請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65792
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃漢邦 | |
dc.contributor.author | Chin-Jen Lin | en |
dc.contributor.author | 林欽仁 | zh_TW |
dc.date.accessioned | 2021-06-17T00:12:08Z | - |
dc.date.available | 2012-07-18 | |
dc.date.copyright | 2012-07-18 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-11 | |
dc.identifier.citation | Bernauer, F., J. Wassermann and H. Igel (2012). 'Rotational sensors—a comparison of different sensor types.' Journal of Seismology: in press.
Boore, D. M. (2001). 'Effect of Baseline Corrections on Displacements and Response Spectra for Several Recordings of the 1999 Chi-Chi, Taiwan, Earthquake.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 91(5): 1199-1211. Boroschek, R. L. and D. Legrand (2006). 'Tilt Motion Effects on the Double-Time Integration of Linear Accelerometers: An Experimental Approach.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 96(6): 2072-2089. Brokešova, J. and J. Malek (2010). 'New portable sensor system for rotational seismic motion measurements.' Rev. Sci. Instrum. 81. Chiu, H. C., F. J. Wu, C. J. Lin, H. C. Huang and C. C. Liu (2012). 'Effects of rotation motions on strong-motion data.' Journal of Seismology: in press. Chiu, H.-C. (1997). 'Stable baseline correction of digital strong-motion data.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 87(4): 932-944. Cochard, A., H. Igel, B. Schuberth, W. Suryanto, A. Velikoseltsev, U. Schreiber, J. Wassermann, F. Scherbaum, and D. Vollmer (2006). Rotational motions in seismology: Theory, observations, simulation, in Earthquake Source Asymmetry, Structural Media and Rotation Effects. Heidelberg, Germany, Springer. Ekstrom, G. and R. W. Busby (2008). 'Measurements of Seismometer Orientation at USArray Transportable Array and Backbone Stations.' Seismological Research Letters 79(4): 554-561. Evans, J. R., A. Cochard, V. Graizer, B.-S. Huang, K. Hudnut, C. R. Hutt, H. Igel, W. H. K. Lee, C.-C. Liu, E. Majewski, R. Nigbor, E. Safak, W. U. Savage, U. Schreiber, R. Teisseyre, M. Trifunac, J.Wassermann and C.-F. Wu (2007). Rotational seismology workshop of February 2006. U. S. Geol. Surv.: 20. Evans, J. R., F. Followill, C. R. Hutt, R. P. Kromer, R. L. Nigbor, A. T. Ringler, J. M. Steim and E. Wielandt (2010a). 'Method for Calculating Self-Noise Spectra and Operating Ranges for Seismographic Inertial Sensors and Recorders.' Seismological Research Letters 81(4): 640-646. Evans, J. R., C. R. Hutt, R. N. Nigbor and T. d. l. Torre (2010b). Performance of the new R2 sensor. 2nd IWGoRS workshop. Prague. Forbriger, T. (2009). 'About the Nonunique Sensitivity of Pendulum Seismometers to Translational, Angular, and Centripetal Acceleration.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1343-1351. Graizer, V. (2006). Equation of pendulum motions including rotations and its applications to the strong-ground motion, in Earthquake Source Asymmetry, Structural Media and Rotation Effects. New York, Springer Verlag. Graizer, V. (2009). 'The Response to Complex Ground Motions of Seismometers with Galperin Sensor Configuration.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1366-1377. Graizer, V. (2010). 'Strong Motion Recordings and Residual Displacements: What Are We Actually Recording in Strong Motion Seismology?' Seismological Research Letters 81(4): 635-639. Graizer, V. and E. Kalkan (2008). 'Response of pendulums to complex input ground motion.' Soil Dynamics and Earthquake Engineering 28(8): 621-631. Graizer, V. M. (2005). 'Effect of tilt on strong motion data processing.' Soil Dynamics and Earthquake Engineering 25(3): 197-204. Hadziioannou, C., P. Gaebler, U. Schreiber, J. Wassermann and H. Igel (2012). 'Examining ambient noise using colocated measurements of rotational and translational motion.' Journal of Seismology: in press. Huang, B.-S. (2003). 'Ground rotational motions of the 1999 Chi-Chi, Taiwan earthquake as inferred from dense array observations.' Geophys. Res. Lett. 30(6): 1307. Hutt, C. R., J. R. Evans, F. Followill, R. L. Nigbor and E. Wielandt (2010). Guidelines for standardized testing of broadband seismometers and accelerometers. U.S. Geological Survey 62. IEEE-Standard (2008). 'IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros.' IEEE-SA Standards Board. Igel, H., A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev and N. Pham Dinh (2007). 'Broad-band observations of earthquake-induced rotational ground motions.' Geophysical Journal International 168(1): 182-196. Igel, H., M.-F. Nader, D. Kurrle, A. M. G. Ferreira, J. Wassermann and K. U. Schreiber (2011). 'Observations of Earth's toroidal free oscillations with a rotation sensor: The 2011 magnitude 9.0 Tohoku-Oki earthquake.' Geophys. Res. Lett. 38(21): L21303. Igel, H., U. Schreiber, A. Flaws, B. Schuberth, A. Velikoseltsev and A. Cochard (2005). 'Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003.' Geophys. Res. Lett. 32(8): L08309. Iwan, W. D., M. A. Moser and C.-Y. Peng (1985). 'Some observations on strong-motion earthquake measurement using a digital accelerograph.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 75(5): 1225-1246. Jaroszewicz, L. R., Z. Krajewski, L. Solarz and R. Teisseyer (2006). 'Application of the fibre-optic Sagnac interferometer in the investigation of seismic rotational waves.' Measurement Science and Technology 17(5): 1186. Langston, C. A. (2007). 'Spatial Gradient Analysis for Linear Seismic Arrays.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 97(1B): 265-280. Lay, T. and T. C. Wallace (1995). Modern Global Seismology. Academic, San Diego, Calif. L. I. Iozan, M. Kirkko-Jaakkola, J. Collin, J. Takala and C. Rusu. 'North FindingSystem Using a MEMS Gyroscope.' in Proceedings of The European Navigation Conference on Global Navigation Satellite Systems (ENC GNSS 2010), Braunschweig, Germany, October 2010. Lee, W. H. K., M. Celebi, M. I. Todorovska and H. Igel (2009). 'Introduction to the Special Issue on Rotational Seismology and Engineering Applications.' Bulletin of the Seismological Society of America 99(2B): 945-957. Lee, W. H. K., B.-S. Huang, C. A. Langston, C.-J. Lin, C.-C. Liu, T.-C. Shin, T.-L. Teng and C.-F. Wu (2009). 'Review: Progress in Rotational Ground-Motion Observations from Explosions and Local Earthquakes in Taiwan.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 958-967. Leugoud, R. and A. Kharlamov (2012). 'Second generation of a rotational electrochemical seismometer using magnetohydrodynamic technology.' Journal of Seismology: 1-7. Lin, C.-J., H.-P. Huang, C.-C. Liu and H.-C. Chiu (2010). 'Application of Rotational Sensors to Correcting Rotation-Induced Effects on Accelerometers.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 100(2): 585-597. Lin, C.-J., H.-P. Huang, N. Pham, C.-C. Liu, W.-C. Chi and W. Lee (2011). 'Rotational Motions for Teleseismic Surface Waves.' Geophysical Research Letters. Lin, C.-J. and C.-C. Liu (2008). Calibration the R-1 rotation sensors on CT-EW1 Table, Institute of Earth Sciences. Lin, C.-J., C.-C. Liu and W. H. K. Lee (2009). 'Recording Rotational and Translational Ground Motions of Two TAIGER Explosions in Northeastern Taiwan on 4 March 2008.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1237-1250. Liu, C.-C., B.-S. Huang, W. H. K. Lee and C.-J. Lin (2009). 'Observing Rotational and Translational Ground Motions at the HGSD Station in Taiwan from 2007 to 2008.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1228-1236. Lin, C.-J., W.-G. Huang, H.-P. Huang, B.-S. Huang, C.-S. Ku and C.-C. Liu (2012). 'Investigation of array-derived rotation in TAIPEI 101.' Journal of Seismology: in preparation. Nigbor, R. L. (1994). 'Six-degree-of-freedom ground-motion measurement.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 84(5): 1665-1669. Nigbor, R. L., J. R. Evans and C. R. Hutt (2009). Laboratory and Field Testing of Commercial Rotational Seismometers. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA. 99: 1215-1227. Oliveira, C. S. and B. A. Bolt (1989). 'Rotational components of surface strong ground motion.' Earthquake Engineering & Structural Dynamics 18(4): 517-526. Pancha, A., T. H. Webb, G. E. Stedman, D. P. McLeod and K. U. Schreiber (2000). 'Ring laser detection of rotations from teleseismic waves.' Geophys. Res. Lett. 27(21): 3553-3556. Pham, N., B.-S. Huang, C.-J. Lin, T.-M. Vu and N.-A. Tran (2012). 'Investigation of ground rotational motions caused by direct and scattered P-waves from the 4 March 2008 TAIGER explosion experiment.' Journal of Seismology: 1-12. Pham, N. D., H. Igel, J. de la Puente, M. Kaser and M. A. Schoenberg (2010). 'Rotational motions in homogeneous anisotropic elastic media.' Geophysics 75(5): D47-D56. Pham, N. D., H. Igel, J. Wassermann, A. Cochard and U. Schreiber (2009a). 'The Effects of Tilt on Interferometric Rotation Sensors.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1352-1365. Pham, N. D., H. Igel, J. Wassermann, M. Kaser, J. de la Puente and U. Schreiber (2009b). 'Observations and Modeling of Rotational Signals in the P Coda: Constraints on Crustal Scattering.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1315-1332. Pillet, R. and J. Virieux (2007). 'The effects of seismic rotations on inertial sensors.' Geophysical Journal International 171(3): 1314-1323. Schreiber, K. U., A. Velikoseltsev, A. J. Carr and R. Franco-Anaya (2009). 'The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1207-1214. Schreiber, U., H. Igel, A. Cochard, A. Velikoseltsev, A. Flaws, B. Schuberth, W. Drewitz and F. Muller (2005). The GEOsensor Project: A New Observable for Seismology. Observation of the System Earth from Space. R. R. J. Flury, C. Reigber, M. Rothacher, G. Boedecker, and U. Schreiber. Berlin, Springer: 427-443. Schreiber, U., G. E. Stedman, H. Igel and A. Flaws (2006). Ring Laser Gyroscopes as Rotation Sensors for Seismic Wave Studies. Earthquake Source Asymmetry, Structural Media and Rotation Effects. M. T. R. Teisseyre, and E. Majewski. New York, Springer-Verlag: 377-390. Spudich, P., L. K. Steck, M. Hellweg, J. B. Fletcher and L. M. Baker (1995). 'Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: Observations from the UPSAR dense seismograph array.' J. Geophys. Res. 100(B1): 675-690. Stockwell, W. Bias Stability Measurement: Allan Variance. Suryanto, W. (2006). Rotational motions in seismology, theory and application Ph.D. dissertation, Univ. of Munich. Suryanto, W., H. Igel, J. Wassermann, A. Cochard, B. Schuberth, D. Vollmer, F. Scherbaum, U. Schreiber and A. Velikoseltsev (2006). 'First Comparison of Array-Derived Rotational Ground Motions with Direct Ring Laser Measurements.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 96(6): 2059-2071. Takeo, M. (1998). 'Ground rotational motions recorded in near‐source region of earthquakes.' Geophys. Res. Lett. 25(6): 789-792. Takeo, M. (2009). 'Rotational Motions Observed during an Earthquake Swarm in April 1998 Offshore Ito, Japan.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1457-1467. Titterton., D. H. and J. L. Weston (2004). Strapdown Inertial Navigation Technology. Stevenage, United Kingdom, The Institution of Electrical Engineers: 581. Trifunac, M. D. (1971). 'Zero baseline correction of strong-motion accelerograms.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 61(5): 1201-1211. Trifunac, M. D. and M. I. Todorovska (2001). 'A note on the useable dynamic range of accelerographs recording translation.' Soil Dynamics and Earthquake Engineering 21(4): 275-286. Velikoseltsev, A. (2005). The development of a sensor model for Large Ring Lasers and their application in seismic studies. PHD, Technische Universitat Munchen. Vikas, K. N. (2004). Integration of inertial navigation system and global positioning system using Kalman filtering. Ph.D. Thesis, Indian Institute of Technology. Wassermann, J., S. Lehndorfer, H. Igel and U. Schreiber (2009). 'Performance Test of a Commercial Rotational Motions Sensor.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1449-1456. Wielandt, E. (2001). 'Seismometry.' from http://www.geophys.uni-stuttgart.de/oldwww/seismometry/hbk_html/. Wielandt, E. (2012). New Manual of Seismological Observatory Practice (NMSOP-2). CHAPTER 5: Seismic Sensors and their Calibration. P. Bormann, IASPEI, GFZ German Research Centre for Geosciences, Potsdam. Wu, C.-F., W. H. K. Lee and H.-C. Huang (2009). 'Array Deployment to Observe Rotational and Translational Ground Motions along the Meishan Fault, Taiwan: A Progress Report.' BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 99(2B): 1468-1474. Xu, X., X. Wen, G. Yu, G. Chen, Y. Klinger, J. Hubbard and J. Shaw (2009). 'Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China.' Geology 37(6): 515-518. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65792 | - |
dc.description.abstract | 隨著科技的進步,旋轉感測器已經廣泛地應用在各個領域,包含航太、消費性電子、機器人產業、結構物觀測、地震觀測…等等。從運作原理來區分,有微機電、光纖、環型雷射、電化學…等等;從頻率響應來區分,有直流型和帶寬型。各種應用領域所需要的規格亦不相同,如機器人運動需要量測快速的旋轉變化,而地震觀測則是量測微小的地動旋轉變化,因此,依照不同的應用,來選擇適合的旋轉感測器是一件重要的事。
本論文旨在對旋轉感測器作全方面的探討,內容包含儀器檢驗及其應用。儀器檢驗方面,本文提出創新旋轉檢驗平台的機構設計及旋轉感測器的檢驗方法,亦利用Aerotech公司的ARMS-200旋轉平台,詳細地檢驗eentec公司的R-1旋轉感測器。應用方面,討論陣列旋轉量與單點旋轉量的差異,並提出對於遠場地震以及近場地震同時觀測其地動平移量以及旋轉量的好處,分別透過擺放於TAIPEI 101的旋轉感測器以及地震儀陣列、所記錄之遠震的六自由度資料、以及機器手臂六自由度量測的實驗,來驗證本論文提出的理論。最後使用旋轉感測器,來實現姿態估測器以及尋北儀兩項裝置。 最後,本文的結論著重於旋轉地震學領域,提出地動旋轉量觀測所需要的儀器規格,說明單站同時觀測地面的平移量以及旋轉量能夠得到地震波的方向、速度等優點,量測六自由度運動能夠修正加速度計的旋轉效應進而得到位移軌跡,以及利用尋北儀來尋找正北方向不會受到環境限制的優點。 | zh_TW |
dc.description.abstract | As progress of rotational sensor, it had been extensively applied to several fields, like aerospace, consumer electronics, robotics, structure monitoring, seismology, etc. There are various rotational sensor technologies available including micro-electro-mechanical, fiber optic gyroscopes, ring lasers, and molecular electronic transducers. Rotational sensor can be classified either low-pass or band-pass systems depending on whether their pass-band reaches DC or not. Different application requires rotational sensor with different specification, e.g. robotics measures rotational motion with rapid and large amplitude, while seismology records slow and tiny ground rotation. Therefore, choosing an adequate rotational sensor to meet various requirements is important.
This dissertation investigates the rotational sensor extensively, including instrument calibration and application. For the instrument calibration, we propose a novel mechanical design of rotational shake table and calibration methodology. We also use AerotechTM ARMS-200 simulator to calibrate eentec R-1 rotational sensor in detail. We compare array rotation and point rotation, and we point out several advantages from 6 degree-of-freedom (DOF) recordings for teleseismic and near-field earthquake. To prove the theory we proposed, we discuss the rotational motion between array-derived and direct measurement from translational and rotational array in TAIPEI 101, analyze the first 6-DOF ground motion for a teleseismic, and make experiment by attaching 6-DOF sensors on the robotic arm. We also implement the attitude estimator and North finder by using a rotational sensor. Finally, this dissertation made several conclusions for rotational seismology. We proposed the specification requirement of a strong-motion rotational sensor for seismology, point out the merit that wave direction and wave velocity can be derived from 6-DOF ground measurements at one station, correct rotational effects on accelerometer to derive permanent displacement, and demonstrate that the North finder for finding the true North will not be affected by environment variation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:12:08Z (GMT). No. of bitstreams: 1 ntu-101-D95522006-1.pdf: 8050210 bytes, checksum: 210e7f5c8f181586ed8fb8397578d49b (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents vi List of Tables ix List of Figures x Chapter 1 Introduction 1 1.1 Objectives 3 1.2 Rotational sensors 4 1.2.1 MEMS (Micro Electro-Mechanical System) 5 1.2.2 FOG (fiber optic gyroscope) 8 1.2.3 RLG (ring laser gyroscope) 9 1.2.4 MET (Molecular Electronic Transducers) 12 Chapter 2 Rotational Sensor Calibration 15 2.1 Rotational Shaker 15 2.2 Frequency Response 20 2.3 Sensitivity Test 22 2.4 Cross-Axis Sensitivity 25 2.5 Clip level and Linearity 26 2.6 Power Spectral Density 26 2.7 Allan Variance Analysis 28 2.8 Coherence Analysis 30 2.9 Calibration Result 31 2.9.1 Frequency response 32 2.9.2 Sensitivity 40 2.9.3 Translation-to-Rotation Cross-Axis Sensitivity 41 2.9.4 Rotation-to-Rotation Cross-Axis Sensitivity 46 2.9.5 Linearity 47 2.9.6 Power Spectral Density 49 2.9.7 Coherence Analysis 50 2.10 Conclusions 53 Chapter 3 Investigation of Array-Derived Rotation 55 3.1 Introduction 55 3.2 Deriving Rotation from a Translational Array 57 3.3 Observations and Data Processing 62 3.4 Discussion and Conclusions 73 Chapter 4 Rotational Motions for Teleseismic Surface Waves 76 4.1 Introduction 76 4.2 Fundamental Theory 78 4.3 Observations and Analyses 81 4.4 Conclusions 87 Chapter 5 Application of Rotational Sensors to Correcting Rotation-Induced Effects on Accelerometers 89 5.1 Introduction 90 5.2 Correction Algorithm 95 5.3 Coordinate Definition 97 5.4 Transformation Matrix 99 5.5 Attitude Equation 100 5.6 Tilt-Induced Gravity Effect 102 5.7 Centrifugal Acceleration 104 5.8 Attitude-Correction Equation 106 5.9 Experiments 107 5.10 Conclusions 118 Chapter 6 Navigational Application of Rotational Sensor 121 6.1 Attitude estimator 121 6.2 North Finder 123 6.2.1 Principle 123 6.2.2 Calibration and Testing 125 6.2.3 Field Survey 134 6.3 Discussions 136 Chapter 7 Conclusion 138 7.1 Conclusions 138 7.2 Future work 139 References 142 Appendix 148 | |
dc.language.iso | en | |
dc.title | 旋轉感測器在地動測量及其應用的研究 | zh_TW |
dc.title | Study on the Rotational Sensors in Ground Measurement and Application | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張國鎮,蔡克銓,劉說安,劉忠智,黃柏壽 | |
dc.subject.keyword | 旋轉感測器,旋轉地震學,尋北儀, | zh_TW |
dc.subject.keyword | rotational sensor,rotational seismology,north finder, | en |
dc.relation.page | 148 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 7.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。