; Lilja, H.; Hagberg, H. Monocyte chemotactic protein-1 in cervical and amniotic fluid: relationship to microbial invasion of the amniotic cavity, intra-amniotic inflammation, and preterm delivery. Am. J. Obstet. Gynecol. 2003, 189, 1161–1167.
[41] Diaz-Cueto, L.; Cuica-Flores, A.; Ziga-Cordero, F.; Ayala-Mendez, J.A.; Tena-Alavez, G.; Dominguez-Lopez, P.; Cuevas-Antonio, R.; Arechavaleta-Velasco, F. Vaginal matrix metalloproteinase levels in pregnant women with bacterial vaginosis. J. Soc. Gynecol. Investig. 2006, 13, 430–434.
[42] Paternoster, D.M.; Muresan, D.; Vitulo, A.; Serena, A.; Battagliarin, G.; Dell'avanzo, M.; Nicolini, U. Cervical phIGFBP-1 in the evaluation of the risk of preterm delivery. Acta. Obstet. Gynecol. Scand. 2007, 86, 151–155.
[43] Lockwood, C.J.; Wein, R.; Lapinski, R.; Casal, D.; Berkowitz, G.; Alvarez, M.; Berkowitz, R.L. The presence of cervical and vaginal fetal fibronectin predicts preterm delivery in an inner city obstetric population. Am. J. Obstet. Gynecol. 1993, 169, 798–804.
[44] Matsuura, H.; Hakomori, S. The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. Proc. Natl. Acad. Sci. USA. 1985, 82, 6517–6521.
[45] Matsuura, H.; Takio, K.; Titani, K.; Greene, T.; Levery, S.B.; Salyan, M.E.; Hakomori, S. The oncofetal structure of human fibronectin defined by monoclonal antibody FDC-6. Unique structural requirement for the antigenic specificity provided by a glycosylhexapeptide. J. Biol. Chem. 1988, 263, 3314–3322.
[46] Sibille, Y.; Lwebuga-Mukasa, J.S.; Polomski, L.; Merrill, W.W.; Ingbar, D.H.; Gee, J.B. An in vitro model for polymorphonuclear-leukocyte-induced injury to an extracellular matrix. Relative contribution of oxidants and elastase to fibronectin release from amnionic membranes. Am. Rev. Respir. Dis. 1986, 134, 134–140.
[47] McGregor, J.A.; French, J.I.; Lawellin, D.; Franco-Buff, A.; Smith, C.; Todd, J.K. Bacterial protease-induced reduction of chorioamniotic membrane strength and elasticity. Obstet. Gynecol. 1987, 69, 167–174.
[48] Iams, J.D.; Casal, D.; McGregor, J.A.; Goodwin, T.M.; Kreaden, U.S.; Lowensohn, R.; Lockitch, G. Fetal fibronectin improves the accuracy of diagnosis of preterm labor. Am. J. Obstet. Gynecol. 1995, 173, 141–145.
[49] Peaceman, A.M.; Andrews, W.W.; Thorp, J.M.; Cliver, S.P.; Lukes, A.; Iams, J.D.; Coultrip, L.; Eriksen, N.; Holbrook, R.H.; Elliott, J.; Ingardia, C.; Pietrantoni, M. Fetal fibronectin as a predictor of preterm birth in patients with symptoms: a multicenter trial. Am. J. Obstet. Gynecol. 1997, 177, 13–18.
[50] Lopez, R.L.; Francis, J.A.; Garite, T.J.; Dubyak, J.M. Fetal fibronectin detection as a predictor of preterm birth in actual clinical practice. Am. J. Obstet. Gynecol. 2000, 182, 1103–1106.
[51] Lu, G.C.; Goldenberg, R.L.; Cliver, S.P.; Kreaden, U.S.; Andrews, W.W. Vaginal fetal fibronectin levels and spontaneous preterm birth in symptomatic women. Obstet. Gynecol. 2001, 97, 225–228.
[52] Honest, H.; Bachmann, L.M.; Gupta, J.K.; Kleijnen, J.; Khan, K.S. Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: systematic review. BMJ. 2002, 325, 1–10.
[53] http://www.angelsoundsdoppler.com/
[54] http://www.playrobot.com/cart/
[55] Caldeyro-Barcia, R.; Casacuberta, C.; Bustos, R.; Giussi, G.; Gulin, L.; Escarcena, LA.; Mendez-Bauer, C. Correlation of intrapartum changes in fetal heart rate with fetal blood oxygen and acid base balance. In: Adamsons K, editor. Diagnosis and Treatment of Fetal Disorders. New York: Springer Verlag; 1969.
[56] Modanlou, H.D.; Freeman, R.K. Sinusoidal fetal heart rate pattern: its definition and clinical significance. Am. J. Obstet. Gynecol. 1982, 142, 1033–1038.
[57] Fleiss, J.L. The Design and Analysis of Clinical Experiments. New York: John Wiley; 1986.
[58] Landis, R.J.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174.
[59] Ayres-de-Campos, D.; Bernardes, J. Comparison of fetal heart rate baseline estimation by SisPorto 2.01 and a consensus of clinicians. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 117, 174–178.
[60] Costa, M.A.; Ayres-de-Campos, D.; Machado, A.P.; Santos, C.C.; Bernardes, J. Comparison of a computer system evaluation of intrapartum cardiotocographic events and a consensus of clinicians. J. Perinat. Med. 2010, 38, 191–195.
[61] Taylor, G.M.; Mires, G.J.; Abel, E.W.; Tsantis, S.; Farrell, T.; Chien, P.F.; Liu, Y. The development and validation of an algorithm for real-time computerized fetal heart rate monitoring in labour. BJOG 2000, 107, 1130–1137.
[62] Di Lieto, A.; Giani, U.; Campanile, M.; De Falco, M.; Scaramellino, M.; Papa, R. Conventional and computerized antepartum telecardiotocography. Experienced and inexperienced observers versus computerized analysis. Gynecol. Obstet. Invest. 2003, 55, 37–40.
[63] Schiermeier, S.; Westhof, G.; Leven, A.; Hatzmann, H.; Reinhard, J. Intra- and interobserver variability of intrapartum cardiotocography: a multicenter study comparing the FIGO classification with computer analysis software. Gynecol. Obstet. Invest. 2011, 72, 169–173.
[64] Graca, L.M.; Cardoso, C.G.; Calhaz-Jorge, C. An approach to interpretation and classification of sinusoidal fetal heart rate patterns. Eur. J. Obstet. Gynecol. Reprod. Biol. 1988, 27, 203–212.
[65] Johnson, N.; Johnson, V.A.; Fisher, J.; Jobbings, B.; Bannister, J.; Johanson, R. Fetal monitoring with pulse oximetry. Br. J. Obstet. Gynaecol. 1991, 98, 36–41.
[66] Kruger, K.; Hallberg, B.; Blennow, M.; Kublickas, M.; Westgren, M. Predictive value of fetal scalp blood lactate concentration and pH as marker for neurologic disability. Am. J. Obstet. Gynecol. 1999, 181, 1072–1078.
[67] Amer-Wahlin, I.; Kjellmer, I.; Maršal, K.; Olofsson, P.; Rosen, K.G. Swedish randomized controlled trial of cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram revisited: analysis of data according to standard versus modified intention-to-treat principle. Acta Obstet. Gynecol. Scand. 2011, 90, 990–996.
[68] Neilson, J.P. Fetal electrocardiogram (ECG) for fetal monitoring during labour. Cochrane Database Syst. Rev. 2006, 3, CD000116.
[69] East, C.E.; Chan, F.Y.; Colditz, P.B.; Begg, L.M. Fetal pulse oximetry for fetal assessment in labour. Cochrane Database Syst. Rev. 2007, 2, CD004075.
[70] Graatsma, E.M.; Jacod, B.C.; van Egmond, L.A.; Mulder, E.J.; Visser, G.H. Fetal electrocardiography: feasibility of long-term fetal heart rate recordings. BJOG 2009, 116, 334–337.
[71] Alfirevic, Z.; Devane, D.; Gyte, G.M.L. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst. Rev. 2006, 3, CD006066.
[72] Huhn, E.A.; Lobmaier, S.; Fischer, T.; Schneider, R.; Bauer, A.; Schneider, K.T.; Schmidt, G. New computerized fetal heart rate analysis for surveillance of intrauterine growth restriction. Prenat. Diagn. 2011, 31, 509–514.
[73] Signorini, M.G.; Magenes, G.; Cerutti, S.; Arduini, D. Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Trans. Biomed. Eng. 2003, 50, 365–374.
[74] Chudaček, V.; Spilka, J.; Janků, P.; Koucky, M.; Lhotska, L.; Huptych, M. Automatic evaluation of intrapartum fetal heart rate recordings: a comprehensive analysis of useful features. Physiol. Meas. 2011, 32, 1347–1360.
[75] Maeda, K.; Noguchi, Y.; Matsumoto, F. Evaluation of prolonged fetal monitoring with normal and pathologic outcome probabilities determined by artificial neural network. Fetal Diagn. Ther. 2003, 18, 370–375.
[76] Chung, T.K.; Mohajer, M.P.; Yang, Z.J.; Chang, A.M.; Sahota, D.S. The prediction of fetal acidosis at birth by computerised analysis of intrapartum cardiotocography. Br. J. Obstet. Gynaecol. 1995, 102, 454–460.
[77] Cazares, S.; Moulden, M.; Redman, C.W.G.; Tarassenko, L. Human fetal heart rate analysis during labour. In: Proceedings IEE Colloquium on Medical Applications of Signal Processing. 1999, 11/1–11/6.
[78] Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 1902, 4, 396–402.
[79] Chang, C.C.; Chiu, N.F.; Lin, D.S.; Chu-Su, Y.; Liang, Y.H.; Lin, C.W. High-Sensitivity Detection of Carbohydrate Antigen 15-3 Using a Gold/Zinc Oxide Thin Film Surface Plasmon Resonance-Based Biosensor. Anal. Chem. 2010, 82, 1207–1212.
[80] Chang, C.C.; Lin, S.; Wei, S.C.; Chen, C.Y.; Lin, C.W. An amplified surface plasmon resonance “turn-on” sensor for mercury ion using gold nanoparticles. Biosens. Bioelectron. 2011, 30, 235–240.
[81] Chuang, T.L.; Wei, S.C.; Lee, S.Y.; Lin, C.W. A polycarbonate based surface plasmon resonance sensing cartridge for high sensitivity HBV loop-mediated isothermal amplification. Biosens. Bioelectron. 2012, 32, 89–95.
[82] Wolfgang, G.; Peter, H. Interface analysis in biosensor design. Biosens. Bioelectron. 1995, 10, 854–855.
[83] Morton, T.A.; Myszka, D.G. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Method. Enzymol. 1998, 295, 268–294.
[84] Meyer, M.H.; Hartmann, M.; Keusgen, M. SPR-based immunosensor for the CRP detection–a new method to detect a well known protein. Biosens. Bioelectron. 2005, 21, 1987–1990.
[85] Metzger, J.; von Landenberg, P.; Kehrel, M.; Buhl, A.; Lackner, K.J.; Luppa, P.B. Biosensor analysis of beta2-glycoprotein I-reactive autoantibodies: evidence for isotype-specific binding and differentiation of pathogenic from infection-induced antibodies. Clin. Chem. 2007, 53, 1137–1143.
[86] Mao, Y.; Schwarzbauer, J.E. Stimulatory effects of a three-dimensional microenvironment on cell-mediated fibronectin fibrillogenesis. J. Cell Sci. 2005, 118, 4427–4436.
[87] O’Connell, M.A.; Belanger, B.A.; Haaland, P.D. Calibration and assay development using the four-parameter logistic model. Chemometr. Intell. Lab. 1993, 20, 97–114.
[88] Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971, 8, 871–874.
[89] Chen, C.Y.; Chang, C.C.; Yu, C.; Yang, S.Y.; Lin, C.W. Immunomagnetic reduction for fetal fibronectin detection|anovelmethod to detect the preterm biomarker. Biomed. Eng. App. Bas. C. 2011, 23, 273–278.
[90] Avramis, V.I.; Avramis, E.V.; Hunter, W.; Long, M.C. Immunogenicity of native or pegylated E. coli and Erwinia asparaginases assessed by ELISA and surface plasmon resonance (SPR-biacore) assays of IgG antibodies (Ab) in sera from patients with acute lymphoblastic leukemia (ALL). Anticancer Res. 2009, 29, 299–302.
[91] Campagnolo, C.; Meyers, K.J.; Ryan, T.; Atkinson, R.C.; Chen, Y.T.; Scanlan, M.J.; Ritter, G.; Old, L.J.; Batt, C.A. Real-Time, label-free monitoring of tumor antigen and serum antibody interactions. J. Biochem. Bioph. Meth. 2004, 61, 283–298.
[92] Cho, H.S.; Park, N.Y. Serodiagnostic comparison between two methods, ELISA and surface plasmon resonance for the detection of antibodies of classical swine fever. J. Vet. Med. Sci. 2006, 68, 1327–1329.
[93] Wollner, K.; Chen, X.; Kremmer, E.; Kramer, P.M. Comparative surface plasmon resonance and enzyme-linked immunosorbent assay characterisation of a monoclonal antibody with N-acyl homoserine lactones. Analytica. Chimica. Acta 2010, 683, 113–118.
[94] Campbell, K.; Huet, A.C.; Charlier, C.; Higgins, C.; Delahaut, P.; Elliott, C.T. Comparison of ELISA and SPR biosensor technology for the detection of paralytic shellfish poisoning toxins. J. Chromatogr. B 2009, 877, 4079–4089.
[95] Leitich, H.; Kaider, A. Fetal fibronectin--how useful is it in the prediction of preterm birth? BJOG 2003, 110, 66–70.
[96] Smith, V.; Devane, D.; Begley, C.M.; Clarke, M.; Higgins, S. A systematic review and quality assessment of systematic reviews of fetal fibronectin and transvaginal length for predicting preterm birth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2007, 133, 134–142.
[97] Homola, J.; Vaisocherova, H.; Dostalek, J.; Piliarik, M. Multi-analyte surface plasmon resonance biosensing. Methods 2005, 37, 26–36.
[98] Taylor, A.D.; Ladd, J.; Yu, Q.; Chen, S.; Homola, J.; Jiang, S. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens. Bioelectron. 2006, 22, 752–758.
[99] Nedelkov, D. Development of surface plasmon resonance mass spectrometry array platform. Anal. Chem. 2007, 79, 5987–5990.
[100] Takeda, H.; Fukumoto, A.; Miura, A.; Goshima, N.; Nomura, N. High-throughput kinase assay based on surface plasmon resonance suitable for native protein substrates. Anal. Biochem. 2006, 357, 262–271.
[101] Huang, J.G.; Lee, C.L.; Lin, H.M.; Chuang, T.L.; Wang, W.S.; Juang, R.H.; Wang, C.H.; Lee, C.K.; Lin, S.M.; Lin, C.W. A miniaturized germanium-doped silicon dioxide-based surface Plasmon resonance waveguide sensor for immunoassay detection. Biosens. Bioelectron. 2006, 22, 519–525.
[102] Stevens, R.C.; Soelberg, S.D.; Near, S.; Furlong, C.E. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Anal. Chem. 2008, 80, 6747–6751.
[103] Hong, C.Y.; Wu, C.C.; Chiu, Y.C.; Yang, S.Y.; Horng, H.E.; Yang, H.C. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl. Phys. Lett. 2006, 88, 212512–1–3.
[104] Yang, S.Y.; Jian, Z.F.; Chieh, J.J.; Horng, H.E.; Yang, H.C.; Hong, C.Y. Wash-free, antibody-assisted magnetoreduction assays on orchid viruses. J. Virol. Methods 2008, 149, 334–337.
[105] Chieh, J.J.; Yang, S.Y.; Jian, Z.F.; Wang, W.C.; Horng, H.E.; Yang, H.C.; Hong, C.Y. Hyper-high-sensitivity wash-free magnetoreduction assay on biomolecules using high-Tc superconducting quantuminterference devices. J. Appl. Phys. 2008, 103, 14703–1–6.
[106] Yang, H.C.; Yang, S.Y.; Liao, S.H.; Fang, G.L.; Huang, W.H.; Liu, C.H.; Liao, S.H.; Horng, H.E.; Hong, C.Y. Magnetic relaxation measurement in immunoassay using high-transition-temperature superconducting quantum interference device system. J. Appl. Phys. 2006, 99, 124701–124705.
[107] Enpuku, K.; Minotani, T.; Gima, T.; Kuroki, Y.; Itoh, Y.; Yamashita, M.; Katakura, Y.; Kuhara, S. Detection of magnetic nanoparticles with superconducting quantum interference device (SQUID) magnetometer and application to immunoassays. Jpn. J. Appl. Phys. 1999, 38, L1102–1105.
[108] Kotitz, R.; Weitschies, W.; Trahms, L.; Brewer, W.; Semmler, W. Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 194, 62–68.
[109] Lee, S.; Myers, W.R.; Grossman, H.L.; Cho, H.M.; Chemla, Y.R.; Clarke, J. Magnetic gradiometer based on a high-transition temperature superconducting quantum interference device for improved sensitivity of a biosensor. Appl. Phys. Lett. 2002, 81, 3094–3096.
[110] Horng, H.E.; Yang, S.Y.; Hong, C.Y.; Liu, C.M.; Tsai, P.S.; Yang, H.C.; Wu, C.C. Biofunctionalized magnetic nanoparticles for high-sensitivity immunomagnetic detection of human C-reactive protein. Appl. Phys. Lett. 2006, 88, 252506–1–3.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65803-
dc.description.abstract在妊娠產檢的過程中,胎兒窘迫和早產一直是婦產科醫師經常面對的問題和挑戰。產前診斷子宮內胎兒健康狀況的方法有很多種,除了超音波之外,胎心音及子宮收縮監測器是另一種最常用的儀器。胎心音及子宮收縮監測器是一種利用電子裝置來偵測和連續記錄胎心音及子宮收縮的儀器,並將胎心音及子宮收縮的紀錄用二條曲線表示。胎心音及子宮收縮監測器在臨床上使用主要的適應症是高危險妊娠(如︰妊娠高血壓、妊娠毒血症、妊娠糖尿病、早產、羊水過少、胎兒生長遲緩、過期妊娠等)或是已進入產程準備待產的孕婦。
胎心音及子宮收縮監測紀錄雖然只有二條曲線圖形,但其中蘊藏很多資訊可供醫護人員評估胎兒健康情形(如︰心率基準線、頻脈、緩脈、心率變異性、心跳加速或減速變化等)和子宮收縮情形(如︰頻率、持續時間、收縮壓力等),因此可以用來診斷是否有胎心音窘迫或早產等問題。
一般的胎心音及子宮收縮監測器必須在醫院裝置檢查,然後經由醫師判讀並做進一步的處置。然而對於有早產現象、子宮收縮、或是血壓高的孕婦,處理的原則之一是盡量臥床休息。如果要孕婦一旦有輕微症狀就到醫院檢查,容易在懷孕的過程必須常常掛急診到醫院,造成孕婦的困擾,對於住在距離產檢醫院較遠或偏遠地方的孕婦更是不便。
早產的發生率高達5~13%,其為造成70%新生兒死亡的主要因素,有50%新生兒神經發育上的異常也和早產有關。然而早產的症狀除了明顯的子宮收縮和破水,初期的症狀並無特異性(如:腰酸感、下墜感、或陰道分泌物增加),容易和一般懷孕過程中常見的症狀混淆。目前在國內的診斷仍是以在醫院裝置子宮收縮監測器,利用陰道擴張器檢查子宮頸有無進行性的變化,和以陰道超音波量測子宮頸長度來判斷早產的可能性。
胎兒纖維結合素(fetal fibronectin)是一種醣蛋白,存在於子宮絨毛膜和蛻膜之間,當子宮收縮時,會造成胎兒纖維結合素釋放到子宮頸和陰道中。胎兒纖維結合素為目前文獻上認為偵測早產最具代表性的生物標記(biomarker)。
本論文主體架構主要分為兩個部份︰第一部分為個人化產前遠距照護︰利用一套新研發的胎心音及子宮收縮監測診斷系統讓孕婦在家中自我監測胎心音及子宮收縮的情形;第二部分為早產防治技術之研發︰在醫院中利用生物感測器偵測子宮頸陰道分泌物中之胎兒纖維結合素濃度以防治早產。
為了有效降低醫療成本和維護生命的安全,個人化遠距健康照護的概念正迅速發展並廣泛應用於日常生活,如︰血壓、血糖、血氧的偵測。吾人利用研發之LabVIEW軟體應用程式遠距監測和診斷胎心音及子宮收縮,並經由藍芽和WiFi無線網路上傳到醫院,實現個人化產前照護的構想。
生物感測器具有快速、精確、低成本之分析和檢驗的功能,其作用對象可以為蛋白質、酵素、核酸等,常應用於臨床檢驗、藥物試驗、生化分析、環境檢測等方面。表面電漿子共振(surface plasmon resonance, SPR)現象是一種應用於表面與介面特性量測的光學方法,為目前奈米光學中一個極熱門的研究課題。SPR感測器可展現即時與高靈敏度的生物分子相互作用量測,因而廣泛應用於生物化學等方面的研究;磁減量免疫(immunomagnetic reduction, IMR)檢測乃是利用磁性奈米粒子來與待測生物分子結合成磁性叢集後,再藉由量測這些磁性叢集的磁性改變量以檢測待測物的含量。表面電漿子共振和磁減量免疫檢測方式都有偵測其他生物標記成功的文獻報告(如︰結核菌、血紅素、C反應蛋白等)。
在國內,利用酵素連結免疫吸附法(enzyme-linked immunosorbent assay, ELISA)檢測胎兒纖維結合素的成本較高,患者的接受意願低。本論文研究中利用研發的表面電漿子共振及磁減量免疫檢測方式之生物感測器防治早產。我們建議遠距監測子宮收縮之早產高危險群患者到醫院中利用生物感測器再次評估其早產的可能性,給臨床醫護人員參考,期望能減少早產的發生,進而改善周產期的罹病率和死亡率。
zh_TW
dc.description.abstractFetal compromise and preterm birth are two of the important problems in obstetrics. Cardiotocography (CTG), also known as electronic fetal monitoring, is a prevalent tool for recording fetal heart rates (FHRs) and uterine contractions (UCs) to evaluate fetal conditions and uterine activities during pregnancy. High risk pregnancies (such as gestational hypertension, preeclampsia, gestational diabetes mellitus, preterm labor, oligohydramnios, intrauterine growth restriction, and postdatism) are the indications of CTG.
A complete interpretation of a cardiotocogram includes both qualitative and quantitative descriptions of FHR (baseline, baseline variability, acceleration, early deceleration, late deceleration, variable deceleration, prolonged deceleration, recurrent deceleration, and sinusoidal pattern) and UC (baseline uterine tone, contraction frequency, duration, and strength), which can diagnose non-reassuring fetal heart rate and predict preterm birth.
In general, CTG was performed at hospitals and diagnosed by obstetricians. Before prenatal telemedicine, the CTG surveillance often required pregnant women to visit and stay in the hospital, and it was especially stressful for patients who reside far from hospitals.
Preterm birth is the main cause of perinatal morbidity and mortality with an incidence of 5 to 13% in developed countries, and accounts for nearly 70% of neonatal deaths and 50% of neurologic disabilities. However, early detection of preterm birth is difficult because the initial signs and symptoms are often obscure and may be mimicked by normal pregnancies.
Fetal fibronectin (fFN), which is a type of glycoprotein, is a major ingredient of the extracellular matrix originated in the interface between the maternal and fetal components of the choriodecidual junction. Preterm uterine contractions or cervical change is related to disruption of the choriodecidual junction, which leads fFN to release in the ectocervix or posterior vaginal fornix. fFN is the strongest biomarker to predict the risk of spontaneous preterm birth.
This dissertation includes two main sections: The first section is prenatal telemedicine with a novel CTG analysis program; the second section is biosensors for fFN detection to predict the risk of preterm birth.
Telemedicine with self-monitoring (such as blood pressure, blood sugar, and blood oxygen monitoring) is widely applied to provide clinical health care remotely. It can supply comparable health care, provide more convenience to patients, and may be cost-effective. In this dissertation we developed a prenatal telemedicine system with a novel objective and quantitative CTG analysis program based on the Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical software to monitor FHRs and UCs at home. The results of CTG were then sent to the hospital via Bluetooth and WiFi networks.
The development of biosensors provides an efficient, effective and accurate method of clinical examination, drug test, biochemical analysis, and environmental monitoring. Biosensors have been used to study a variety of biomolecules such as proteins, enzymes, and nucleic acids. Surface plasmon resonance (SPR) is an electromagnetic reaction of surface plasmons at the metal–dielectric interface of biosensors. In theory, when the analyte binds the ligand on the metal film, the interfacial architecture changes, and surface plasmons are excited by the light beam. We can measure the change of the resonant angle and determine the concentration of biomolecules of interest; Immunomagnetic reduction (IMR) is a technology developed to measure the reduction in the alternative-current (ac) magnetic susceptibility of magnetic reagents and detects the association between bio-functionalized magnetic nanoparticles and targeted bio-molecules. By way of the binding antibodies on the shell surface, magnetic nanoparticles connect the targeted bio-molecules and become either larger or clustered. The larger/clustered magnetic nanoparticles oscillate much less than that of initially individual magnetic nanoparticles, and we can analyze the targeted bio-molecules by measuring the diminution in ac magnetic susceptibility of the magnetic reagent.
In Taiwan, the commercial fFN ELISA kit is not widely used because of its higher cost. In this dissertation, we developed the biosensors based on SPR and IMR to predict the risk of preterm birth. The biosensor is a promising method with quantitative detection, high sensitivity, high specificity, easy operation, and low cost. Pregnant women monitor FHRs and UCs at home and the high risk groups of fetal compromise or preterm birth are suggested to go to the hospital for further evaluation and management. In the hospital we use the biosensor to predict the risk of preterm birth in order to reduce the perinatal morbidity and mortality.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:12:24Z (GMT). No. of bitstreams: 1
ntu-101-D96548019-1.pdf: 2918850 bytes, checksum: 760fd4d2f8518c2acd0cddd70e74d1d3 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Preterm birth 1
1.1.2 Cardiotocography (CTG) 2
1.1.3 Prenatal telemedicine 3
1.1.4 Home uterine activity monitoring (HUAM) 4
1.1.5 Fetal fibronectin (fFN) 5
1.1.6 Biosensor 6
1.2 Motivation 7
1.3 Objective 7
Chapter 2 Research and Development of Personal Technologies for Prenatal Care 11
2.1 Measurement of fetal heart rates (FHRs) and uterine contractions (UCs) 11
2.2 Relative work 11
2.2.1 LabVIEW software 11
2.2.2 Bluetooth 12
2.2.3 Wi-Fi 14
2.3 Comparison of our novel computerized analysis program and visual interpretation of CTG 14
2.3.1 Material and Methods 14
2.3.2 Results 17
2.3.3 Discussion 19
2.4 Prenatal telemedicine with FHR and UC measurement 23
Chapter 3 Research and Development of Preterm Birth Prevention 38
3.1 Measurement of fFN with biosensor based on SPR 38
3.1.1 The principle of SPR 38
3.1.2 Sample collection 39
3.1.3 Fabrication of SPR chip substrates 40
3.1.4 Preparation of the biosensor surface 40
3.1.5 SPR measurement 40
3.1.6 Data analysis 41
3.1.7 Calibration curve establishment 42
3.1.8 SPR sensorgram of the sample 42
3.1.9 Analysis of clinical samples 42
3.1.10 ROC curve of higher SPR intensity 44
3.1.11 SPR-based biosensors versus ELISA 44
3.2 Measurement of fFN with biosensor based on IMR 46
3.2.1 The principle of IMR 46
3.2.2 Sample preparation 47
3.2.3 Precision of measurement 48
3.2.4 Real-time Xac measurement 48
3.2.5 Concentration dependent IMR signals 49
3.2.6 Discussion 50
Chapter 4 Integrating Personal Technologies for Prenatal Care with Prevention of Preterm Birth 60
Chapter 5 Conclusion and Future Works 63
REFERENCES 64
dc.language.isoen
dc.title個人化產前照護及早產防治技術之研發zh_TW
dc.titleResearch and Development of Personal Technologies for Prenatal Care and Prevention of Preterm Birthen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee王國恭,黃義侑,楊謝樂,邱南福
dc.subject.keyword胎兒窘迫,早產,遠距醫療,胎心音及子宮收縮監測器,胎兒纖維結合素,生物感測器,表面電漿子共振,磁減量免疫檢測,zh_TW
dc.subject.keywordFetal compromise,preterm birth,telemedicine,cardiotocography,fetal fibronectin,biosensor,surface plasmon resonance,immunomagnetic reduction,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2012-07-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved