Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65786
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張煥宗(Huan-Tsung Chang)
dc.contributor.authorYu-Ju Liaoen
dc.contributor.author廖玉茹zh_TW
dc.date.accessioned2021-06-17T00:11:44Z-
dc.date.available2014-07-20
dc.date.copyright2012-07-20
dc.date.issued2012
dc.date.submitted2012-07-11
dc.identifier.citationBond, G. C.; Semon, P. A. Gold Bull, 1973, 6, 102−105.
Kattumuri, V.; Katti, K.; Bhaskaran, S.; Boote, E. J.;Casteel, S. W.; Fent, G. M.; Robertson, D. J.; Chandrasekhar, M.; Kannan, R.; Katti, K. V. Small 2007, 3, 333−341.
Sun, X.B.; Ma, Z.F. Biosens. Bioelectron. 2012, 35, 470– 474.
Papasani, M. R.; Wang, G.; Hill, R. A. Nanomed. Nanotechnol. 2012, doi:10.1016/j.nano.2012.01.008.
Chen, S.-J.; Huang, C.-C.; Lee, K.-H.; Lin, Z.-H.; Chang, H.-T. Biosens. Bioelectron. 2008, 23, 1749−1753.
Huang, C.-C.; Chiu, S.-H.; Huang, Y.-F.; Chang, H.-T. Anal. Chem. 2007, 79, 4798−4804.
Kan, X.W.; Liu, T.T.; Zhou, H.; Li, C.; Fang, B. Microchim. Acta. 2010, 171, 423–429.
Koa, S.; Parkb, T. J.; Kimc, H.-S.; Kimc, J.-H.; Choa, Y.-J. Biosens. Bioelectron. 2009, 24, 2592– 2597.
Huang, C.-C; Yang, Z.-S.; Chang, H.-T. Langmuir, 2004, 20, 6089−6092.
Zahr, O. K.; Blum, A. S. Nano Lett. 2012, 12, 629–633.
Pienpinijtham, P.; Han, X. X.; Suzuki, T.; Thammacharoen, C.; Ekgasit, S.; Ozaki, Y. Phys. Chem. Chem. Phys. 2012, DOI: 10.1039/b000000x.
Pang, S.; Kondo, T.; Kawai, T. Chem. Mater. 2005, 17, 3636–3641.
Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648–8649.
Shankar,S. S.; Rai, A. Ankamwar,; B.; Singh, A.; Ahmad, A.; Sastry, M. Nat. Mater. 2004, 3, 482−488.
Huangn, C.-J.; Chiu, P.-H.; Wang, Y.-H.; Yang, C.-F.; Feng, S.-W. J. Colloid Interface Sci. 2007, 306, 56–65.
Huang, C.-C.; Chang, H.-T. Chem. Commun. 2007, 12,1215 –1217.
Lin, Y.-W.; Liu, C.-W.; Chang, H.-T. Anal. Methods 2009, 1, 14−24.
(a) Bergmann, N. M.; Peppas, N. A. Prog. Polym. Sci. 2008, 33, 271−288. (b) Bui, B. T. S.; Haupt, K. Anal. Bioanal. Chem. 2010, 398, 2481−2492. (c) Shimizu, K. D.; Stephenson, C. J. Curr. Opin. Chem. Biol. 2010, 14, 743−750. (d) Vasapollo, G.; Vasapollo, G.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano, S.; Mele, G. Int. J. Mol. Sci. 2011, 12, 5908−5945.
(a) Tokonami, S.; Shiigi, H.; Nagaoka, T. Anal. Chim. Acta 2009, 641, 7−13. (b) Lange, U.; Roznyatovskaya, N. V.; Mirsky, V. M. Anal. Chim. Acta 2008, 614, 1−26. (c) Ye, L.; Mosbach, K. Chem. Mater. 2008, 20, 859−868. (d) Beltran, A.; Borrull, F.; Cormack, P. A. G.; Marce, R. M. Trends Anal. Chem. 2010, 29, 1363−1375. (e) Ge, Y.; Turner, A. P. F Chem.
Shiang, Y.-C.; Huang, C.-C.; Wang, T.-H.; Chang, H.-T. Adv. Funct. Mater. 2010, 20, 3175–3182.
Shiang, Y.-C.; Hsu, C.-L.; Huang, C.-C.; Chang, H.-T. Angew. Chem. 2011, 50, 7660 –7665.
Hsu, C.-L.; Chang, H.-T.; Chen, C.-T.; Wei, S.-C.; Shiang, Y.-C.; Huang, C.-C. Chem. Eur. J. 2011, 17, 10994–11000.
(a) Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55–75. (b) Enüstün, B. V.; Turkevich, J. J. Am. Chem. Soc. 1963, 85, 3317–3328. (c) Turkevich, J. Gold Bull. 1985, 18, 86–91. (d) Frens, G. Nat. Phys. Sci. 1973, 241, 20–22.
(a) Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959–1964. (b) Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547−1562. (c) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293−346.
Hantgan, R. R.; Herman, J. J. Biol. Chem. 1979, 254, 11272 –11281.
Chen, C.-K.; Huang, C.-C.; Chang, H.-T. Biosens. Bioelectron. 2010, 25, 1922–1927.
Kitchen, S.; McCraw, A.; Echenagucia, M. Diagnosis of Hemophilia and Other Bleeding Disorders, 2th ed.; World Federation of Hemophilia: Montreal, 2010.
(a) Bock, L. C.; Griffin, L. C.; Latham, J. A.; Vermaas, E. H.; Toole, J. J. Nature 1992, 355, 564–566. (b) Padmanabhan, K.; Padmanabhan, K. P.; Ferrara, J. D.; Sadler, J. E.; Tulinsky, A. J. Biol. Chem. 1993, 268, 17651–17654. (c) Tasset, D. M.; Kubik, M. F.; Steiner, W. J. Mol. Biol. 1997, 272, 688–698.
Di Cera, E. Mol. Aspects Med. 2008, 29, 203–254.
Liu, C.-W.; Huang, C.-C.; Chang, H.-T. Langmuir 2008 , 24 , 8346–8350.
Shiang, Y.-C.; Hsu, C.-L.; Huang, C.-C.; Chang, H.-T. Angew. Chem. 2011, 50, 7660 –7665.
Oster, G. J. Colloid Interface Sci. 1947, 387, (a) Collie, G. W.; Parkinson, G. N. Chem. Soc. Rev. 2011, 40, 5867–5892. (b) Hsu, C.-L.; Wei, S.−C.; Jian, J.-W.; Chang, H.-T.; Chen, W.-H.; Huang, C.-C. RSC Adv. 2012, 2, 1577–1584.
(a) Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Nano Lett. 2009, 9, 308–311. (b) Stadler, A.; Chi, C.; van der Lelie, D.; Gang, O. Nanomedicine 2010, 5, 319–334. (c) Hunter, C. A.; Anderson, H. L. Angew. Chem. 2009, 48, 7488–7499.
(a) Ackerson, C. J.; Sykes, M. T.; Kornberg, R. D. Proc. Natl. Acad. Sci. USA 2005, 102, 13383–13385. (b) Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J. J. Biomed. Biotechnol. 2007, 26796–26804. (c) Sandstrcm, P.; Kerman, B. Langmuir 2004, 20, 4182–4186. (d) Park, S.; Brown, K. A.; Hamad−Schifferli, K. Nano Lett. 2004, 4, 1925–1929. (e) Parak, W. J.; Pellegrino, T.; Micheel, C. M.; Gerion, D.; Williams, S. C.; Alivisatos, A. P. Nano Lett. 2003, 3, 33–36.
Liu, C.-W.; Huang, C.-C.; Chang, H.-T. Langmuir 2008, 24, 8346–8350.
Huang, C.-C.; Huang, Y.-F; Cao, Z.; Tan, W.; Chang, H.-T. Anal. Chem. 2005, 77, 5735–5741.
(a) Ben-Amram, Y.; Tel-Vered, R.; Riskin, M.; Wang, Z.-G.; Willner, I. Chem. Sci. 2012, 3, 162–167. (b) Balogh, D.; Tel-Vered, R.; Freeman, R.; Willner, I. J. Am. Chem. Soc. 2011, 133, 6533–6536. (c) Riskin, M.; Ben-Amram, Y.; Tel-Vered, R.; Chegel, V.; Almog, J.; Willner, I. Anal. Chem. 2011, 83, 3082–3088. (d) Riskin, M.; Tel−Vered, R.; Frasconi, M.; Yavo, N.; Willner, I. Chem. Eur. J. 2010, 16, 7114–7120. (e) Frasconi, M.; Tel-Vered, R.; Riskin, M.; Willner, I. Anal. Chem. 2010, 82, 2512–2519. (f) Ben-Amram, Y.; Riskin, M.; Willner, I. Analyst 2010, 135, 2952–2959. (g) Riskin, M.; Tel−Vered, R.; Willner, I. Adv. Mater. 2010, 22, 1387–1391. (h) Riskin, M.; Tel−Vered, R.; Bourenko, T.; Granot, E.; Willner, I. J. Am. Chem. Soc. 2008, 130, 9726–9733.
(a) Xie, C.; Li, H.; Li, S.; Wu, J.; Zhang Z. Anal. Chem. 2010, 82, 241–249. (b) Huang, J.; Zhang, X.; Liu, S.; Lin, Q.; He, X.; Xing, X.; Lian, W.; Tang, D. Sens. Actuators B: Chem. 2011, 152, 292–298. (c) Wang, Z.; Li, H.; Chen, J.; Xue, Z.; Wu, B.; Lu, X. Talanta 2011, 85, 1672–1679. (d) Bompart, M.; De Wilde, Y.; Haupt, K. Adv. Mater. 2010, 22, 2343–2348.
(a) Mayer, G.; Muller, J.; Mack, T.; Freitag, D. F.; Hover, T.; Potzsch, B.; Heckel, A. Chem. Bio. Chem. 2009, 10, 654−657. (b) Henry, B. L.; Monien, B. H.; Bock, P. E.; Desai, U.R. J. Biol. Chem. 2007, 282, 31891−31899. (c) Rangnekar A.; Zhang, A. M.; Li, S. S.; Bompiani, K. M.; Hansen, M. N.; Gothelf, K. V.; Sullenger, B. A.; Labean, T. H. Nanomedicine 2012, 8, 673–681.
(a) Sharpe, A. N.; Woodrow, M. N.; Jackson, A. K. J. Appl. Microbiol. 1970, 33, 758–767. (b) Kadare, G.; Haenni, A.−L. J. Virol. 1997, 71, 2583–2590.
Harkness, R. A.; Saugstad, O. D. Scand. J. Clin. Lab. Invest. 1997, 57, 655−672.
Sancenon, F.; Descalzo, A. B.; Martínez−Manez, R.; Miranda, M. A.; Soto. J. Angew. Chem. 2001, 40, 2640−2643.
Chen, S.-J.; Huang, Y.-F.; Huang, C.-C; Lee, K.-H; Lin, Z.-H.; Chang, H.−T. Biosens. Bioelectron. 2008, 23, 1749−1753.
Cahours, X.; Morin, P.; Dreux, M. Chromatographia. 1998, 48, 739–744.
Yu, J. H.; Yun, S. Y.; Lim, J. W.; Kim, H.; Kim, K. H. Proteomics 2003, 3, 2437–2445.
Steinberg, S. M.; Poziomek, E. J.; EngeJmann, W. H.; Rogers, K. R. Chcmmphcre 1995, 30, 2155–2197.
Du, Y.; Li, B. L.; Wei, H.; Wang, Y. L.; Wang, E. Anal. Chem. 2008, 80, 5110–5117.
(a) Padmanabhan, K.; Tulinsky, A. Acta Crystallogr. d. 1996, 52, 272−282. (b) Pagano, B.; Martino, L.; Randazzo, A.; Giancola, C. Biophys. J. 2008, 94, 562−569. (c) Nürnberg, A.; Kitzing, T.; Grosse, R. Nat. Rev. Cancer 2011, 11, 177−187.
Ishimoto, T.; Ozawa, T.; Mori, H. Bioconjugate Chem. 2011, 22, 1136–1144.
(a) Yamaguchi, H.; Condeelis J. Biochim. Biophys. Acta 2007, 1773, 642–652. (b) Yamazaki, D.; Kurisu ,S.; Takenawa, T. Cancer Sci. 2005, 96, 379–386.
(a) Kubik, M. F.; Stephens, A. W.; Schneider, D.; Marlar, R. A.; Tasset, D. Nucleic Acids. Res. 1994, 22, 2619−2626. (b) Tasset, D. M.; Kubik, M. F.; Steiner, W. J. Mol. Biol. 1997, 272, 688−698. (c) White, R.; Rusconi, C.; Scardino, E.; Wolberg, A.; Lawson, J.; Hoffman, M.; Sullenger, B. Mol. Ther. 2001, 4, 567−574.
(a) Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74, 504–509. (b) Chah, S.; Hammond, M. R.; Zare, R. N. Chem. Biol.2005, 12, 323–328.
Hurst, S. J.; Hill, H. D.; Macfarlane, R. J.; Wu, J.; Dravid, V. P.; Mirkin, C. A. Small 2009, 5, 2156–2161.
Aslan, K.; Luhrs, C. C.; Perez-Luna, V. H. J. Phys. Chem. B 2004, 108, 15631–15639.
Thanh, N. T. K.; Rosenzweig, Z. Anal. Chem. 2002, 74, 1624–1628.
Forrester, T.; Lind, A. R. J. Physiol. 1969, 204, 347–364.
Forrester, T. J. Physiol 1969, 200, 53–54.
Jabs, C. M.; Ferrell, W. J.; Robb, H. J. Clin. Chem. 1977, 23, 2254–2257.
Moss, A. H.; Solomons, C. C.; Alfrey, A. C. Proc. Clin. Dial. Transplant. Forum. 1979, 9, 184–188.
Harkness, R. A.; Simmonds, R. J.; Coade, S. B. Clin. Sci. 1983, 64, 333–340.
Harkness, R. A.; Coade, S. B.; Webster, A. D. Clin. Chim. Acta 1984, 143, 91–98.
Born, G. V.; Kratzer, M. A. J. Physiol.1984, 354, 419–429.
Lader, A. S.; Prat, A. G.; Jackson, G. R. J.; Chervinsky, K. L.; Lapey, A.; Kinane, T. B.; Cantiello, H. F. Clin. Physiol. 2000, 20, 348–353.
Huang, C.-C.; Yang, Z. S.; Chang, H.-T. Langmuir 2004, 20, 6089–6092.
Huang, C.-C.; Huang, Y.-F.; Cao, Z.; Tan, W.; Chang, H.-T. Anal. Chem. 2005, 77, 5735–5741.
Iyengar, M. R.; Weber, H. H. Biochim. Biophys. Acta 1964, 86, 543–553.
Stephen, L.; Brenner, S.; Edward, D. K. J. Biol. Chem. 1984, 259, 1441–1446.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65786-
dc.description.abstract本論文分兩部分,第一部分是利用分子模板技術(Molecularly Imprinted Technology,MP)將凝血酶適合體(Thrombin-Binding Aptamer,TBA)修飾在金奈米粒子(Gold Nanoparticles,Au NPs)表面後,形成具有抗凝血酶與偵測凝血酶活性的適合體─金奈米粒子複合物(MP-TBA−Au NPs);第二部份是利用金銀奈米棒(Gold-Silver Nanorods,Au/Ag NRs)修飾上肌動蛋白(Actin),製備肌動蛋白─金銀奈米棒(Ac−Au/Ag NRs)」感測器於三磷酸腺苷(Adenosine-5'-triphosphate, ATP)的偵測。經由凝血酶凝集時間(thrombin clotting time,TCT)的測試,在最佳化的條件下,MP-TBA15/TBA29-T15−Au NPs可使TCT值延遲至160秒,優於其他抑制劑(如Argatroban (61 秒)、Hirudin (44秒)、Warfarin (40秒)、Heparin (34秒))。MP-TBA−Au NPs亦可應用於凝血酶的偵測,利用凝血酶分子同時與MP-TBA15−Au NPs和MP-TBA29−Au NPs作用產生聚集現象,在模擬的生理環境偵測凝血酶分子,其線性範圍為1.0−10 nM (R2 = 0.98)。MP-TBA−Au NPs對於凝血酶有極高的選擇性與高穩定性,可應用於真實樣品(例如:人類血清以及血漿)中凝血酶的抑制及偵測。第二部分是利用Ac−Au/Ag NRs偵測樣品中ATP濃度,因ATP的存在會使肌動蛋白單體(G-Actin)產生聚合作用(polymerization)形成絲狀肌動蛋白聚合體(F-actin)進而造成Au/Ag NRs的聚集,藉由測量金銀奈米棒的吸收值比(Ex900/730;吸收值波長900 nm與730 nm比值)即可得知金銀奈米棒聚集的程度,進而定量出樣品中ATP濃度。Ac−Au/Ag NRs在模擬的生理環境中對於ATP偵測的線性範圍為50 nM−1.0 μM (R2 = 0.99)。Ac−Au/Ag NRs對ATP、ADP、AMP以和Adenosine有很好的選擇性,可應用於複雜的樣品(如人類血漿)中偵測ATP濃度。zh_TW
dc.description.abstractThere are two parts in this thesis: the first part is focused on that we prepared thrombin-binding aptamer-conjugated gold nanoparticles (TBA−Au NPs) through a molecularly imprinted (MP) approach, which provided highly efficient inhibition activity toward the polymerization of fibrinogen; another is to prepared actin-conjugated gold-silver nanorods (Ac−Au/Ag NRs) to measure Adenosine-5'-triphosphate (ATP) concentration in the aqueous solution by colorimetric method. MP-TBA15/TBA29-T15−Au NPs provided the highest binding affinity toward thrombin with a dissociation constant of 5.2 × 10−11 M. Finally, we tested the thrombin clotting time (TCT) measurements in plasma samples and found that MP-TBA15/TBA29-T15−Au NPs had greater anticoagulation activity than heparin, argatroban, hirudin and warfarin. In addition, we demonstrated that thrombin induced the formation of aggregates from MP-TBA15-T15−Au NPs and MP-TBA29-T15−Au NPs, thereby allowing the colorimetric detection of thrombin at the nanomolar level in serum samples. The second part is to demonstrated a colorimetric sensing approach for the determination of the concentration of adenosine-5'-triphosphate (ATP) using actin-conjugated gold nanorods (Ac−Au/Ag NRs). In the presence of the ATP, the color of the Ac−Au/Ag NRs solution changed from red to purple as a result of actin polymerization. For mixtures of ATP, polymerization buffer (40.0 mM NaCl and 2.0 mM MgCl2) and physiological buffer (25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 5.0 mM KCl, 1.0 mM MgCl2, 1.0 mM CaCl2), a linear correlation (R2=0.99) existed between the ratio of the extinctions of the Ac−Au NRs at 900 and 730 nm (Ex900/730) and the concentration of ATP.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:11:44Z (GMT). No. of bitstreams: 1
ntu-101-R99223209-1.pdf: 3469839 bytes, checksum: 6d8330cc3b2635a1fb1a8ea008263ab4 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 III
圖表目錄 VI
第一章 緒論 1
1.1金奈米材料 1
1.2 分子模板技術 3
1.2.1分子模板技術發展歷史 3
1.2.2分子模板製備方法 4
1.2.3 共價鍵結法與非共價鍵結法 4
1.2.4 分子模板技術應用 5
1.3 凝血酶簡介 5
1.4抗凝血酶核酸適合體介紹 6
1.5肌動蛋白簡介 8
1.6研究動機 9
1.7本章圖表 10
1.8參考文獻 17
第二章 應用分子模板之適合體/金奈米粒子複合材料於凝血酶活性抑制與偵測 21
2.1 前言 21
2.2 實驗材料與方法 22
2.2.1 實驗試藥 22
2.2.2 金奈米粒子合成 23
2.2.3 利用分子模板技術合成適合體−金奈米粒子複合物 24
2.2.4 凝集動力學即時檢測 25
2.2.5 測定適合體−金奈米粒子複合物與凝血酶解離常數 25
2.2.6 凝血酶凝集時間測定 26
2.2.7凝血酶偵測 26
2.2.8選擇性測試 27
2.3 實驗結果與討論 27
2.3.1 MP-TBA15/TBA29-T15–Au NPs合成機制 27
2.3.2分子模板技術對抑制效率的探討 28
2.3.3模板蛋白濃度對抑制效果的探討 29
2.3.4適合體與金奈米粒子間距離對抑制效率的探討 30
2.3.5適合體密度對抑制效率的探討 30
2.3.6適合體−金奈米粒子複合物對凝血酶凝集時間(TCT)的影響 31
2.3.7適合體−金奈米粒子複合物對凝血酶偵測偵測靈敏度 31
2.4 結論 32
2.5 本章圖表 34
2.6 參考文獻 50
第三章 金銀奈米棒修飾上肌動蛋白應用於三磷酸腺苷之偵測 52
3.1前言 52
3.2實驗材料與方法 53
3.2.1實驗試藥 53
3.2.2金銀奈米棒合成 54
3.2.3合成肌動蛋白−金奈米材料複合物 54
3.2.4選擇性測試 55
3.2.5肌動蛋白−金銀奈米棒偵測ATP 55
3.3 實驗結果與討論 56
3.3.1肌動蛋白−金銀奈米棒偵測三磷酸腺苷機制 56
3.3.2不同金奈米材料對於偵測靈敏性之影響 56
3.3.3不同濃度肌動蛋白對於肌動蛋白−金銀奈米棒複合物穩定性以及偵測靈敏性影響 57
3.3.4肌動蛋白−金銀奈米棒複合物選擇性探討 57
3.3.5肌動蛋白−金銀奈米棒複合物應用於樣品ATP偵測 58
3.4 結論 58
3.5 本章圖表 60
3.6 參考文獻 70
dc.language.isozh-TW
dc.subject金奈米材料zh_TW
dc.subject適合體zh_TW
dc.subject分子模板技術zh_TW
dc.subject凝血&#37238zh_TW
dc.subject三磷酸腺&#33527zh_TW
dc.subjectgold nanomaterialen
dc.subjectaptameren
dc.subjectmolecularly imprinted technologyen
dc.subjectthrombinen
dc.subjectATPen
dc.title利用功能性金奈米材料抑制凝血酶活性及偵測三磷酸腺苷zh_TW
dc.titleFunctional gold nanomaterials for the inhibition of the activity of thrombin and for the detection of ATPen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃志清,吳秀梅,黃郁棻
dc.subject.keyword金奈米材料,適合體,分子模板技術,凝血&#37238,三磷酸腺&#33527,zh_TW
dc.subject.keywordgold nanomaterial,aptamer,molecularly imprinted technology,thrombin,ATP,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2012-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved