請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65779完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳德玉 | |
| dc.contributor.author | Chung-Hsi Chou | en |
| dc.contributor.author | 周宗錫 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:11:35Z | - |
| dc.date.available | 2014-07-19 | |
| dc.date.copyright | 2012-07-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-12 | |
| dc.identifier.citation | [1] J. Li, “Current-Mode Control:Modeling and its Digital Application”Ph. D. dissertation, Virginia Tech 2009.
[2] I.-C. Wei,“Modeling of Ripple Based Constant On Time Buck Converter in Discontinuous Conduction Mode” M.S. thesis, Nation Taiwan University, Taipei, Taiwan, 2011. [3] Y.-C. Lin, C.-J. Chen, D. Chen, and B. Wang,“A Novel Ripple-Based Constant On-Time Control with Virtual Inductance and Offset Cancellation for DC Power Converters', in Proc. IEEE ECCE Conf. 2011, pp.1244-1250 [4] Ching-Jan Chen,“Modeling and Design of Voltage Regulator Control Schemes for Computer Power Applications”, Ph.D thesis, National Taiwan University, Taipei, Taiwan, 2011. [5] K. Yao, Y. Ren, J. Sun, K. Lee, M. Xu, J. Zhou, and F.C. Lee, “Adaptive Voltage Position Design for Voltage Regulators” Applied Power Electronics Conference and Exposition (APEC), 2004 Nineteenth Annual IEEE, vol. 1, pp.272-278, Feb. 2004. [6] K. Yao, “High-Frequency and High-Performance VRM Design for the Next Generations of Processors,” Ph. D. thesis, Virginia Tech, 2004. [7] M. Lee, D. Chen, K. Huang, E. Tseng, and B. Tai, “Comparisons of Three Control Schemes for Adaptive Voltage Position Droop for VRMs Applications,” in Proc. IEEE EPE-PEMC, 2006, pp. 206-211. [8] M. Lee, D. Chen, K. Huang, C. W. Liu, and B. Tai, “Modeling and Design for a Novel Adaptive Voltage Positioning (AVP) Scheme for Multiphase VRMs,” IEEE Trans. on Power Electronics, vol. 23, no. 4, pp. 1733-1742, Jul. 2008 [9] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch. II Discontinuous Conduction Mode,” IEEE Trans. Aerosp., Vol. 26, pp. 497-505, May 1990. [10] F.Yu, F.C.- Lee, “Design oriented model for constant on-time V2 control,” Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, pp.3115-3122, 12-16, Sept. 2010. [11] C.-J. Chen, D. Chen, C.-W. Tseng, C.-T. Tseng, Y.-W. Chang, and K.-C. Wang, “A Novel Ripple-Based Constant On-Time Control with Virtual Inductor Current Ripple for Buck Converter with Ceramic Output Capacitors,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), 2011, pp.1488-1493. [12] J. Wang; J. Xu, F. Zhang, M. Qin, “A Novel Constant On-Time Bi-Frequency Control Technique for Switching DC-DC Converters.” Industrial Electronics and Applications (ICIEA), 2010 the 5th IEEE Conference on, pp.1094-1097, 15-17 June 2010. [13] E.-Stanford, “Power Delivery Challenges in Computer Platforms,” Special session presentation of IEEE Applied Power Electronics Conf., 2006. [14] C.-S. Lee, “Advanced Control Schemes for Voltage Regulators with Adaptive Voltage Position (AVP) Control,” Ph. D. thesis, National Taiwan University, Taipai, Taiwan, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65779 | - |
| dc.description.abstract | 近年來,對於改善切換式電源供應器之輕載效率在多方面的應用上有新的需求。針對直流直流轉換器,漣波調變定導通時間(RBCOT)控制機制近來已備受關注。在輕載之情形下,大部分的電源供應器經常操作在不連續導通模式下。當轉換器操作在不連續導通模式下時,漣波調變定導通時間控制機制會隨著負載電流減少而自然地降低轉換器之切換頻率,也因此會減少能量在切換時的造成的損失。相對於傳統固定頻率可變導通時間操作,此控制方式稱為定導通時間可變頻率操作。
一具有基本漣波調變定導通時間控制機制的轉換器通常伴隨者輸出電壓準位誤差。因此,加入直流準位誤差校正電路至基本漣波調變定導通時間控制機制用以改善此問題。此改善的控制機制稱為準位校正漣波調變定導通時間 (OCRBCOT) 控制且為本篇論文主要探討之議題。目前已有一些期刊在準位校正漣波調變定導通時間穩定度控制的議題上做探討,但大部分都在探討轉換器操作在連續導通模式下時、亦就是操作在重載時的情形。本篇論文將會在不連續導通模式下探討相同的議題。 在準位校正漣波調變定導通時間控制機制下,由於輸出電壓之切換頻率漣波會影響脈衝寬度調變之操作過程,因此無法使用傳統小訊號模型加以分析。因此改用分析時域波形的方法來研究此議題。不連續導通模式下之穩定度條件將會被建立以利於設計者來分析此控制機制。利用相同的步驟分析此控制機制加入適應性電壓位置特徵之後的穩定度條件,並可發現加入適應性電壓位置機制後可改善系統的穩定度。 | zh_TW |
| dc.description.abstract | In recent years, there has been a new mandate to improve light-load efficiency for switching power supplies for many applications. Ripple-based Constant on-time (RBCOT) control for DC-DC power converters scheme has received much attention for this reason. A converter is normally designed to operate in discontinuous conduction mode (DCM) under light-load condition. Under DCM condition, RBCOT scheme naturally reduces converter switching frequency as load current is reduced and therefore increasing the light-load efficiency. This is a constant on-time variable-frequency control scheme, as opposed to conventional constant-frequency variable on-time scheme for DC-DC converters.
A converter with a basic RBCOT control scheme is usually plagued with an output voltage offset. Therefore, an offset correcting circuit is often added to the basic RBCOT scheme to correct the situation. This scheme is abbreviated as OCRBCOT and is the focus of this thesis. There have been publications on the issue of control stability of OCRBCOT under heavy-load condition in which the converters are operated in continuous conduction mode (CCM). In this thesis, efforts were directed toward the investigation of the same issue under DCM operation. In an OCRBCOT control scheme, switching-frequency ripple of the output voltage is involved in the process of pulse-width modulation and therefore, conventional small-signal model cannot apply. A time-domain approach is taken to address the issue. A DCM stability criterion is established which is practically useful for designers of OCRBCOT converters. Same approach is also used to establish the stability criterion for converter using OCRBCOT scheme along with adaptive voltage positioning (AVP) features. It’s also found out that the addition of AVP feedback loop improves the feedback stability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:11:35Z (GMT). No. of bitstreams: 1 ntu-101-R99921022-1.pdf: 3004957 bytes, checksum: 339e773c29891a763ac35004636eeeb5 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書…………………………………………………………………………………...I
致謝…………………………………………………………………………………...II 摘要…………………………………………………………………………………...III Abstract……………………………………………………………………………..IV Table of Contents…………………………………………………………………...VI List of Figures……………………………………………………………………….VIII List of Tables……………………………………………………………………...X Chapter 1 Introduction…………………………………………………………….1 1.1 Background Information………………………………………………………..1 1.2 Motivation of the Thesis………………………………………………………..5 1.3 Organization of the Thesis……………………………………………………...6 Chapter 2 Review of a Buck Converter Using the OCRBCOT scheme in CCM Operation……………………………………………………………………7 2.1 Introduction……………………………………………………………….……7 2.1.1 Description of a Buck Converter Using OCRBCOT Scheme…………..7 2.2 Review of Modeling for OCRBCOT Buck Converter…………………………8 2.2.1 Small Signal Model of OCRBCOT Buck Converter …………………...9 2.3 Stability Criterion of OCRBCOT Buck Converter in CCM operation………..14 Chapter 3 Stability Analysis of OCRBCOT Buck Converter in DCM Operation…………………………………………………………………..21 3.1 Introduction…………………………………………………………………...21 3.2 Stability Modeling of a Buck Converter Using OCRBCOT Scheme in DCM Operation……………………………………………….………………21 3.2.1 Stability Modeling of OCRBCOT Buck Converter in DCM Operation Using Describing Function Approach……………………..22 3.2.1.1 Verifications of the Model and Error Analysis of Describing Function Approach………………………………..24 3.2.2 Stability Analysis of OCRBCOT Buck Converter in DCM Operation Using Time-Domain Approach…………………………….29 3.2.2.1 Waveform Analysis of vout and vref_new………………...………29 3.2.2.2 Waveform Verifications……………………………………….33 3.2.2.3 Development of Stability Criterion for OCRBCOT Buck Converter………………………………………………..35 3.2.2.4 Verification of Stability Criterion of Equation (3.15)…………37 3.3 Stability Issue of OCRBCOT Buck Converter with AVP Control………….. .44 3.3.1 Stability Analysis of AVP-OCRBCOT Buck Converter in DCM operation………………………………………………………………45 3.3.2 Stability Effects of Adding AVP Control………………………………47 Chapter 4 Conclusions and Suggestions for Future Research………..…………….49 4.1 Conclusions..…………………………………………...……………………..49 4.2 Suggestions for Future Research………..…………………………………….49 Appendix……………………………………………………………………………….51 References……………………………………………………………………………...54 | |
| dc.language.iso | en | |
| dc.subject | 穩定度條件 | zh_TW |
| dc.subject | 直流準位誤差校正 | zh_TW |
| dc.subject | 準位校正漣波調變定導通時間 | zh_TW |
| dc.subject | 漣波調變定導通時間 | zh_TW |
| dc.subject | 適應性電壓位置 | zh_TW |
| dc.subject | 不連續導通模式 | zh_TW |
| dc.subject | Adaptive Voltage Positioning (AVP) | en |
| dc.subject | Discontinuous Conduction Mode (DCM) | en |
| dc.subject | Offset Correcting circuit | en |
| dc.subject | OCRBCOT | en |
| dc.subject | Stability Criterion | en |
| dc.subject | RBCOT | en |
| dc.title | 具有直流校正功能之漣波調變定導通時間控制架構之穩定度分析 | zh_TW |
| dc.title | Stability Analysis of Ripple-Based Constant On-Time Control Scheme with Offset-Correction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳耀銘,呂錦山,邱煌仁 | |
| dc.subject.keyword | 漣波調變定導通時間,不連續導通模式,直流準位誤差校正,準位校正漣波調變定導通時間,穩定度條件,適應性電壓位置, | zh_TW |
| dc.subject.keyword | RBCOT,Discontinuous Conduction Mode (DCM),Offset Correcting circuit,OCRBCOT,Stability Criterion,Adaptive Voltage Positioning (AVP), | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
