請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65777完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
| dc.contributor.author | Jui-Chih Wang | en |
| dc.contributor.author | 王瑞智 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:11:33Z | - |
| dc.date.available | 2014-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-12 | |
| dc.identifier.citation | 1. Desjarlais, R. L.; Sheridan, R. P.; Dixon, J. S.; Kuntz, I. D.; Venkataraghavan, R. Docking Flexible Ligands to Macromolecular Receptors by Molecular Shape. Journal of Medicinal Chemistry 1986, 29, 2149-2153.
2. Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology 1996, 261, 470-489. 3. Abagyan, R.; Totrov, M. Biased Probability Monte-Carlo Conformational Searches and Electrostatic Calculations for Peptides and Proteins. Journal of Molecular Biology 1994, 235, 983-1002. 4. Abagyan, R.; Totrov, M.; Kuznetsov, D. Icm - a New Method for Protein Modeling and Design - Applications to Docking and Structure Prediction from the Distorted Native Conformation. Journal of Computational Chemistry 1994, 15, 488-506. 5. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998, 19, 1639-1662. 6. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 1997, 267, 727-748. 7. Chen, H. M.; Liu, B. F.; Huang, H. L.; Hwang, S. F.; Ho, S. Y. SODOCK: Swarm optimization for highly flexible protein-ligand docking. Journal of Computational Chemistry 2007, 28, 612-623. 8. Korb, O.; Stutzle, T.; Exner, T. E. PLANTS: Application of ant colony optimization to structure-based drug design. Ant Colony Optimization and Swarm Intelligence, Proceedings 2006, 4150, 247-258. 9. McGann, M. FRED Pose Prediction and Virtual Screening Accuracy. Journal of Chemical Information and Modeling 2011, 51, 578-596. 10. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research 2000, 33, 889-897. 11. Brooijmans, N.; Kuntz, I. D. Molecular recognition and docking algorithms. Annual Review of Biophysics and Biomolecular Structure 2003, 32, 335-373. 12. Huang, S. Y.; Grinter, S. Z.; Zou, X. Q. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Physical Chemistry Chemical Physics 2010, 12, 12899-12908. 13. Yuriev, E.; Agostino, M.; Ramsland, P. A. Challenges and advances in computational docking: 2009 in review. Journal of Molecular Recognition 2011, 24, 149-164. 14. Jain, A. N. Scoring functions for protein-ligand docking. Current Protein & Peptide Science 2006, 7, 407-420. 15. Moitessier, N.; Englebienne, P.; Lee, D.; Lawandi, J.; Corbeil, C. R. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. British Journal of Pharmacology 2008, 153, S7-S26. 16. Meng, E. C.; Shoichet, B. K.; Kuntz, I. D. Automated Docking with Grid-Based Energy Evaluation. Journal of Computational Chemistry 1992, 13, 505-524. 17. Jones, G.; Willett, P.; Glen, R. C. Molecular Recognition of Receptor-Sites Using a Genetic Algorithm with a Description of Desolvation. Journal of Molecular Biology 1995, 245, 43-53. 18. Yin, S.; Biedermannova, L.; Vondrasek, J.; Dokholyan, N. V. MedusaScore: An accurate force field-based scoring function for virtual drug screening. Journal of Chemical Information and Modeling 2008, 48, 1656-1662. 19. Bohm, H. J. The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein Ligand Complex of Known 3-Dimensional Structure. Journal of Computer-Aided Molecular Design 1994, 8, 243-256. 20. Bohm, H. J. Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs. Journal of Computer-Aided Molecular Design 1998, 12, 309-323. 21. Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 1997, 11, 425-445. 22. Wang, R. X.; Lai, L. H.; Wang, S. M. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design 2002, 16, 11-26. 23. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry 2004, 47, 1739-1749. 24. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry 2006, 49, 6177-6196. 25. Sotriffer, C. A.; Sanschagrin, P.; Matter, H.; Klebe, G. SFCscore: Scoring functions for affinity prediction of protein-ligand complexes. Proteins-Structure Function and Bioinformatics 2008, 73, 395-419. 26. Korb, O.; Stutzle, T.; Exner, T. E. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS. Journal of Chemical Information and Modeling 2009, 49, 84-96. 27. Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 5. Force-Field-Based Prediction of Binding Affinities of Ligands to Proteins. Journal of Chemical Information and Modeling 2009, 49, 2564-2571. 28. Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry 2007, 28, 1145-1152. 29. Wang, J. C.; Lin, J. H.; Chen, C. M.; Perryman, A. L.; Olson, A. J. Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. Journal of Chemical Information and Modeling 2011, 51, 2528-2537. 30. Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based scoring function to predict protein-ligand interactions. Journal of Molecular Biology 2000, 295, 337-356. 31. Velec, H. F. G.; Gohlke, H.; Klebe, G. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. Journal of Medicinal Chemistry 2005, 48, 6296-6303. 32. Muegge, I.; Martin, Y. C. A general and fast scoring function for protein-ligand interactions: A simplified potential approach. Journal of Medicinal Chemistry 1999, 42, 791-804. 33. Muegge, I. A knowledge-based scoring function for protein-ligand interactions: Probing the reference state. Perspectives in Drug Discovery and Design 2000, 20, 99-114. 34. Muegge, I. Effect of ligand volume correction on PMF scoring. Journal of Computational Chemistry 2001, 22, 418-425. 35. Fan, H.; Schneidman-Duhovny, D.; Irwin, J. J.; Dong, G. Q.; Shoichet, B. K.; Sail, A. Statistical Potential for Modeling and Ranking of Protein-Ligand Interactions. Journal of Chemical Information and Modeling 2011, 51, 3078-3092. 36. Xie, Z. R.; Hwang, M. J. An interaction-motif-based scoring function for protein-ligand docking. Bmc Bioinformatics 2010, 11. 37. Ballester, P. J.; Mitchell, J. B. O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169-1175. 38. Das, S.; Krein, M. P.; Breneman, C. M. Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures. Journal of Chemical Information and Modeling 2010, 50, 298-308. 39. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A New Force-Field for Molecular Mechanical Simulation of Nucleic-Acids and Proteins. Journal of the American Chemical Society 1984, 106, 765-784. 40. Shoichet, B. K.; Leach, A. R.; Kuntz, I. D. Ligand solvation in molecular docking. Proteins-Structure Function and Genetics 1999, 34, 4-16. 41. Ding, F.; Dokholyan, N. V. Emergence of protein fold families through rational design. Plos Computational Biology 2006, 2, 725-733. 42. Murray, C. W.; Auton, T. R.; Eldridge, M. D. Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. Journal of Computer-Aided Molecular Design 1998, 12, 503-519. 43. Hawkins, D. M. The problem of overfitting. Journal of Chemical Information and Computer Sciences 2004, 44, 1-12. 44. Gehlhaar, D. K.; Verkhivker, G. M.; Rejto, P. A.; Sherman, C. J.; Fogel, D. B.; Fogel, L. J.; Freer, S. T. Molecular Recognition of the Inhibitor Ag-1343 by Hiv-1 Protease - Conformationally Flexible Docking by Evolutionary Programming. Chemistry & Biology 1995, 2, 317-324. 45. Sippl, M. J. Calculation of Conformational Ensembles from Potentials of Mean Force - an Approach to the Knowledge-Based Prediction of Local Structures in Globular-Proteins. Journal of Molecular Biology 1990, 213, 859-883. 46. Sippl, M. J. Boltzmann Principle, Knowledge-Based Mean Fields and Protein-Folding - an Approach to the Computational Determination of Protein Structures. Journal of Computer-Aided Molecular Design 1993, 7, 473-501. 47. Shen, M. Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Science 2006, 15, 2507-2524. 48. Cheng, T. J.; Li, X.; Li, Y.; Liu, Z. H.; Wang, R. X. Comparative Assessment of Scoring Functions on a Diverse Test Set. Journal of Chemical Information and Modeling 2009, 49, 1079-1093. 49. Ferrara, P.; Gohlke, H.; Price, D. J.; Klebe, G.; Brooks, C. L. Assessing scoring functions for protein-ligand interactions. Journal of Medicinal Chemistry 2004, 47, 3032-3047. 50. Marsden, P. M.; Puvanendrampillai, D.; Mitchell, J. B. O.; Glen, R. C. Predicting protein-ligand binding affinities: a low scoring game? Organic & Biomolecular Chemistry 2004, 2, 3267-3273. 51. Wang, R. X.; Lu, Y. P.; Fang, X. L.; Wang, S. M. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. Journal of Chemical Information and Computer Sciences 2004, 44, 2114-2125. 52. Wang, R. X.; Lu, Y. P.; Wang, S. M. Comparative evaluation of 11 scoring functions for molecular docking. Journal of Medicinal Chemistry 2003, 46, 2287-2303. 53. Dunbar, J. B.; Smith, R. D.; Yang, C. Y.; Ung, P. M. U.; Lexa, K. W.; Khazanov, N. A.; Stuckey, J. A.; Wang, S. M.; Carlson, H. A. CSAR Benchmark Exercise of 2010: Selection of the Protein-Ligand Complexes. Journal of Chemical Information and Modeling 2011, 51, 2036-2046. 54. Smith, R. D.; Dunbar, J. B.; Ung, P. M. U.; Esposito, E. X.; Yang, C. Y.; Wang, S. M.; Carlson, H. A. CSAR Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions. Journal of Chemical Information and Modeling 2011, 51, 2115-2131. 55. Warren, G. L.; Andrews, C. W.; Capelli, A. M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S. A critical assessment of docking programs and scoring functions. Journal of Medicinal Chemistry 2006, 49, 5912-5931. 56. Kellenberger, E.; Rodrigo, J.; Muller, P.; Rognan, D. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins-Structure Function and Bioinformatics 2004, 57, 225-242. 57. Li, X.; Li, Y.; Cheng, T. J.; Liu, Z. H.; Wang, R. X. Evaluation of the Performance of Four Molecular Docking Programs on a Diverse Set of Protein-Ligand Complexes. Journal of Computational Chemistry 2010, 31, 2109-2125. 58. Zhou, Z. Y.; Felts, A. K.; Friesner, R. A.; Levy, R. M. Comparative performance of several flexible docking programs and scoring functions: Enrichment studies for a diverse set of pharmaceutically relevant targets. Journal of Chemical Information and Modeling 2007, 47, 1599-1608. 59. Chen, H. M.; Lyne, P. D.; Giordanetto, F.; Lovell, T.; Li, J. On evaluating molecular-docking methods for pose prediction and enrichment factors (vol 46, pg 401, 2006). Journal of Chemical Information and Modeling 2008, 48, 246-246. 60. Cummings, M. D.; DesJarlais, R. L.; Gibbs, A. C.; Mohan, V.; Jaeger, E. P. Comparison of automated docking programs as virtual screening tools. Journal of Medicinal Chemistry 2005, 48, 962-976. 61. Kontoyianni, M.; McClellan, L. M.; Sokol, G. S. Evaluation of docking performance: Comparative data on docking algorithms. Journal of Medicinal Chemistry 2004, 47, 558-565. 62. Perola, E.; Walters, W. P.; Charifson, P. S. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins-Structure Function and Bioinformatics 2004, 56, 235-249. 63. Xing, L.; Hodgkin, E.; Liu, Q.; Sedlock, D. Evaluation and application of multiple scoring functions for a virtual screening experiment. Journal of Computer-Aided Molecular Design 2004, 18, 333-344. 64. Bursulaya, B. D.; Totrov, M.; Abagyan, R.; Brooks, C. L. Comparative study of several algorithms for flexible ligand docking. Journal of Computer-Aided Molecular Design 2003, 17, 755-763. 65. Stahl, M.; Rarey, M. Detailed analysis of scoring functions for virtual screening. Journal of Medicinal Chemistry 2001, 44, 1035-1042. 66. Bissantz, C.; Folkers, G.; Rognan, D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. Journal of Medicinal Chemistry 2000, 43, 4759-4767. 67. Huang, S. Y.; Zou, X. Q. An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function. Journal of Computational Chemistry 2006, 27, 1876-1882. 68. Huang, S. Y.; Zou, X. Q. Inclusion of Solvation and Entropy in the Knowledge-Based Scoring Function for Protein-Ligand Interactions. Journal of Chemical Information and Modeling 2010, 50, 262-273. 69. Wang, R. X.; Fang, X. L.; Lu, Y. P.; Wang, S. M. The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures. Journal of Medicinal Chemistry 2004, 47, 2977-2980. 70. Wang, R. X.; Fang, X. L.; Lu, Y. P.; Yang, C. Y.; Wang, S. M. The PDBbind database: Methodologies and updates. Journal of Medicinal Chemistry 2005, 48, 4111-4119. 71. Kramer, C.; Gedeck, P. Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets. Journal of Chemical Information and Modeling 2010, 50, 1961-1969. 72. Ballester, P. J.; Mitchell, J. B. O. Comments on 'Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets': Significance for the Validation of Scoring Functions. Journal of Chemical Information and Modeling 2011, 51, 1739-1741. 73. Roche, O.; Kiyama, R.; Brooks, C. L. Ligand-Protein DataBase: Linking protein-ligand complex structures to binding data. Journal of Medicinal Chemistry 2001, 44, 3592-3598. 74. Huang, S. Y.; Zou, X. Q. Construction and Test of Ligand Decoy Sets Using MDock: Community Structure-Activity Resource Benchmarks for Binding Mode Prediction. Journal of Chemical Information and Modeling 2011, 51, 2107-2114. 75. Goodsell, D. S.; Olson, A. J. Automated Docking of Substrates to Proteins by Simulated Annealing. Proteins-Structure Function and Genetics 1990, 8, 195-202. 76. Morris, G. M.; Goodsell, D. S.; Huey, R.; Olson, A. J. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. Journal of Computer-Aided Molecular Design 1996, 10, 293-304. 77. Solis, F. J.; Wets, R. J. B. Minimization by Random Search Techniques. Mathematics of Operations Research 1981, 6, 19-30. 78. AutoDock. http://autodock.scripps.edu (Accessed Jul 2012). 79. Mehler, E. L.; Solmajer, T. Electrostatic Effects in Proteins - Comparison of Dielectric and Charge Models. Protein Engineering 1991, 4, 903-910. 80. Gilson, M. K.; Zhou, H. X. Calculation of protein-ligand binding affinities. Annual Review of Biophysics and Biomolecular Structure 2007, 36, 21-42. 81. Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A. The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophysical Journal 1997, 72, 1047-1069. 82. Kramer, C.; Gedeck, P. Global Free Energy Scoring Functions Based on Distance-Dependent Atom-Type Pair Descriptors. Journal of Chemical Information and Modeling 2011, 51, 707-720. 83. Hansch, C.; Maloney, P. P.; Fujita, T. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 1962, 194, 178-&. 84. Raha, K.; Merz, K. M. Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. Journal of Medicinal Chemistry 2005, 48, 4558-4575. 85. Lin, J. H. Accommodating Protein Flexibility for Structure-Based Drug Design. Current Topics in Medicinal Chemistry 2011, 11, 171-178. 86. Lin, J. H.; Perryman, A. L.; Schames, J. R.; McCammon, J. A. Computational drug design accommodating receptor flexibility: The relaxed complex scheme. Journal of the American Chemical Society 2002, 124, 5632-5633. 87. Lin, J. H.; Perryman, A. L.; Schames, J. R.; McCammon, J. A. The relaxed complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers 2003, 68, 47-62. 88. Rogers, D.; Hopfinger, A. J. Application of Genetic Function Approximation to Quantitative Structure-Activity-Relationships and Quantitative Structure-Property Relationships. Journal of Chemical Information and Computer Sciences 1994, 34, 854-866. 89. Gasteiger, J.; Marsili, M. Iterative Partial Equalization of Orbital Electronegativity - a Rapid Access to Atomic Charges. Tetrahedron 1980, 36, 3219-3228. 90. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). Journal of the American Chemical Society 1996, 118, 2309-2309. 91. Dreizler, H. a. D., G. Rotation spectrum, ro structure, and dipole moment of dimethylsulfoxide. Z. Naturforsch 1964, 19a, 512-514. 92. Cho, A. E.; Guallar, V.; Berne, B. J.; Friesner, R. Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. Journal of Computational Chemistry 2005, 26, 915-931. 93. Cho, A. E.; Rinaldo, D. Extension of QM/MM Docking and its Applications to Metalloproteins. Journal of Computational Chemistry 2009, 30, 2609-2616. 94. Tsai, K. C.; Wang, S. H.; Hsiao, N. W.; Li, M.; Wang, B. The effect of different electrostatic potentials on docking accuracy: A case study using DOCK5.4. Bioorganic & Medicinal Chemistry Letters 2008, 18, 3509-3512. 95. Konovalov, D. A.; Llewellyn, L. E.; Heyden, Y. V.; Coomans, D. Robust Cross-Validation of Linear Regression QSAR Models. Journal of Chemical Information and Modeling 2008, 48, 2081-2094. 96. Wang, J. C.; Lin, J. H. Robust regression analysis of protein-ligand binding free energy models: toward the identification of druggable genomes. International Journal of Systems and Synthetic Biology 2010, 1, 339-355. 97. Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges - the Resp Model. Journal of Physical Chemistry 1993, 97, 10269-10280. 98. Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of high-quality atomic Charges. AM1-BCC model: I. Method. Journal of Computational Chemistry 2000, 21, 132-146. 99. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,; M. A.; Cheeseman, J. R. M., J. A., Jr.; Vreven, T.; Kudin, K. N.;; Burant, J. C. M., J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;; Mennucci, B. C., M.; Scalmani, G.; Rega, N.; Petersson, G. A.;; Nakatsuji, H. H., M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;; Ishida, M. N., T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,; X.; Knox, J. E. H., H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;; Jaramillo, J. G., R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;; Cammi, R. P., C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;; Voth, G. A. S., P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,; S.; Daniels, A. D. S., M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;; Raghavachari, K. F., J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;; Clifford, S. C., J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,; P.; Komaromi, I. M., R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;; Peng, C. Y. N., A.; Challacombe, M.; Gill, P. M. W.; Johnson,; B.; Chen, W. W., M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 09, Revision A.02, Gaussian, Inc.: Wallingford, CT, 2009. 100. Hehre, W. J.; Ditchfie.R; Pople, J. A. Self-Consistent Molecular-Orbital Methods .12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular-Orbital Studies of Organic-Molecules. Journal of Chemical Physics 1972, 56, 2257-&. 101. AutoDockTools. http://autodock.scripps.edu/resources/adt (Accessed Feb 2010). 102. Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry 2002, 23, 1623-1641. 103. Ponder, J. W.; Case, D. A. Force fields for protein simulations. Adv. Prot. Chem. 2003, 66, 27-85. 104. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G. M.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J. M.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry 2003, 24, 1999-2012. 105. Guha, R.; Howard, M. T.; Hutchison, G. R.; Murray-Rust, P.; Rzepa, H.; Steinbeck, C.; Wegner, J.; Willighagen, E. L. Blue Obelisk - Interoperability in chemical informatics. Journal of Chemical Information and Modeling 2006, 46, 991-998. 106. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004, 25, 1605-1612. 107. Autenrieth, F.; Tajkhorshid, E.; Baudry, J.; Luthey-Schulten, Z. Classical force field parameters for the heme prosthetic group of cytochrome c. Journal of Computational Chemistry 2004, 25, 1613-1622. 108. Oda, A.; Yamaotsu, N.; Hirono, S. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models. Journal of Computational Chemistry 2005, 26, 818-826. 109. Wesson, L.; Eisenberg, D. Atomic Solvation Parameters Applied to Molecular-Dynamics of Proteins in Solution. Protein Science 1992, 1, 227-235. 110. Stouten, P. F. W.; Frommel, C.; Nakamura, H.; Sander, C. An Effective Solvation Term Based on Atomic Occupancies for Use in Protein Simulations. Molecular Simulation 1993, 10, 97-120. 111. Bikadi, Z.; Hazai, E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Journal of Cheminformatics 2009, 1. 112. Rousseeuw, P. J. Least Median of Squares Regression. Journal of the American Statistical Association 1984, 79, 871-880. 113. Rousseeuw, P. J.; Leroy, A. M. Robust Regression and Outlier Detection. John Wiley & Sons, Inc.: 1987. 114. Rousseeuw, P. J.; Van Driessen, K. Computing LTS regression for large data sets. Data Mining and Knowledge Discovery 2006, 12, 29-45. 115. Rousseeuw, P.; Croux, C.; Todorov, V.; Ruckstuhl, A.; Salibian-Barrera, M.; Verbeke, T.; Maechler, M. Basic Robust Statistics (robustbase), 0.5-0-1; 2009. 116. Anderson, R. Modern Methods for Robust Regression. Sara Miler McCune, SAGE Publications, Inc.: Thousand Oaks, 2008. 117. Tukey, J. W. Graphical displays for alternative regression fits. In Robust Statistics and Diagnostics, Part 2, Stahel, W.; Weisberg, S., Eds. Springer-Verlag: New York, 1991; pp 309-26. 118. Hawkins, D. M.; Kraker, J. Deterministic fallacies and model validation. Journal of Chemometrics 2010, 24, 188-193. 119. Shao, J. Linear-Model Selection by Cross-Validation. Journal of the American Statistical Association 1993, 88, 486-494. 120. Golbraikh, A.; Tropsha, A. Beware of q(2)! Journal of Molecular Graphics & Modelling 2002, 20, 269-276. 121. Wang, R. X.; Fang, X. L. X-SCORE. http://sw16.im.med.umich.edu/software/xtool/ 122. Muegge, I.; Martin, Y. C.; Hajduk, P. J.; Fesik, S. W. Evaluation of PMF scoring in docking weak ligands to the FK506 binding protein. Journal of Medicinal Chemistry 1999, 42, 2498-2503. 123. Mobley, D. L.; Dumont, E.; Chodera, J. D.; Dill, K. A. Comparison of charge models for fixed-charge force fields: Small-molecule hydration free energies in explicit solvent. Journal of Physical Chemistry B 2007, 111, 2242-2254. 124. Forli, S.; Olson, A. J. A Force Field with Discrete Displaceable Waters and Desolvation Entropy for Hydrated Ligand Docking. Journal of Medicinal Chemistry 2012, 55, 623-638. 125. Lin, Y. C.; Lin, J. H.; Chou, C. W.; Chang, Y. F.; Yeh, S. H.; Chen, C. C. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Research 2008, 68, 2375-2383. 126. Shoichet, B. K. Virtual screening of chemical libraries. Nature 2004, 432, 862-5. 127. Chen, Y. Z.; Zhi, D. G. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins-Structure Function and Genetics 2001, 43, 217-226. 128. Keiser, M. J.; Setola, V.; Irwin, J. J.; Laggner, C.; Abbas, A. I.; Hufeisen, S. J.; Jensen, N. H.; Kuijer, M. B.; Matos, R. C.; Tran, T. B.; Whaley, R.; Glennon, R. A.; Hert, J.; Thomas, K. L. H.; Edwards, D. D.; Shoichet, B. K.; Roth, B. L. Predicting new molecular targets for known drugs. Nature 2009, 462, 175-U48. 129. Yang, L.; Luo, H.; Chen, J.; Xing, Q.; He, L. SePreSA: a server for the prediction of populations susceptible to serious adverse drug reactions implementing the methodology of a chemical-protein interactome. Nucleic Acids Res 2009, 37, W406-12. 130. Wale, N.; Karypis, G. Target fishing for chemical compounds using target-ligand activity data and ranking based methods. J Chem Inf Model 2009, 49, 2190-201. 131. Kellenberger, E.; Foata, N.; Rognan, D. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems. J Chem Inf Model 2008, 48, 1014-25. 132. Xie, L.; Bourne, P. E. Structure-based systems biology for analyzing off-target binding. Curr Opin Struct Biol 2011, 21, 189-99. 133. Wang, J. C.; Lin, J. H.; Chen, C. M.; Perryman, A. L.; Olson, A. J. Robust scoring functions for protein-ligand interactions with quantum chemical charge models. Journal of Chemical Information and Modeling 2011, 51, 2528-2537. 134. Chang, D. T. H.; Oyang, Y. J.; Lin, J. H. MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Research 2005, 33, W233-W238. 135. Chang, D. T. H.; Lin, J. H.; Hsieh, C. H.; Oyang, Y. J. ON THE DESIGN OF OPTIMIZATION ALGORITHMS FOR PREDICTION OF MOLECULAR INTERACTIONS. International Journal on Artificial Intelligence Tools 2010, 19, 267-280. 136. Woods, R. J.; Chappelle, R. Restrained electrostatic potential atomic partial charges for condensed-phase simulations of carbohydrates. Journal of Molecular Structure-Theochem 2000, 527, 149-156. 137. Cheng, A. C.; Coleman, R. G.; Smyth, K. T.; Cao, Q.; Soulard, P.; Caffrey, D. R.; Salzberg, A. C.; Huang, E. S. Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology 2007, 25, 71-75. 138. Kellenberger, E.; Muller, P.; Schalon, C.; Bret, G.; Foata, N.; Rognan, D. sc-PDB: an annotated database of druggable binding sites from the protein data bank. Journal of Chemical Information and Modeling 2006, 46, 717-727. 139. Huang, Y.; Niu, B. F.; Gao, Y.; Fu, L. M.; Li, W. Z. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680-682. 140. Shulman-Peleg, A.; Nussinov, R.; Wolfson, H. J. SiteEngines: recognition and comparison of binding sites and protein-protein interfaces. Nucleic Acids Research 2005, 33, W337-W341. 141. Shindyalov, I. N.; Bourne, P. E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering 1998, 11, 739-747. 142. Henchman, R. H.; Essex, J. W. Free energies of hydration using restrained electrostatic potential derived charges via free energy perturbations and linear response. Journal of Computational Chemistry 1999, 20, 499-510. 143. Li, H. L.; Gao, Z. T.; Kang, L.; Zhang, H. L.; Yang, K.; Yu, K. Q.; Luo, X. M.; Zhu, W. L.; Chen, K. X.; Shen, J. H.; Wang, X. C.; Jiang, H. L. TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Research 2006, 34, W219-W224. 144. Liu, X. F.; Ouyang, S. S.; Yu, B. A.; Liu, Y. B.; Huang, K.; Gong, J. Y.; Zheng, S. Y.; Li, Z. H.; Li, H. L.; Jiang, H. L. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Research 2010, 38, W609-W614. 145. Zahler, S.; Tietze, S.; Totzke, F.; Kubbutat, M.; Meijer, L.; Vollmar, A. M.; Apostolakis, J. Inverse in silico screening for identification of kinase inhibitor targets. Chemistry & Biology 2007, 14, 1207-1214. 146. Ewing, T. J. A.; Makino, S.; Skillman, A. G.; Kuntz, I. D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design 2001, 15, 411-428. 147. Moustakas, D. T.; Lang, P. T.; Pegg, S.; Pettersen, E.; Kuntz, I. D.; Brooijmans, N.; Rizzo, R. C. Development and validation of a modular, extensible docking program: DOCK 5. Journal of Computer-Aided Molecular Design 2006, 20, 601-619. 148. Wang, J. M.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry 2000, 21, 1049-1074. 149. Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 2005, 21, 3940-3941. 150. Gruber, V. A.; Rainey, P. M.; Moody, D. E.; Morse, G. D.; Ma, Q.; Prathikanti, S.; Pade, P. A.; Alvanzo, A. A. H.; McCance-Katz, E. F. Interactions Between Buprenorphine and the Protease Inhibitors Darunavir-Ritonavir and Fosamprenavir-Ritonavir. Clinical Infectious Diseases 2012, 54, 414-423. 151. Brown, K. C.; Paul, S.; Kashuba, A. D. M. Drug Interactions with New and Investigational Antiretrovirals. Clinical Pharmacokinetics 2009, 48, 211-241. 152. van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards prediction paradise? Nature Reviews Drug Discovery 2003, 2, 192-204. 153. Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist. Journal of Medicinal Chemistry 2005, 48 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65777 | - |
| dc.description.abstract | 蛋白質與小分子之間作用力的評分函數,在電腦輔助藥物設計,在先導藥物的虛擬篩選中,以及在預測化學小分子作用標的裡扮演重要的角色。本論文我們建立了一組強固評分函數和應用它在計算藥物設計領域。一般的最小平方法迴歸分析(OLS)已經被大量運用在建立蛋白質與小分子之間的評分函數上。然而OLS對於離群值(outliers)是很敏感的,所以使用OLS建立出來的模型很容易受到離群值或訓練資料選擇不同的影響。另一方面,原子電荷的決定也被認為是很重要的,因為靜電力的作用被認為是生物分子間結合的一個關鍵因素。我們提出新的評分函數是基於AutoDock4評分函數的形式,並且利用量子力學與分子力學得到更嚴格的原子電荷。除此之外,我們更建立了一套使用強固迴歸分析來訓練強固評分函數的方法。換句話說,訓練資料之中離群值的問題可以被解決。我們新的評分函數在評定測試中,表現得比大部分其他評分函數好,這包含結合親和力的預測和的能夠鑑別正確結合位置與構形的能力。
在本論文第一章,我們將探討現存不同類別的評分函數,並且討論它們可能的局限和適合的應用範圍。第二章將簡單介紹分子嵌合軟體AutoDock,它是本研究的起點。第三、第四章節將分別闡述強固評分函數的建立過程和它的效能測試。在第五章,這是一個新穎的網站應用,名叫idTarget,目的是探索與鑑別可能的蛋白質標的物。 | zh_TW |
| dc.description.abstract | The scoring functions for protein-ligand interactions plays central roles in computational drug design, virtual screening of chemical libraries for new lead identification, and prediction of possible binding targets of small chemical molecules. We have developed the robust scoring functions and applied it for computational drug design. Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using that are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. Our new scoring functions were based on the functional form of the AutoDock4 scoring function and using more rigorous charge models derived from quantum mechanics and molecular mechanics. On top of that, we developed a protocol for calibrating the robust scoring function by using the robust regression analysis. In another word, the problem of outliers in the training set can be solved. The assessments show that our new scoring functions outperformed most of other scoring functions on predicting binding affinity and discriminating the native pose from decoys.
In the first chapter of the present dissertation, we will explore the foundations of different classes of scoring functions, their possible limitations, and their suitable application domains. The second chapter introduces the docking program AutoDock which is the basis of this study. In Chapter 3 and 4, the development of the robust scoring functions and its assessments will be described, respectively. In Chapter 5, a novel application of web service, namely idTarget, which aims to identify protein targets, will be presented. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:11:33Z (GMT). No. of bitstreams: 1 ntu-101-F93548056-1.pdf: 2179872 bytes, checksum: 1073cb529867fbd98adff1f4e43cdb74 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | CHAPTER 1. Scoring Functions for Computational Drug Design 1
1.1 Computer-aided Drug Design and Molecular Docking 2 1.2 Physical Basis for Calculation of Binding Free Energy 4 1.3 Scoring Functions for Computational Drug Design 6 Force field-based scoring function 8 Empirical scoring function 9 Force field-based/empirical scoring function 11 Knowledge-based scoring function 12 Knowledge-based/empirical scoring function 14 1.4 Comparative Assessments for Scoring Functions 15 CHAPTER 2. Overview of AutoDock4 19 2.1 Overview of AutoDock 20 2.2 Functional form of AutoDock4 scoring function 22 CHAPTER 3. Development of Robust Scoring Functions for Protein-Ligand Interactions 23 Abstract 24 3.1 Introduction 25 3.2 Charge model combinations 28 3.3 Preparation of protein and ligand structural files 29 3.4 Calculation of energetic terms 30 3.5 Adjustment of atomic solvation parameters 31 3.6 Robust regression with the FAST-LTS algorithm 32 3.7 OLS regression models with three charge combinations 33 3.8 Progressively removing the outliers in OLS regression analysis 34 3.9 Difference between OLS and LTS regression analysis 36 3.10 Distribution of residuals of three charge models 37 3.11 Identification of common outliers to three charge models 38 3.12 Supporting information 42 CHAPTER 4. Assessments of the Robust AutoDock4 Scoring Functions 45 4.1 Assessment with external complexes 46 4.2 Assessment of binding pose prediction with external decoys 50 4.3 Performance of three models for large dipole moment cases 59 4.4 Performances on weakly-interacting complexes 63 4.5 Summary for development of robust scoring functions 64 CHAPTER 5. Identification of Targets of Small Chemical Molecules 66 Abstract 67 5.1 Introduction 68 5.2 Docking and scoring 69 5.3 The contraction-and-expansion strategy 72 5.4 Input and output 73 5.5 Web server 75 5.6 Examples 77 5.7 Discussion 84 CONCLUDING REMARKS 86 REFERENCES 89 | |
| dc.language.iso | en | |
| dc.subject | 蛋白質與小分子之間作用力 | zh_TW |
| dc.subject | 電腦輔助藥物設計 | zh_TW |
| dc.subject | 探索與鑑別蛋白質標的物 | zh_TW |
| dc.subject | 評分函數 | zh_TW |
| dc.subject | 強固迴歸分析 | zh_TW |
| dc.subject | 原子電荷 | zh_TW |
| dc.subject | OLS | en |
| dc.subject | protein-ligand interactions | en |
| dc.subject | scoring function | en |
| dc.subject | computational drug design | en |
| dc.subject | robust regression analysis | en |
| dc.subject | partial charge models | en |
| dc.subject | identify protein targets | en |
| dc.subject | LTS | en |
| dc.title | 蛋白質與小分子之強固評分函數的開發與應用 | zh_TW |
| dc.title | Development and Application of Robust Scoring Functions for Protein-Ligand Interactions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 林榮信(Jung-Hsin Lin) | |
| dc.contributor.oralexamcommittee | 黃明經(Ming-Jing Hwang),孫英傑(Ying-Chieh Sun),陳倩瑜(Chien-Yu Chen),黃乾綱(Chien-Kang Huang) | |
| dc.subject.keyword | 電腦輔助藥物設計,蛋白質與小分子之間作用力,評分函數,強固迴歸分析,原子電荷,探索與鑑別蛋白質標的物, | zh_TW |
| dc.subject.keyword | protein-ligand interactions,scoring function,computational drug design,robust regression analysis,partial charge models,identify protein targets,OLS,LTS, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
