Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張煥宗(Huan-Tsung Chang)
dc.contributor.authorTzu-En Linen
dc.contributor.author林子恩zh_TW
dc.date.accessioned2021-06-17T00:12:04Z-
dc.date.available2012-07-20
dc.date.copyright2012-07-20
dc.date.issued2012
dc.date.submitted2012-07-11
dc.identifier.citationReferences [1] Goesmann, H.; Feldmann, C. Angew. Chem. Int. Ed. 2010, 49, 1362–1395. [2](a) Cuenya, B. R. Thin Solid Films 2010, 518, 3127–3150. (b) MacDonald, M. A.; Zhang, P. J. Phys. Chem. Lett. 2010, 1, 1821–1825. (c) Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh. S. Adv. Mater. 2009, 21, 419–424. [3] Krahne, R.; Morello, G.; Figuerola, A.; Georgea, C.; Deka, S.; Mannaa, L. Phys. Rep. Rev. Sec. Phys. Lett. 2011, 501, 75–221. [4](a) Hiemstra, T.; Antelo, J.; Rahnemaie, R.; Riemsdijk, W. H. Geochim. Cosmochim. Acta 2010, 74, 41–58. (b) Berube, V.; Radtke, G.; Dresselhaus, M.; Chen, G. Int. J. Energy Res. 2007, 31, 637–663. (c) Prevo, B. G.; Kuncicky, D. M.; Velev, O. D. Physicochem. Colloid Surf. A-Physicochem. Eng. Asp 2007, 311, 2–10. [5](a) Nel, A. E.; Madler, L. M.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Nat. Mater. 2009, 8, 543–557. (b) Limbach, L. K.; Wick, P.; Manser, P.; Grass, R. N.; Bruinink, A.; StarK, W. J. Environ. Sci. Technol. 2007, 41, 4158–4163. [6] Stepanov, A. L. Rev. Adv. Mater. Sci. 2011, 27, 115–145. [7] Hristozov, D.; Malsch, I. Sustainability 2009, 1, 1161–1194. [8] Zheng, J.; Zhang, C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 1–4. [9](a) Hou, W.; Dehm, N. A.; Scott, R. W. J. J. Catal. 2008, 253, 22–27. (b) Guo, S.; Wang, E. Nano Today 2011, 6, 240–264. (c) Wei, H.; Lu, Y. Chem. Asian J. 2012, 7, 680 – 683.
(d) Buonerba, A.; Cuomo, C.; Sanchez, S. O.; Canton, P.; Grassi, A. Chem. Eur. J.
33
2012, 18, 709–715. (e) Cong, H.; Porco Jr., J. A. ACS Catal. 2012, 2, 65–70. [10](a) Ghosh, S. K.; Pal, T. P. Chem. Rev. 2007, 107, 4797–4862. (b) Chen, Y.; Ming, H. Photonic Sensors 2012, 2, 37–49. [11](a) Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8–24. (b) Amendola, V.; Meneghetti, M. J. Phys. Chem. C 2009, 113, 4277–4285. [12](a) Sau, T. K.; Rogach, A. L.; Jackel, F.; Klar, T. A.; Feldmann, J. Adv. Mater. 2010, 22, 1805–1825. (b) Halas, N. J. Nano Lett. 2010, 10, 3816–3822. (c) Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Accounts Chem. Res. 2008, 41, 1578–1586. [13](a) Chu, Y.; Crozier, K. B. Opt. Lett. 2009, 34, 244–246. (b) Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828–3857. (c) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia Y. Chem. Rev. 2011, 111, 3669–3712. [14](a) Ray, P. C. Chem. Rev. 2010, 110, 5332–5365. (b) Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913–3961. (c) Henry, A.-I.; Bingham, J. M.; Ringe, E. R.; Marks, L. D.; Schatz, G. C.; Duyne, R. P. V. J. Phys. Chem. C. 2011, 115, 9291–9305. (d) Zhang, H.; Li, Y.; Ivanov, I. A.; Qu, Y.; Huang, Y.; Duan, X. Angew. Chem. Int. Ed. 2010, 122, 2927– 2930. [15] Peng, S.; McMahon, J. M.; Schatz, G. C.; Gray, S. K.; Sun,Y. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 14530–14534.
[16](a) Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Nano Lett. 2009, 9,
34
1651–1658. (b) Jain, P. K.; El-Sayed, M. A. Chem. Phys. Lett. 2010, 487, 153–164. [17](a) Zeng, S.; Yong, K.-T.; Roy, I.; Dinh, X.-Q.; Yu, X.; Luan, F. Plasmonics 2011, 6, 491–506. (b) Ma, L.-N.; Liu, D.-J.; Wang, Z.-X. Chin. J. Anal. Chem. 2010, 38, 1–7. (c) Yeh, Y.-C.; Creran, B.; Rotello, V. M. Nanoscale 2012, 4, 1871–1880. [18](a) Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112, 2739–2779. (b) Boisselier, E.; Astruc, D. Chem. Soc. Rev. 2009, 38, 1759–1782. (c) Mahmoudi, M.; Lynch, I.; Ejtehadi, M. R.; Monopoli, M. P.; Bombelli, F. B.; Laurent Chem. Rev. 2011, 111, 5610–5637. [19](a) Laurent, S.; Dutz, S.; Hafeli, U. O.; Mahmoudi, M. Adv. Colloid Interface Sci. 2011, 166, 8–23. (b) Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Chem. Rev. 2008, 108, 2064–2110. [20](a) Xie, J.; Liu, G.; Eden, H. S.; Ai, H.; Chen, X. Accounts Chem. Res. 2011, 44, 883–892. (b) Yigit, M. V.; Moore, A.; Medarova, Z. Pharm. Res. 2012, 29, 1180–1188. [21](a) Basiruddin, S. K..; Saha, A.; Pradhan, N.; Jana, N. R. J. Phys. Chem. C, 2010, 114, 11009–11017. (b) Kinge, S.; Gang, T.; Naber, W. J. M.;Van der Wiel, W. G. V.; Reinhoudt, D. N. Langmuir 2011, 27, 570–574. (c) Lee, S.; Xie, J.; Chen, X. Biochemistry, 2010, 49, 1364–1376.
(d) Mazzucchelli, S.; Colombo, M.; Palma, C. D.; Salvade, A.; Verderio, P.; Coghi, M. D.; Clementi, E.; Tortora, P.; Corsi, F.; Prosperi, D. ACS Nano 2010, 4,
35
5693–5702. [22] Glomm, W. R.; Halskau, O; Hanneseth, A.-M. D.; Volden, S. J. Phys. Chem. B 2007, 111, 14329–14345. [23](a) Yezhelyev, M. V.; Gao, X. G.; Xing, Y.; Al-Hajj, A.; Nie, S.; O‘Regan, M. R. Lancet Oncol. 2006, 7, 657–667. (b) Palma, R. D.; Liu, C.; Barbagini, F.; Reekmans, G.; Bonroy, K.; Laureyn, W.; Borghs, G.; Maes, G. J. Phys. Chem. C 2007, 111, 12227–12235. (c) Wang, H.; Yang, R.; Yang, L.; Tan, W. ACS Nano 2009, 9, 2451–2460. (d) Algar, W. R.; Prasuhn, D. E.; Stewart, M. H.; Jennings, T. L.; Blanco-Canosa, J. B.; Dawson, P. E.; Medintz. I. L. Bioconjugate Chem. 2011, 22, 825–858. [24] Lee, O.-S.; Prytkova, T. R.; Schatz, G. C. J. Phys. Chem. Lett. 2010, 1, 1781–1788. [25](a) Cheng, Y.; Samia, A. C.; Li, J.; Kenney, M. E.; Resnick, A.; Burda, C. Langmuir 2010, 26, 2248–2255. (b) Kelkar, S. S.; Reineke, T. M. Bioconjugate Chem. 2011, 22, 1879–1903. [26] Famulok, M. J. Med. Chem. 2009, 52, 6951–6957. [27](a) Rampazzo, E.; Bonacchi, S.; Genovese, D.; Juris, R.; Marcaccio, M.; Montalti, M.; Paolucci, F.; Sgarzi, M.; Valenti, G.; Zaccheroni, N.; Prodi, L. Coord. Chem. Rev. 2012, 256, 1664–1681. (b) Goringer, H. U. Trends Parasitol. 2012, 28, 106–113. [28](a) Iliuk, A. B.; Hu, L.; Tao, W. A. Anal. Chem. 2011, 83, 4440–4452. (b) Wu, Z.; Tang, L.-J.; Zhang, X.-B. ; Jiang, J.-H.; Tan, W. ACS Nano 2011, 5, 7696–7699. [29](a) Stoltenburg, R.; Reinemann, C.; Strehlitz, B. Annu. Rev. Chem. Biomol. Eng. 2007, 24, 381–403.(b) Ye, M.; Hu, J.; Peng, M.; Liu, J.; Liu, J.; Liu, X.; Zhao, X.; Tan, W. Int. J. Mol. Sci. 2012, 13, 3341–3353. [30](a) Shiang, Y.-C.; Hsu, C.-L.; Huang, C.-C.; Chang, H.-T. Angew. Chem. Int. Ed. 2011, 123, 7802 –7807. (b) Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Nano Lett. 2009, 9, 308–311. [31](a) Freitag, I.; Neugebauer, U.; Csaki, A.; Fritzsche, W.; Krafft, C.; Popp, J. Vib. Spectrosc. 2012, 60, 79–84. (b) Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp. K. Nanomed.-Nanotechnol. Biol. Med. 2010, 6, 214–226. [32](a) Lee, J. H.; Yigit, M. V.; Mazumdar, D. M.; Lu, Y. Adv. Drug Deliv. Rev. 2010, 62, 592–605. (b) Kim, Y. S.; Jurng, J. Analyst, 2011, 136, 3720–3724. [33] Huntington, J. A. BBA-Proteins Proteomics 2012, 1824, 246–252. [34] Tanaka, K. A.; Key, N. S.; Levy, J. H. Anesth. Analg. 2009, 108, 1433–1446. [35] Crawley, J. T. B.; Zanardelli, S. Z.; Chion, C. K. N. K.; Lane, D. A. J. Thromb. Haemost. 2007, 5, 95–101. [36](a) Pasternak, A.; Hernandez, F. J,; Rasmussen, L. M.; Vester, B.; Wengel, J. Nucleic Acids Res. 2011, 39, 1155–1164. (b) Bini, A.; Mascini, M.; Mascini, M.; Turner, A. P. F. Biosens. Bioelectron. 2011, 26, 4411–4416. [37] Jayapal, P.; Mayer, G.; Heckel, A.; Wennmohs, F. J. Struct. Biol. 2009, 166, 241–250. [38] Shiang, Y.-C.; Huang, C.-C.; Wang, T.-H.; Chien, C.-W.; Chang, H.-T. Adv. Funct. Mater. 2010, 20, 3175–3182.[39](a) de Willige, S. U.; Standeven, K. F.; Philippou, H.; Ariens, R. A. S. Blood 2009, 114, 3994–4001. (b) Cooper, A. V.; Standeven, K. F.; Ariens, R. A. S. Blood 2003, 102, 535–540. [40](a) Komaromi, I.; Bagoly, Z.; Muszbek, L. J. Thromb. Haemost. 2011, 9, 9–20. (b) Wang, W. J. Biol. Chem. 2011, 286, 44952–44964. [41] Ho, P. P.; Lee, L. Y.; Zhao, X.; Tomooka, B. H.; Paniagua, R. T.; Sharpe, O.; BenBarak, M. J.; Chandra, P. E.; Hueber, W.; Steinman, L.; Robinson, W. H. J. Immunol. 2010, 184, 379–390. [42] Andrae, J.; Gallini, R.; Betsholtz, C. Genes Dev. 2008, 22, 1276–1312. [43] Claesson-Welsh, L. J. Biol. Chem. 1994, 269, 32023–32026. [44](a) Lu, H.; Xu, X.; Zhang, M.; Cao, R.; Brakenhielm, E.; Li, C.; Lin, H.; Yao, G.; Sun, H.; Qi, L.; Tang, M.; Dai, H.; Zhang, Y.; Su, R.; Bi, Y.; Zhang, Y.; Cao, Y. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 12140–12145. (b) Bao, P.; Kodra, A.; Tomic-Canic, M.; Golinko, M. S.; Ehrlich, H. P.; Brem, H. J. Surg. Res. 2009, 153, 347–358. (c) Gaengel, K.; Genove, G.; Armulik, A.; Betsholtz, C. J. Thromb. Haemost. 2009, 29, 630–638. [45](a) Heldin, C.-H.; Westermark, B. Physiol. Rev. 1999, 79, 1283–1316. (b) Carmeliet, P.; Jain, R. K. Nat. Rev. Cancer 2000, 407, 249–257. (c) Heldin, C.-H. Ups. J. Med. Sci. 2012, 117, 83–91. [46](a) Pietras, K.; Ostman, A.; Sjoquist, M.; Buchdunger, E.; Reed, R. K.; Heldin, C.-H.; Rubin, K. Cancer Res. 2001, 61, 2929–2934. (b) Paulsson, J.; Sjoblom, T.; Micke, P.; Ponten, F.; Landberg, G.; Heldin, C.-H.; Bergh, J.; Brennan, D. J.; Jirstrom, K.; Ostman, A. Am. J. Pathol. 2009, 175, 334–341.(c) McDermott, U.; Ames, R. Y.; Iafrate, A. J.; Maheswaran, S.; Stubbs, H.; Greninger, P.; McCutcheon, K.; Milano, R.; Tam, A.; Lee, D. Y.; Lucien, L.; Brannigan, B. W.; Ulkus, L. E.; Ma, X.-J.; Erlander, M. G.; Haber, D. A.; Sharma, S. V.; Settleman, J. Cancer Res 2009, 69, 3937–3946. [47] Green, L. S.; Jellinek, D.; Jenison, R.; Ostman, A.; Heldin, C. H.; Janjic, N. Biochemistry 1996, 35, 14413–14424. [48](a) Terao, C.; Ohmura, K.; Yamamoto, K.; Yukawa, N.; Kawabata, D.; Takaki, N.; Nojima, T.; Fujii, T.; Mimori, T. Mod. Rheumatol. 2012, 22, 426–430. (b) Okazaki, K.; Uchida, K.; Koyabu, M.; Miyoshi, H.; Takaoka. M. J. Gastroenterol. 2011, 6, 277–288. (c) Kanmert, D.; Kastbom, A.; Almroth, G.; Skogh, T.; Enander, K.; Wettero, J. Scand. J. Immunol. 2011, 75, 115–119. [49](a)O‘Horo, J.; Safdar, N. Int. J. Infect. Dis. 2009, 13, 663–667. (b) Hober, D.; Sane, F.; Jaidane, H.; Riedweg, K.; Goffard, A.; Desailloud, R. Clin. Exp. Immunol. 2011, 168, 47–51. (c) Deng, G.-M.; Liu, L.; Kyttaris, V. C.; Tsokos, G. C. J. Immunol 2010, 184, 7154–7161. [50]Wandinger, K.-P.; Stangel, M.; Witte, T.; Venables, P.; Charles, P.; Jarius, S.; Wildemann, B.; Probst, C.; Iking-Konert, C.; Schneider, M. Arthritis Rheum. 2010, 62, 1198–1200. [51](a) Heiner, D. C. Am. J. Med. 1984, 76, 1–6. (b) Segal, D. M.; Dower, S. K.; Titus, J. A. Mol. Immunol. 1983, 20, 1177–1189. [52] Bampton, J. L. M.; Cawston, T. E.; Kyle, M. V.; Hazleman, B. L. Ann. Rheum. Dis. 1985, 44, 13–19.
[53] Akerstrom, B.; Bjorck, L. J. Biol. Chem. 1986, 261, 10240–10247.
39
[54] Xu, X.; Daniel, W. L.; Wei, W.; Mirkin, C. A. small 2010, 6, 623–626. [55] Chen, S.-J.; Huang, Y.-F.; Huang, C.-C.; Lee, K.H.; Lin, Z.-H.; Chang, H.-T. Biosens. Bioelectron. 2008, 23, 1749–1753. [56] Luo, F.; Zheng, L.; Chen, S.; Cai, Q.; Lin, Z.; Qiua, B.; Chen, G. Chem. Commun. 2012, 48, 6387–6389. [57] Huang, Y.-F.; Chang, H.-T. Anal. Chem. 2007, 79, 4852–4859. [58] Wang, Z.; Lu, Y. J. Mater. Chem. 2009, 19, 1788-1798. [59] Hernandez, F. J.; Dondapati, S. K.; Ozalp, V. C.; Pinto, A.; O‘Sullivan, C. K.; Klar, T. A.; Katakis, I. J. Biophoton. 2009, 2, 227-231. [60] Liao, Y.-J.; Shiang, Y.-C.; Huang, C.-C.; Chang, H.-T. Langmuir 2012, 28, 8944–8951. [61] Xu, H.; Mao, X.; Zeng, Q.; Wang, S.; Kawde, A. N.; Liu, G. Anal. Chem. 2009, 81, 669-675. [62] Sharma, J.; Yeh, H.-C.; Yoo, H.; Werner, J. H.; Martinez, J. S. Chem. Commun., 2011, 47, 2294–2296. [63] Wang, Y.; Bao, L.; Liu, Z.; Pang, D.-W. Anal. Chem. 2011, 83, 8130–8137. [64] Huang, C.-C.; Huang, Y.-F.; Cao, Z.; Tan, W.; Chang, H.-T. Anal. Chem. 2005, 77, 5735-5741. [65] Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Angew. Chem. Int. Ed. 2007, 46, 6824-6828. [66] Huang, C.-C.; Chiang, C.-K.; Lin, Z.-H.; Lee, K.-H.; Chang, H.-T. Anal. Chem. 2008, 80, 1497-1504. [67] Ding, C.; Wei, S.; Liu, H. Chem. Eur. J. 2012, 18, 7263 – 7268. [68] Asuri, P.; Bale, S. S.; Karajanagi, S. S.; Kane, R. S. Curr. Opin. Biotechnol. 2006, 17, 562–568.
40
[69] Martin-Hidalgo, M.; Betancourt-Borges, J. E.; Rivera-Rios, L. R.; Rivera, J. M. Nanodevices 2007, 5, 1–18. [70] Bode, W,; Mayr, I.; Baumann, U.; Huber, R.; Stone, S. R.; Hofsteenge, J. EMBO J. 1989, 8, 3467–3475. [71] Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Nano Lett. 2005, 5, 709–711. [72] Edwards, K. A.; Wang, Y.; Baeumner, A. J. Anal. Bioanal. Chem. 2010, 398, 2645–2654. [73] Fu, Y.; Wang, T.; Bu, L.; Xie, Q.; Li, P.; Chen, J.; Yao, S. Chem. Commun. 2011, 47, 2637–2639. [74] Shiang, Y.-C.; Hsu, C.-L.; Huang, C.-C.; Chang, H.-T. Angew. Chem. Int. Ed. 2011, 50, 7660–7665. [75] Chen, S.-J.; Huang, Y.-F.; Huang, C.-C.; Lee, K.-H.; Lin, Z.-H.; Chang, H.-T. Biosens. Bioelectron. 2008, 23, 1749–1753. [76] C.-C.Huang,; C.-K.Chiang,; Z.-H.Lin,; K.-H.Lee,; H.-T. Chang, Anal. Chem. 2008, 80, 1497 – 1504. [77] Lin, T.-E.; Chen, W.-H.; Shiang, Y.-C.; Huang, C.-C.; Chang, H.-T. Biosens. Bioelectron. 2011, 29, 204–209. [78] Neff, C. P.; Zhou, J.; Remling, L.; Kuruvilla, J.; Zhang, J.; Li, H.; Smith, D. D.; Swiderski, P.; Rossi, J. J.; Akkina, R. Sci. Transl. Med. 2011, 66, 66ra66. [79] Zhou, J.; Ellis, A. V.; Kobus, H. K.; Voelcker, N. H. Anal. Chim. Acta 2012, 719, 76– 81. [80] McCauley, T. G.; Hamaguchi, N.; Stantony, M. Anal. Biochem. 2003, 319, 244–250.
41
[81] Li, L.; Zhao, H.; Chen, Z.; Mu, X.; Guo, L. Biosens. Bioelectron. 2011, 30, 261–266. [82] Cheng, W.; Ding, S.; Li, Q.; Yu, T.; Yin, Y.; Ju, H.; Ren, G. Biosens. Bioelectron. 2012, 36, 12–17. [83] Lee, J.-H.; Canny, M. D.; Erkenez, A. D.; Krilleke, D.; Ng, Y.-S.; Shima, D. T.; Pardi, A.; Jucker, F. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 18902–18907. [84] He, L.; Lamont, E.; Veeregowda, B.; Sreevatsan, S.; Haynes, C. L.; Diez-Gonzaleza, F.; Labuza, T. P. Chem. Sci. 2011, 2, 1579–1582. [85] Pai, S. S., Ellington, A. D. Methods Mol. Biol. 2009, 504, 385–398. [86] Niebel, B.; Lentz, C.; Pofahl, M.; Mayer, G.; Hoerauf, A.; Pfarr, K. M.; Famulok, M. Chemistry 2010, 16, 11100–11107. [87] Lee, W.-B.; Chen, Y.-H.; Lin, H.-I.; Shiesh, S.-C.; Lee, G.-B. Sens. Actuator B-Chem. 2011, 157, 710–721. [88] Xie, W. Y.; Huang, W. T.; Zhang, J. R.; Luo, H. Q.; Li, N. B. J. Mater. Chem. 2012, 22, 11479–11482. [89] Luo, X.; Lee, I.; Huang, J.; Yun, M.; Cui, X. T. Chem. Commun. 2011, 47, 6368–6370. [90] Hiep, H. M.; Saito, M.; Nakamura, Y.; Tamiya, E. Anal. Bioanal. Chem. 2010, 396, 2575–2581. [91] Huh, Y. S.; Erickson, D. Biosens. Bioelectron. 2010, 25, 1240–1243. [92] Lau, I. P.; Ngan, E. K.; Loo, J. F.; Suen, Y. K.; Ho, H. P.; Kong, S. K. Biochem. Biophys. Res. Commun. 2010, 395, 560–564. [93] Ding, C.; Wei, S.; Liu, H. Chem. Eur. J. 2012, 18, 7263 –7268. [94] Song, K.-M.; Cho, M.; Jo, H.; Min, K.; Jeon, S. H.; Kim, T.; Han, M. S.; Ku, J. K.; Ban, C. Anal. Biochem. 2011, 415, 175–181.[1] (a) Chen, X.; Huang, Y. F.; Tan, W. J. Biomed. Nanotechnol. 2008, 4, 400–409. (b) Lau, P. S.; Li, Y. Curr. Org. Chem. 2011, 15, 557–575. (c) Li, B.; Dong, S.; Wang, E. Asian J. Chem. 2010, 5, 1262–1272. (d) Soontornworajit, B.; Wang, Y. Anal. Bioanal. Chem. 2011, 399, 1591–1599. (e) Tombelli, S.; Mascini, M. Comb. Chem. High Throughput Screen. 2010, 13, 641–649. (f) Zhou, J.; Battig, M. R.; Wang, Y. Anal. Bioanal. Chem. 2010, 389, 2471–2480. [2] Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Nano Lett. 2009, 9, 308–311. [3](a) DeLong, R. K.; Reynolds, C. M.; Malcolm, Y.; Schaeffer, A.; Severs, T.; Wanekaya, A. Nanotechnol. Sci. Appl. 2010, 3, 53–63. (b) Duncan, B.; Kim, C.; Rotello, V. M. J. Control. Release 2010, 148, 122–127. (c) Wu, C. S.; Liu, F. K.; Ko, F. H. Anal. Bioanal. Chem. 2011, 399, 103–118. [4](a) Hu, M.; Chen, J.; Li, Z. Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084–1094. (b) Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonics 2007, 2, 107–118. (c) Nehlf, C. L.; Hafner, J. H. J. Mater. Chem. 2008, 18, 2415–2419. [5](a) Huang, C. C.; Huang, Y. F.; Cao, Z.; Tan, W.; Chang, H.T. Anal. Chem. 2005, 77, 5735–5741. (b) Huang, Y. F.; Chang, H. T. Anal. Chem. 2007, 79, 4852–4859. (c) Liu, J.; Lu, Y. J. Am. Chem. Soc. 2005, 127, 12677–12683. (d) Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W. Anal. Chem. 2008, 80, 1067–1072.
(e) Wang, J.; Munir, A.; Li, Z.; Zhou, H. S. Biosens. Bioelectron. 2009, 25,
65
124–129. (f) Wang, J.; Wang, L.; Liu, X.; Liang, Z.; Song, S.; Li, W.; Li, G.; Fan, C. Adv. Mater. 2007, 19, 3943–3946. (g) Wang, J.; Zhou, H. S. Anal. Chem. 2008, 80, 7174–7178. (h) Wei, H.; Li, B.; Li, J.; Wang, E.; Dong, S. Chem. Commun. 2007, 36, 3735–3737. [6] Shiang, Y. C.; Huang, C. C.; Wang, T. H.; Chien, C. W.; Chang, H. T. Adv. Funct. Mater. 2010, 20, 3175–3182. [7] Tasset, D. M.; Kubik, M. F.; Steiner, W. J. Mol. Biol. 1997, 272, 688–698. [8](a) Dai, Y. Expert Opin. Ther. Patents 2010, 20, 885–907. (b) Schmidt, M. B.; Chen, E. H.; Lynch, S. E. Osteoarthritis Cartilage 2006, 14, 403–412. [9] Turkevich, J. Gold Bull. 1985, 18, 86–91. [10] Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674–12675. [11] Brewer, S. H.; Glomm, W. R.; Johnson, M. C.; Kang, M. K.; Franzen, S. Langmuir 2005, 21, 9303–9307. [12] Cans, A. S.; Dean, S. L.; Reyes, F. E.; Keating, C. D. Nanobiotechnology 2007, 3, 12–22. [13] Chen, C. K.; Huang, C. C.; Chang, H. T. Biosens. Bioelectron. 2010, 25, 1922–1927. [14] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959–1964. [15] Zhang, J.; Liang, D.; He, W.; Wan, F.; Ying, Q.; Chu, B. Electrophoresis 2005, 26, 4449–4455.
66
[16] Chen, Y. Y.; Tseng, C. W.; Chang, H. Y.; Hung, Y. L.; Huang, C. C. Biosens. Bioelectron. 2011, 26, 3160–3166. [17] Green, L. S.; Jellinek, D.; Jenison, R.; Ostman, A.; Heldin, C. H.; Janjic, N. Biochemistry 1996, 35, 14413–14424. [18](a) Fang, X.; Cao, Z.; Beck, T.; Tan, W. Anal. Chem. 2001, 73, 5752–5757. (b) Kim, G. I.; Kim, K. W.; Oh, M. K.; Sung, Y. M. Nanotechnology 2009, 20, 175503. (c) Vicens, M. C.; Sen, A.; Vanderlaan, A.; Drake, T. J.; Tan, W. ChemBioChem 2005, 6, 900–907. (d) Xia, F.; Zuo, X.; Yang, R.; Xiao, Y.; Kang, D.; Vallee-Belisle, A.; Gong, X.; Yuen, J. D.; Hsu, B. B. Y.; Heeger, A. J. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 10837–10841. [19](a) Bronzert, D. A.; Pantazis, P.; Antoniades, H. N.; Kasid, A.; Davidson, N.; Dickson, R. B.; Lippman, M. E. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 5763–5767. (b) Corless, C. L.; Fletcher, J. A.; Heinrich, M. C. J. Clin. Oncol. 2004, 22, 3813–3825. (c) Silver, B. Biofactors 1992, 3, 217–227.[1](a) O‘Horo, J.; Safdar, N. Int. J. Infect. Dis. 2009, 13, 663–667. (b) Jordan, S. C.; Toyoda, M.; Vo, A. A. Am. J. Transplant. 2009, 88, 1–6. [2] Arnson, Y.; Shoenfeld, Y.; Amital, H. Autoimmunity 2009, 42, 553–560. [3](a) Cunningham-Rundles, C. Blood 2010, 116, 7–15. (b) Kamisawa, T.; Takuma, K.; Egawa, N.; Tsuruta, K.; Sasaki, T. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 401–409. [4](a) Heiner, D. C. Am. J. Med. 1984, 76, 1–6. (b) Segal, D. M.; Dower, S. K.; Titus, J. A. Mol. Immunol. 1983, 20, 1177–1189. [5](a) Davis, D. G.; Schaefer, D. M. W.; Hinchcliff, K. W.; Wellman, M. L.; Willet, V. E.; Fletcher, J. M. J. Vet. Med. 2005, 19, 93–96. (b) Shiang, Y.-C.; Lin, C.-A.; Huang, C.-C.; Chang, H.-T. Analyst 2011, 136, 1177–1182. (c) Van Helden, J. Clin. Lab. 2009, 55, 267–273. [6](a) Mun, K. S.; Alvarez, S. D.; Choi, W. Y.; Sailor, M. J. ACS Nano 2010, 4, 2070 –2076. (b) Combs, Z. A.; Chang, S.; Clark, T.; Singamaeni, S.; Anderson, K. D.; Tsukruk, V. V. Langmuir 2011, 27, 3198–3205.
(c) Pal, S.; Guillermain, E.; Sriram, R.; Miller, B. L.; Fauchet, P. M. Biosens.
90
Bioelectron. 2011, 26, 4024–4031. (d) Tang, Y; Jiang, C.; Liang, A.; Li, J.; Jiang, Z. Bioprocess. Biosyst. Eng. 2011, 34, 471–476. (e) Pal, S.; Guillermain, E.; Sriram, R.; Miller, B. L.; Fauchet, P. M. Biosens. Bioelectron. 2011, 26, 4024–4031. [7](a) Fang, X.; Tan, W. Acc. Chem. Res. 2010, 43, 48–57. (b) Liu, J.; You, M.; Pu, Y.; Liu, H.; Ye, M.; Tan, W. Curr. Med. Chem. 2011, 18, 4117–4125. [8] Liu., Y.; Zhang, X.; Ye, M.; Jiang, J.; Yang, R.; Fu, T.; Chen, Y.; Wang, K.; Liu, C.; Tan, W. Adv. Drug Deliv. Rev. 2011, 63, 1361–1370. [9] Chen, T.; Shukoor, M. I.; Chen, Y.; Yuan, Q.; Zhu, Z.; Zhao, Z.; Gulbakan, B.; Tan, W. Nanoscale 2011, 3, 546–556. [10](a) Dykman, L.; Khlebtsov, N. Chem. Soc. Rev. 2012, 41, 2256–2282. (b) Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.;. Mirkin, C. A. Angew. Chem. Int. Ed. 2010, 49, 3280–3294. (c) Chen, S.-J.; Huang, Y.-F.; Huang, C.-C.; Lee, K.-H.; Lin, Z.-H.; Chang, H.-T. Biosens. Bioelectron. 2008, 23, 1749–1753. [11](a) Yeh, Y.-C.; Creran, B.; Rotello, V. M. Nanoscale 2012, 4, 1871–1880. (b) Kim, N. H.; Lee, S. J.; Moskovits, M. Nano Lett. 2010, 10, 4181–4185.
91
[12] Chen, C.-K.; Huang, C.-C.; Chang H.-T. Biosens. Bioelectron. 2010, 25, 1922–1927. [13] Chen, C.-K.; Shiang, Y.-C.; Huang, C.-C.; Chang, H.-T. Biosens. Bioelectron. 2011, 26, 3464–3468. [13](a) Shiang, Y.-C.; Hsu, C.-L.; Huang, C.-C.; Chang, H.-T. Angew. Chem. Int. Ed. 2011, 50, 7660–7665. (b) Lin, T.-E.; Chen, W.-H.; Shiang, Y.-C.; Huang, C.-C.; Chang, H.-T. Biosens. Bioelectron. 2011, 29, 204– 209. [14](a) Laurent, S.; Dutz, S.; Hafeli, U. O.; Mahmoudi, M. Adv. Colloid Interface Sci. 2011, 166, 8–23. (b) Neoh, K. G.; Kang, E. T. Soft Matter. 2012, 8, 2057–2069. [15] Fei, X.; Geiger, J. H.; Baker, G. L.; Bruening, M. L. Langmuir 2011, 27, 3106–3112. [16] Turkevich, J. Gold Bull. 1985, 18, 86–91. [17] Glomm, W. R.; Halskau, O.; Hanneseth, A.-M. D.; Volden, S. J. Phys. Chem. B 2007, 111, 14329–14345. [18] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959–1964.
[19] Zhang, J.; Liang, D.; He, W.; Wan, F.; Ying, Q.; Chu, B. Electrophoresis 2005, 26,
92
4449–4455. [20] Akerstrom, B.; Bjorck, L. J. Biol. Chem. 1986, 261, 10240–10247. [21] Tasset, D. M.; Kubik, M. F.; Steiner, W. J. Mol. Biol. 1997, 272, 688–698. [22] Brewer, S. H.; Glomm, W. R.; Johnson, M. C.; Knag, M. K.; Franzen, S. Langmuir 2005, 21, 9303–9307. [23] Bampton, J. L. M.; Cawston, T. E.; Kyle, M. V.; Hazleman, B. L. Ann. Rheum. Dis. 1985, 44, 13–19. [24] Erturk, G.; Uzun, L.; Tumer, M. A.; Say, R.; Denizli, A. Biosens. Bioelectron. 2011, 28, 97–104.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65788-
dc.description.abstract蛋白質檢測極為重要,並可應用於臨床診斷、癌症、病原體感染和遺傳性疾病的研究。我們利用比色法開發出兩種具有高選擇性和高靈敏度的蛋白質生物感測器,並使用磁性奈米粒子與兩種金奈米粒子—核酸適體修飾的13奈米金粒子(Apt–Au NPs),和纖維蛋白原吸附的金奈米粒子(Fib–Au NPs, 56 nm)等來檢測血小板生長因子(platelet-derived growth factors, PDGF)以及人類免疫球蛋白G (hIgG)。在檢測PDGF的系統中,Apt–Au NPs有辨識目標分子的功能,而Fib–Au NPs則是扮演reporting units。在此系統中,功能性金奈米粒子(AptPDGF/Aptthr29–Au NPs)上面有與血小板生長因子結合的核酸適體(PDGF-binding-aptamer, AptPDGF),以及與凝血酶結合的核酸適體(thrombin-binding-aptamer, Aptthr29)。凝血酶會催化修飾在金奈米上的血纖維蛋白原,形成不溶的纖維素,因此造成了金奈米粒子的聚集,若凝血酶的活性被AptPDGF/Aptthr29–Au NPs抑制,則不會造成聚集。如果溶液中有PDGF先與AptPDGF/Aptthr29–Au NPs結合,則凝血酶就因立體障礙而無法接至AptPDGF/Aptthr29–Au NPs表面。此系統偵測PDGF的線性範圍是0.5–20 nM (R2 = 0.96),在100 μM的牛血清蛋白存在下,偵測極限是0.3 nM。若把 AptPDGF/Aptthr29–Au NPs用來濃縮樣品中的PDGF,那麼偵測極限可降至35 pM。最後我們測定乳癌細胞培養基中的PDGF濃度為230 (±20) pM,證明此方法是一個簡單,具有高專一性和靈敏度的方法。第二個主題是將類似的概念應用於hIgG的檢測。第一步先將hIgG與修飾protein G (PG)的磁性奈米粒子(PG–MNPs)還有PG修飾的Apt–Au NPs (PGApt–Au NPs)結合,並用磁鐵分離它們的複合體(PG–MNPs…hIgG…PGApt–Au NPs)。第二步是利用上清液中沒有被磁鐵分離的PGApt–Au NPs來控制凝血酶的活性,因此越多hIgG,會形成越多的PG–MNPs…hIgG…PGApt–Au NPs複合體,上清液中和凝血酶結合的PGApt–Au NPs也就越少,使fibrin–Au NPs的聚集越嚴重。在最佳化的條件並且含有100 μM的牛血清蛋白之下,PG–MNPs/PGApt–Au NPs/Fib–Au NPs probe可將偵測極限降至5 nM 。
我們最後取得三個正常人的血液樣本與兩個類風濕關節炎病人的血液樣本,利用標準曲線測得其hIgG濃度,並和市售的儀器做比較(enzyme-linked immunosorbent assay),發現兩者的數值呈現良好的線性(R2 = 0.98),證明了此法的實用性與準確性。
zh_TW
dc.description.abstractProtein detection is of great importance in basic research and clinical diagnosis of genetic disorders and its associated diseases, cancers, and pathogen infections. We have developed two colorimetric protein sensors using aptamer modified 13-nm gold nanoparticles (Apt–Au NPs), thrombin, and fibrinogen adsorbed Au NPs (Fib–Au NPs; 56 nm). These could be used for the highly selective and sensitive detection of platelet-derived growth factors (PDGFs) and human immunoglobulin G (hIgG). In the PDGF system, Apt–Au NPs and Fib–Au NPs were the recognition and reporting units, respectively. PDGF-binding-aptamer (AptPDGF) and 29-base-long thrombin-binding-aptamer (Aptthr29) were conjugated with Au NPs to prepare functional Apt–Au NPs (AptPDGF/Aptthr29–Au NPs) for specific interaction with PDGF and thrombin, respectively. Thrombin interacted with Fib–Au NPs in solution to catalyze the formation of insoluble fibrillar fibrin–Au NPs agglutinates through the polymerization of unconjugated and conjugated fibrinogen. Thrombin activity was suppressed when it interacted with AptPDGF/Aptthr29–Au NPs due to steric effects through the specific interaction of PDGF with AptPDGF on the surfaces of AptPDGF/Aptthr29–Au NPs. Under optimal conditions with AptPDGF/Aptthr29–Au NPs at 25 pM, thrombin at 400 pM, and Fib–Au NPs at 30 pM, AptPDGF/Aptthr29–Au NPs/Fib–Au NPs probe responded linearly to PDGF over a concentration range of 0.5–20 nM with a correlation coefficient of 0.96. The limit of detection (LOD, signal-to-noise ratio = 3) for each of the three PDGF isoforms was 0.3 nM in the presence of bovine serum albumin at 100 μM. When using AptPDGF/Aptthr29–Au NPs to selectively enrich PDGF and remove interfering substances from cell media, LOD of this probe for PDGF was 35 pM. This probe revealed that the concentration of PDGF in the three cell media is 230 (±20) pM, showing its advantages in terms of simplicity, sensitivity, and specificity. We also developed a method for the selective
IV
and sensitive detection of human immunoglobulin G (hIgG). The first step involves the specific interactions of hIgG with protein G (PG)-functional Fe2O3 magnetic NPs (PG–MNPs) and with PG– and aptamer (Apt)– modified gold NPs (PGApt–Au NPs) and the subsequent magnetic separation of their complexes (PG–MNPs…hIgG…PGApt–Au NPs). In the second step, the concentration of free PGApt–Au NPs was determined by taking advantage of their control of thrombin activity toward fibrinogen-modified Au NPs (Fib–Au NPs). The activity of thrombin toward Fib–Au NPs to form fibrin–Au NP aggregates was inhibited by PGApt–Au NPs through the specific interaction of thrombin with the Apt. The greater the amount of hIgG in a sample, the less free PGApt–Au NPs remained in the supernatant. Consequently, greater amounts of free thrombin remained, which led to the formation of greater amounts of fibrin–Au NP aggregates. Under optimal conditions (8 μg/mL PG–MNPs, 1.0 nM PGApt–Au NPs, 400 pM thrombin, 30 pM Fib–Au NPs), PG–MNPs/PGApt–Au NPs/Fib–Au NPs probe allows the selective detection of hIgG down to 5 nM in the presence of 100 μM of BSA. The practicality of this approach was validated by determining the concentrations of hIgG in spiked plasma samples that were in good agreement with determinations made by enzyme-linked immunosorbent assays (R2 = 0.98). These results demonstrate that this assay has great potential for diagnosing diseases associated with changes in hIgG levels.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:12:04Z (GMT). No. of bitstreams: 1
ntu-101-R99223202-1.pdf: 3302002 bytes, checksum: 7d7d881934276581f354fd087840a305 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要……………………………………………………………………………I
關鍵詞……………………..…………………………………………………………II
Abstract………………...…..………………………………………………………..III Keywords……………………………………………………………………….IV Contents……………………………………..………………………………………V
Figure Contents…………………………………………………………………VIII
Table Contents…………………………………………………………………XIV
Conclusion and Prospects ………………………………………………………93 Publications ………………………………………………………………………95
Conferences…………..……………………………………………………………..96
1 Chaper 1 Introduction……………..…………………………………..……1
1.1 Nanotechnology…………..…………………………………………………2
1.1.1 The Development of Nanotechnology……………………………………2
1.1.2 Gold Nanoparticles…………..………………………………………3
1.1.3 Magnetic Nanoparticles…………..…………………………………………4
1.1.4 Surface Modification of Nanoparticles……………………………………..5
1.2 Interesing Biomolecules…………..…………………………………………6
1.2.1 Aptamers…………..……………………………………………………..6
1.2.2 Thrombin…………..……………………………………………………7
1.2.3 Fibrinogen…………..…………………………………………………..8
1.2.4 Platelete-derived Growth Factor (PDGF)…………………………….9
1.2.5 Immunoglobulin G (IgG)…..…………………………………………10
1.2.6 Protein G…………..…………………………………………………11
1.3 Aptamer-Au NPs Based Optical Biosensors…………………………………11
1.3.1 Aptamer Nanosensors for Small Molecules……………………………….12
1.3.2 Aptamer Nanosensors for Proteins…………..……………………………15
1.3.3 Aptamer Nanosensors for cells…………..………………………………..19
1.4 Motive of Research…………..………...………………………………………20
1.5 Reference…………..…………………………………………………………32
2 Chapter 2 Colorimetric Detection of Platelet-derived Growth Factors through Competitive Interactions between Proteins and Functional Gold Nanoparticles.…………………………………………….……………...…….42
2.1 Introduction…..…………………………………………….……………….43
2.2 Experimental Sections…………………………………….……………..…44
2.2.1 Chemicals…………………………………………….………………….44
2.2.2 Preparation of Au NPs………………………………….…………………45
2.2.3 Preparation of Fib−Au NPs…………………………….…………………46
2.2.4 Assays of Thrombin Activity………………………….…………………47
2.2.5 Preparation of AptPDGF/Aptthr29−Au NPs…………….…………………47
2.2.6 Competitive Assays of PDGFs………………………….…………………48
2.2.7 Analysis of PDGFs in Cell Media…………………….…………………49
2.3 Results and Discussion……………………………….…………………….49
2.3.1 Sensing Mechanism…………………………….…………………...49
2.3.2 PDGFs Assays……………………………….……………………........50
2.3.3 Optimization of the Concentration of Thrombin…………………........51
2.3.4 Selectivity and Sensitivity………………….…………………….........52
2.3.5 Analysis of PDGFs in Cell Media…………….…………………….......53
2.4 Conclusions……………………………….…………………….................54
2.5 Reference…………………………….……………………..............................64
3 Control of the Enzyme Activity on the Functional Nanoparticles for Detection of Immunoglobulin G in Plasma……………….............................67
3.1 Introduction………………………….……………………...............................68
3.2 Experimental Sections………………….……………………...........................70
3.2.1 Chemicals………………………….……………………........................70
3.2.2 Preparation of Au NPs……………….……………………....................71
3.2.3 Preparation of Fib–Au NPs…………….…………………….................72
3.2.4 Preparation of PG–MNPs…………….……………………...................72
3.2.5 Preparation of PGApt–Au NPs………….…………………………….73
3.2.6 hIgG Assays…………………….……………………………...…………74
3.2.7 Analysis of hIgGs in Plasma Samples.………………………..…..............74
3.3 Results and Discussion…………….…………………….....................…........75
3.3.1 Sensing Strategy…………….……………………..…….....…………75
3.3.2 hIgG Assays………………….……………………...............……….76
3.3.3 Optimization of the Concentration of Thrombin and PGApt−Au NPs……77
3.3.4 Selectivity and Sensitivity………….………………………………...……78
3.3.5 Detection of hIgG in Human Plasma………………….…………………79
3.4 Conclusions………………….…………………………..…........……………80
3.5 Reference………………….………………………………..…………………89
dc.language.isoen
dc.subject磁奈米粒子zh_TW
dc.subject感測器zh_TW
dc.subject凝血&#37238zh_TW
dc.subject血小板生長因子zh_TW
dc.subject人類免疫球蛋白Gzh_TW
dc.subject金奈米粒子zh_TW
dc.subject核酸適體zh_TW
dc.subjectaptameren
dc.subjectsensoren
dc.subjectMNPsen
dc.subjectPDGFen
dc.subjectthrombinen
dc.subjectIgG Au NPsen
dc.title利用功能性奈米粒子及凝血酶偵測血小板生長因子及免疫球蛋白Gzh_TW
dc.titleAptamer-functionalized Nanoparticles for the Detection of Platelet-derived Growth Factor and Immunoglobulin Gen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃志清(Chih-Ching Huang),黃郁棻(Yu-Fen Huang),吳秀梅(Shou-Mei Wu)
dc.subject.keyword感測器,凝血&#37238,血小板生長因子,人類免疫球蛋白G,金奈米粒子,核酸適體,磁奈米粒子,zh_TW
dc.subject.keywordsensor,thrombin,PDGF,IgG Au NPs,aptamer,MNPs,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2012-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved