Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65771
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫(Kai-Wun Yeh)
dc.contributor.authorWan-Ying Wuen
dc.contributor.author吳宛穎zh_TW
dc.date.accessioned2021-06-17T00:11:25Z-
dc.date.available2017-07-20
dc.date.copyright2012-07-20
dc.date.issued2012
dc.date.submitted2012-07-12
dc.identifier.citation1. Ahmad, G., Jan, A., Arif, M., Jan, M.T. and Khattak, R.A. (2007) Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J. Zhejiang Univ. Sci. B. 8, 731-737.
2. Ahmad, G., Jan, A., Arif, M., Jan, M.T. and Shah, H. (2011) Effect of nitrogen and sulfur fertilization on yield components, seed and oil yields of canola. J. Plant Nutr. 34, 2069-2082.
3. Andrianov, V., Borisjuk, N., Pogrebnyak, N., Brinker, A., Dixon, J., Spitsin, S., Flynn, J., Matyszczuk, P., Andryszak, K., Laurelli, M., Golovkin, M. and Koprowski, H. (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 8, 277-287.
4. Banilas, G., Karampelias, M., Makariti, I., Kourti, A. and Hatzopoulos, P. (2011) The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1. J. Exp. Bot. 62, 521-532.
5. Barker, G.C., Larson, T.R., Graham, I.A., Lynn, J.R. and King, G.J. (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait Loci analysis of the Brassica C genome. Plant physiol. 144, 1827-1842.
6. Brown, A.P., Slabas, A.R. and Rafferty, J.B. (2010) Fatty acid biosynthesis in plants-metabolic pathways, structure and organization. Lipids in Photosynthesis: Essential and Regulatory Functions, pp. 11–34.
7. Burgal, J., Shockey, J., Lu, C., Dyer, J., Larson, T., Graham, I. and Browse, J. (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol. J. 6, 819-831.
8. Byfield, G.E. and Upchurch, R.G. (2007) Effect of temperature on microsomal omega-3 linoleate desaturase gene expression and linolenic acid content in developing soybean seeds. Crop Sci. 47, 2445-2452.
9. Cahoon, E.B., Schnurr, J.A., Huffman, E.A. and Minto, R.E. (2003) Fungal responsive fatty acid acetylenases occur widely in evolutionarily distant plant families. Plant J. 34, 671-683.
10. Cao, H. (2011) Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. BMC Res. Notes. 4, 249.
11. Chiwocha, S.D., Abrams, S.R., Ambrose, S.J., Cutler, A.J., Loewen, M., Ross, A.R. and Kermode, A.R. (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 35, 405-417.
12. De Veylder, L., Beeckman, T. and Inze, D. (2007) The ins and outs of the plant cell cycle. Nat. Rev. Mol. Cell Biol. 8, 655-665.
13. Ding, Z., and Friml, J. (2010). Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc. Natl. Acad. Sci. U S A. 107, 12046-12051.
14. Durrett, T.P., Benning, C. and Ohlrogge, J. (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54, 593-607.
15. Durrett, T.P., McClosky, D.D., Tumaney, A.W., Elzinga, D.A., Ohlrogge, J. and Pollard, M. (2010) A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds. Proc. Natl. Acad. Sci. U S A. 107, 9464-9469
16. Dyer, J.M., Chapital, D.C., Kuan, J.C., Mullen, R.T., Turner, C., McKeon, T.A. and Pepperman, A.B. (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physio. 130, 2027-2038.
17. Dyer, J.M. and Mullen, R.T. (2008) Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research. Physiol. Plantarum, 132, 11-22.
18. Dyer, J.M., Stymne, S., Green, A.G. and Carlsson, A.S. (2008) High-value oils from plants. Plant J. 54, 640-655.
19. Eastmond, P.J. and Jones, R.L. (2005) Hormonal regulation of gluconeogenesis in cereal aleurone is strongly cultivar-dependent and gibberellin action involves SLENDER1 but not GAMYB. Plant J. 44, 483-493.
20. Falcone, D.L., Ogas, J.P. and Somerville, C.R. (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC plant biol. 4, 17.
21. Graham, I.A. (2008) Seed storage oil mobilization. Annu. Rev. Phytopathol. 59, 115-142.
22. Gurr, M.I., Harwood, J.L. and Frayn, K.N. (2008) Lipid biochemistry. In Lipid Biochemistry: Blackwell Science Ltd, pp. i-xvi.
23. Hassan, F.U., Manaf, A., Qadir, G. and Basra, S.M.A. (2007) Effects of sulphur on seed yield, oil, protein and glucosinolates of canola cultivars. Int. J. Agri. Biol. 9, 504-508.
24. Hill, J., Nelson, E., Tilman, D., Polasky, S. and Tiffany, D. (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl. Acad. Sci. U S A. 103, 11206-11210.
25. Hills, M. and Roscoe, T. (2006) Synthesis of structural and storage lipids by the ER The Plant Endoplasmic Reticulum(Robinson, D. ed: Springer Berlin / Heidelberg, pp. 155-186.
26. Hu, Z., Ren, Z. and Lu, C. (2012) The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy Fatty Acid accumulation in transgenic Arabidopsis. Plant Physiol. 158, 1944-1954.
27. Jadhav, A.S., Taylor, D.C., Giblin, M., Ferrie, A.M., Ambrose, S.J., Ross, A.R., Nelson, K.M., Irina Zaharia, L., Sharma, N., Anderson, M., Fobert, P.R. and Abrams, S.R. (2008) Hormonal regulation of oil accumulation in Brassica seeds: metabolism and biological activity of ABA, 7'-, 8'- and 9'-hydroxy ABA in microspore derived embryos of B. napus. Phytochemistry, 69, 2678-2688.
28. Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D.L., Giblin, E.M., Covello, P.S. and Taylor, D.C. (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant physiol. 126, 861-874.
29. Kachroo, A. and Kachroo, P. (2009) Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol. 47, 153-176.
30. Klaus, D., Ohlrogge, J.B., Neuhaus, H.E. and Dormann, P. (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta, 219, 389-396.
31. Kodama, H., Horiguchi, G., Nishiuchi, T., Nishimura, M. and Iba, K. (1995) Fatty Acid Desaturation during Chilling Acclimation Is One of the Factors Involved in Conferring Low-Temperature Tolerance to Young Tobacco Leaves. Plant Physiol. 107, 1177-1185.
32. Kroon, J.T., Wei, W., Simon, W.J. and Slabas, A.R. (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry, 67, 2541-2549.
33. Lardizabal, K., Effertz, R., Levering, C., Mai, J., Pedroso, M.C., Jury, T., Aasen, E., Gruys, K. and Bennett, K. (2008) Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol. 148, 89-96.
34. Li, R., Yu, K. and Hildebrand, D.F. (2010) DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 45, 145-157.
35. Lock, Y.Y., Snyder, C.L., Zhu, W., Siloto, R.M., Weselake, R.J. and Shah, S. (2009) Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus. Physiol. Plant.
36. Lu, C. and Hills, M.J. (2002) Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development. Plant Physiol. 129, 1352-1358.
37. Lung, S.C. and Weselake, R.J. (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids, 41, 1073-1088.
38. McCartney, A.W., Dyer, J.M., Dhanoa, P.K., Kim, P.K., Andrews, D.W., McNew, J.A. and Mullen, R.T. (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J. 37, 156-173.
39. Mohammadreza, N., Mohammad, M.S., Houseyn, Z. and Bahari, B. (2012) Effects of different levels of nitrogen, phosphorus and potassium fertilizers on some agromorphological and biochemical traits of German chamomile (Matricaria chamomilla L.). J. Medicinal Plant. Res. 6, 277-283.
40. N., E., M., K., K., S. and A., N. (2011) Nitrogen fertilizer effect on grain yield, oil and protein content of Pumpkinseed (Cucurbita pepo L. var. styriaca) intercropped with Lentil and Chickpea. Int. J. AgriSci. 1, 283-289.
41. Oelkers, P., Cromley, D., Padamsee, M., Billheimer, J.T. and Sturley, S.L. (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J. Biol. Chem. 277, 8877-8881.
42. Ohlrogge, J.B. and Jaworski, J.G. (1997) Regulation of fatty acid synthesis. Annu. Rev. Phytopathol. 48, 109-136.
43. Pinzi, S., Garcia, I.L., Lopez-Gimenez, F.J., Luque de Castro, M.D., Dorado, G. and Dorado, M.P. (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels, 23, 2325-2341.
44. Qi, Q., Rose, P.A., Abrams, G.D., Taylor, D.C., Abrams, S.R. and Cutler, A.J. (1998) (+)-Abscisic acid metabolism, 3-ketoacyl-coenzyme a synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol. 117, 979-987.
45. Radakovits, R., Jinkerson, R.E., Darzins, A., Posewitz, M.C. (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell, 9, 486-501.
46. Rajasekharan, R. and Nachiappan, V. (2010) Fatty acid biosynthesis and regulation in plants. Plant Dev. Biol. 2, 105-115.
47. Rawat, R., Yu, X.H., Sweet, M. and Shanklin, J. (2012) Conjugated fatty acid synthesis: residues 111 and 115 influence product partitioning of momordica charantia conjugase. J. Biol. Chem. 287, 16230-16237.
48. REN21, (2011) Renewables 2011 Global Status Report. Version 2.1, Paris: REN21 Secretariat.France. (http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR2011.pdf)
49. Roudier, F., Gissot, L., Beaudoin, F., Haslam, R., Michaelson, L., Marion, J., Molino, D., Lima, A., Bach, L., Morin, H., Tellier, F., Palauqui, J.C., Bellec, Y., Renne, C., Miquel, M., Dacosta, M., Vignard, J., Rochat, C., Markham, J.E., Moreau, P., Napier, J. and Faure, J.D. (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell, 22, 364-375.
50. Ruuska, S.A., Schwender, J. and Ohlrogge, J.B. (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 136, 2700-2709.
51. Sangwan, N.S., Farooqi, A.H.A., Shabih, F. and Sangwan, R.S. (2001) Regulation of essential oil production in plants. Plant Growth Regul. 34, 3-21.
52. Savchenko, T., Walley, J.W., Chehab, E.W., Xiao, Y., Kaspi, R., Pye, M.F., Mohamed, M.E., Lazarus, C.M., Bostock, R.M. and Dehesh, K. (2010) Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell. 22, 3193-3205.
53. Sharma, N., Anderson, M., Kumar, A., Zhang, Y., Giblin, E.M., Abrams, S.R., Zaharia, L.I., Taylor, D.C. and Fobert, P.R. (2008) Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC genomics, 9, 619.
54. Shen, B., Allen, W.B., Zheng, P., Li, C., Glassman, K., Ranch, J., Nubel, D. and Tarczynski, M.C. (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 153, 980-987.
55. Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Mullen, R.T. and Dyer, J.M. (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell, 18, 2294-2313.
56. Siloto, R.M., Findlay, K., Lopez-Villalobos, A., Yeung, E.C., Nykiforuk, C.L. and Moloney, M.M. (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell, 18, 1961-1974.
57. Stahl, U., Carlsson, A.S., Lenman, M., Dahlqvist, A., Huang, B., Banas, W., Banas, A. and Stymne, S. (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol. 135, 1324-1335.
58. Stone, S.L., Braybrook, S.A., Paula, S.L., Kwong, L.W., Meuser, J., Pelletier, J., Hsieh, T.F., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proc. Natl. Acad. Sci. U S A. 105, 3151-3156.
59. Tan, H., Yang, X., Zhang, F., Zheng, X., Qu, C., Mu, J., Fu, F., Li, J., Guan, R., Zhang, H., Wang, G. and Zuo, J. (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 156, 1577-1588.
60. Turchetto-Zolet, A.C., Maraschin, F.S., de Morais, G.L., Cagliari, A., Andrade, C.M., Margis-Pinheiro, M. and Margis, R. (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol. Biol. 11, 263.
61. Tranbarger, T.J., Dussert, S., Joet, T., Argout, X., Summo, M., Champion, A., Cros, D., Omore, A., Nouy, B., and Morcillo, F. (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol. 156, 564-584.
62. Voelker, T. and Kinney, A.J. (2001) Variations in the biosynthesis of seed-storage lipids. Annu. Rev. Phytopathol. 52, 335-361.
63. Weselake, R.J., Shah, S., Tang, M., Quant, P.A., Snyder, C.L., Furukawa-Stoffer, T.L., Zhu, W., Taylor, D.C., Zou, J., Kumar, A., Hall, L., Laroche, A., Rakow, G., Raney, P., Moloney, M.M. and Harwood, J.L. (2008) Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J. Exp. Bot. 59, 3543-3549.
64. Wilen, R.W., van Rooijen, G.J.H., Pearce, D.W., Pharis, R.P., Holbrook, L.A. and Moloney, M.M. (1991) Effects of jasmonic acid on embryo-specific processes in Brassica and Linum oilseeds. Plant Physiol. 95, 399-405.
65. Wu, G.Z. and Xue, H.W. (2010) Arabidopsis beta-ketoacyl-[acyl carrier protein] synthase i is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development. Plant Cell, 22, 3726-3744.
66. Xu, J., Francis, T., Mietkiewska, E., Giblin, E.M., Barton, D.L., Zhang, Y., Zhang, M. and Taylor, D.C. (2008) Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol. J. 6, 799-818.
67. Yang, Y., Yu, X., Song, L. and An, C. (2011) ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency. Plant Physiol. 156, 873-883.
68. Yen, C.L., Stone, S.J., Koliwad, S., Harris, C. and Farese, R.V., Jr. (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 49, 2283-2301.
69. Zhang, F.-Y., Yang, M.-F. and Xu, Y.-N. (2005) Silencing of DGAT1 in tobacco causes a reduction in seed oil content. Plant Sci. 169, 689-694.
70. Zhang, M., Fan, J., Taylor, D.C. and Ohlrogge, J.B. (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell, 21, 3885-3901.
71. Zhou, X., Singh, S. and Green, A. (2008) Increased accumulation of epoxy fatty acids in Arabidopsis by transgenic expression of TAG assembly genes from Bernardia pulchella. In 18th International Symposium on Plant Lipids, Bordeaux, France.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65771-
dc.description.abstract植物累積油質主要是利用兩種類型的二醯基甘油醯基轉移酶 (DGAT1 及DGAT2)來進行,而其中第二類型的DGAT (DGAT2)通常被視為作用在植物特異脂肪酸的累積,但其生理功能卻尚未被加以研究。本研究利用千年桐中與桐油酸累積有關的VmDGAT2,將其轉入無DGAT2酵素活性的阿拉伯芥中,進而分析轉殖植物在提高DGAT2活性後對於代謝產物,如:脂肪酸與賀爾蒙;外表型,如:營養及生殖生長的影響,藉此探究此一基因的功能與生理意義。大量表現VmDGAT2的轉殖株較野生型植物提高25-30% 油質含量和30-50% 總蛋白質含量,因此,其種子的平均重量為野生的1.1-1.3倍。分析生長勢發現,轉殖株較野生型具有較大的葉片與較長的根系。此外,轉殖株與野生型在開花時間上並無明顯的差異,而由於轉殖株因具有較多長角果,所以其種子產量大幅提高為野生型的2.2-2.5倍(種子數x種子重)。進一步分析發現轉殖株內的生長素含量為野生型的1.5-2倍,而生長素的生合成基因NITRILASE (NIT)與生長素調控細胞分裂的E2F TRANSCRIPTION FACTOR 3 (E2F3)基因,其表現量在轉殖株中亦較高於野生型,造成子葉中的上皮細胞與根尖組織的分生細胞數目都為野生型的1.2-1.5倍。據此,推測轉殖株因具有較高含量的生長素而較野生型植物具有較為明顯的生長勢。進一步分析轉殖株的脂肪酸組成,發現主要提高的脂肪酸類為飽和脂肪酸和單不飽和脂肪酸,包含近期被發現可作為訊號分子參與在多種賀爾蒙反應的二十碳脂肪酸群,如,花生酸。在阿拉伯生野生型中,施加花生酸 (20:0)明顯較施加棕梠酸 (16:0)或控制組的植物具有較旺盛的根系發育,且NIT與E2F3的基因表現亦明顯地提高。利用pDR5::GFP的植物偵測對於生長素的訊息傳遞,發現在外施加花生酸 (20:0)其螢光強度亦較外施加棕梠酸 (16:0)或控制組的植物大幅地提高。因此推測大量表現VmDGAT2的轉殖株,可提高三酸甘油脂含量外,其中累積較多的花生酸 (20:0),具有刺激生長素的生合成效果,進而提高轉殖植物的生長勢與種子產量。zh_TW
dc.description.abstractA cDNA clone encoding DGAT2 in seed of tung tree (Vernicia montana) was isolated and characterized. Expression profile revealed that DGAT2 was temporally expressed during the deposit of eleostearic acid in seed maturation, and was up-regulated by abscisic acid, jasmonic acid, high temperature and in rich sulfuric and nitrogenous nutrition. Transgenic Arabidopsis overexpressing VmDGAT2 exhibits the increasing seed weight with elevated triacylglycerol (TAG) content up to 40%, and a remarkably active growth biomass, including the increasing epidermal cells in cotyledon and elongated root tissues. The growth biomass promotion in transgenic plants was correlated with an increased indole-3-acetic acid (IAA) level and up-regulated expression of NITRILASE (NIT) and E2F TRANSCRIPTION FACTOR 3 (E2F3) genes compared with wild type. Detailed comparisons of seed neutral lipids indicated that VmDGAT2 substantially modified TAG pool, with significant increase in most of the major TAG species existing in native Arabidopsis. Further analysis demonstrated the elevated expression level of NIT1 and E2F3 was attributed to the increased arachidic acid (20:0) content in transgenic Arabidopsis. Our data demonstrated that DGAT2 effectively increased the yields of plant oil content and fatty acid profiles. We also provide the first evidence that DGAT2 promotes plant growth biomass through elevating IAA level. Arachidic acid (20:0) is a potential stimulator to trigger the de novo biosynthesis of IAA.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:11:25Z (GMT). No. of bitstreams: 1
ntu-101-R98b42031-1.pdf: 4591931 bytes, checksum: 22c78cdd92e0c9a0bd25dbca445732aa (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsCommittee……………………………………………………………………………………………………………………………………I
Acknowledgements………………………………………………………………………………………………………………II
Table of the Content…………………………………………………………………………………………………III
List of Tables………………………………………………………………………………………………………………………V
List of Figures…………………………………………………………………………………………………………………VI
List of Appendixes………………………………………………………………………………………………………VII
Chinese Abstract…………………………………………………………………………………………………………VIII
English Abstract………………………………………………………………………………………………………………IX
1. Introduction……………………………………………………………………………………………………………………1
1.1 Introduction of oil biosynthesis…………………………………………………………2
1.1.1 Plant fatty acid biosynthesis…………………………………………………………3
1.1.2 Biosynthesis of fatty acid in plastid……………………………………4
1.2 Modification of fatty acid in ER…………………………………………………………5
1.2.1 Fatty acid elongation………………………………………………………………………………5
1.2.2 Fatty acid desaturation…………………………………………………………………………5
1.2.3 The production of unusual fatty acid………………………………………6
1.3 Biosynthesis of TAG……………………………………………………………………………………………7
1.3.1 The acyl-CoA-independent pathway…………………………………………………8
1.3.2 The acyl-CoA-dependent pathway
(The Kennedy pathway)………………………………………………………………………………8
1.4 Acyl CoA:diacylglycerol acyltransferases (DGATs)………………9
1.4.1 Plant DGAT1 and DGAT2………………………………………………………………………………9
1.4.2 The characterization of plant DGAT1 and DGAT2 in
TAGs accumulation………………………………………………………………………………………10
1.5 The regulatory mechanism on plant oil quality and
quantity………………………………………………………………………………………………………………………11
1.5.1 Plant oil level is responsive to environmental
events……………………………………………………………………………………………………………………12
1.5.2 Plant oil level is supervised by numerous
phytohormones…………………………………………………………………………………………………14
1.6 Objective……………………………………………………………………………………………………………………15
2. Results………………………………………………………………………………………………………………………………16
2.1 Cloning, predicted structure features and phylogenetic
analysis of a cDNA encoding DGAT2 from Vernicia
montana…………………………………………………………………………………………………………………………16
2.2 Arabidopsis overexpressing VmDGAT2 displayed increasing
oil level and unique fatty acid composition in the
triacylglycerol of the seed……………………………………………………………………18
2.3 Higher IAA level in Arabidopsis overexpressing VmDGAT2
brought about the increasing biomass and superior root
development………………………………………………………………………………………………………………19
2.4 Auxin-regulated cell cycle was activated in Arabidopsis
overexpressing VmDGAT2…………………………………………………………………………………19
2.5 The increment of arachidic acid was capable of
enhancing the IAA-related gene expression and root
development………………………………………………………………………………………………………………20
3. Discussion………………………………………………………………………………………………………………………22
3.1 Oil deposition during the development of seed in
Vernicia montana active DGAT renders plants inhering
better growth potential………………………………………………………………………………22
3.2 The signals triggered by VLCFs……………………………………………………………24
4. Prospective……………………………………………………………………………………………………………………27
5. Materials and Methods…………………………………………………………………………………………28
5.1 Plant material and growth conditions……………………………………………28
5.2 RNA extraction………………………………………………………………………………………………………29
5.3 Semi-quantitative PCR for gene expression………………………………32
5.4 Construction of functional plasmid for overexpressing
the interested genes in Arabidopsis………………………………………………34
5.5 Preparation of E. coli (DH5α) competence cell……………………39
5.6 Preparation of A. tumefaciens (GV3101) competence
cell…………………………………………………………………………………………………………………………………41
5.7 Agrobacterium infiltration (Host: ArabidopsisCol.)………42
5.8 Selection of the transgenic Arabidopsis overexpressing
interested gene……………………………………………………………………………………………………44
5.9 Quantitative analysis of protein concentration…………………46
5.10 Quantitative analysis of sugar concentration……………………47
5.11 Quantitative analysis of oil content and fatty acid
composition……………………………………………………………………………………………………………49
5.12 Lipid staining……………………………………………………………………………………………………52
5.13 Quantification of indole acetic acid by LC-ESI-MS………53
5.14 Confocal Microscopy and light microscopy………………………………54
6. References………………………………………………………………………………………………………………………55
Table……………………………………………………………………………………………………………………………………………60
Figure…………………………………………………………………………………………………………………………………………64
Appendix……………………………………………………………………………………………………………………………………80
Abbreviation…………………………………………………………………………………………………………………………84
dc.language.isoen
dc.title千年桐特異第二型二醯基甘油醯基轉移酶 (Diacylglycerol Acyltransferase 2,DGAT2) 提高阿拉伯芥油量與生長勢之研究zh_TW
dc.titleTung Diacylglycerol Acyltransferase 2 Elevates Oil Level in Transgenic Arabidopsis and Promotes Growth Potential through Activating IAA Biosynthesis.en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志成(C. Will Chen),李義發(Yi-Fa Li),王亞男(Ya-Nan Wang),柯淳涵(Chun-Han Ko)
dc.subject.keyword千年桐,二醯基甘油醯基轉移&#37238,生長素,花生酸,zh_TW
dc.subject.keywordVernicia montana,DGAT,IAA,arachidic acid (20:0),en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2012-07-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved