請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65754
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳義雄 | |
dc.contributor.author | Chia-Jen Tseng | en |
dc.contributor.author | 曾嘉珍 | zh_TW |
dc.date.accessioned | 2021-06-17T00:11:07Z | - |
dc.date.available | 2015-07-26 | |
dc.date.copyright | 2012-07-26 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-13 | |
dc.identifier.citation | Alland, L., Muhle, R., Hou, H., Jr., Potes, J., Chin, L., Schreiber-Agus, N., and
DePinho, R.A. (1997). Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49-55. Amanchy, R., Periaswamy, B., Mathivanan, S., Reddy, R., Tattikota, S.G., and Pandey, A. (2007). A curated compendium of phosphorylation motifs. Nat Biotechnol 25, 285-286. Arcelay, E., Salicioni, A.M., Wertheimer, E., and Visconti, P.E. (2008). Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol 52, 463-472. Aulmann, S., Blaker, H., Penzel, R., Rieker, R.J., Otto, H.F., and Sinn, H.P. (2003). CTCF gene mutations in invasive ductal breast cancer. Breast Cancer Res Treat 80, 347-352. Austin, C.R. (1951). Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B 4, 581-596. Bailey, J.L., Tardif, S., Dube, C., Beaulieu, M., Reyes-Moreno, C., Lefievre, L., and Leclerc, P. (2005). Use of phosphoproteomics to study tyrosine kinase activity in capacitating boar sperm. Kinase activity and capacitation. Theriogenology 63, 599-614. Baker, M.A., Reeves, G., Hetherington, L., Muller, J., Baur, I., and Aitken, R.J. (2007). Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl 1, 524-532. Baniahmad, A., Steiner, C., Kohne, A.C., and Renkawitz, R. (1990). Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61, 505-514. Barbonetti, A., Vassallo, M.R., Cordeschi, G., Venetis, D., Carboni, A., Sperandio, A., Felzani, G., Francavilla, S., and Francavilla, F. (2010). Protein tyrosine phosphorylation of the human sperm head during capacitation: immunolocalization and relationship with acquisition of sperm-fertilizing ability. Asian J Androl 12, 853-861. Bedford, J.M. (1970). Sperm capacitation and fertilization in mammals. Biol Reprod 2, Suppl 2:128-158. Bell, A.C., and Felsenfeld, G. (2000). Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482-485. Bell, A.C., West, A.G., and Felsenfeld, G. (1999). The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387-396. Bellve, A.R., Zheng, W., and Martinova, Y.S. (1993). Recovery, capacitation, acrosome reaction, and fractionation of sperm. Methods Enzymol 225, 113-136. Bielfeld, P., Jeyendran, R.S., and Zaneveld, L.J. (1991). Human spermatozoa do not undergo the acrosome reaction during storage in the cervix. Int J Fertil 36, 302-306. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., and Brunak, S. (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633-1649. Boatman, D.E., and Robbins, R.S. (1991). Bicarbonate: carbon-dioxide regulation of sperm capacitation, hyperactivated motility, and acrosome reactions. Biol Reprod 44, 806-813. Brucker, C., and Lipford, G.B. (1995). The human sperm acrosome reaction: physiology and regulatory mechanisms. An update. Hum Reprod Update 1, 51-62. 86 Burcin, M., Arnold, R., Lutz, M., Kaiser, B., Runge, D., Lottspeich, F., Filippova, G.N., Lobanenkov, V.V., and Renkawitz, R. (1997). Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF. Mol Cell Biol 17, 1281-1288. Burke, L.J., Zhang, R., Bartkuhn, M., Tiwari, V.K., Tavoosidana, G., Kurukuti, S., Weth, C., Leers, J., Galjart, N., Ohlsson, R., and Renkawitz, R. (2005). CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin. EMBO J 24, 3291-3300. Burton, T., Liang, B., Dibrov, A., and Amara, F. (2002). Transforming growth factor-beta-induced transcription of the Alzheimer beta-amyloid precursor protein gene involves interaction between the CTCF-complex and Smads. Biochem Biophys Res Commun 295, 713-723. Carrera, A., Moos, J., Ning, X.P., Gerton, G.L., Tesarik, J., Kopf, G.S., and Moss, S.B. (1996). Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol 180, 284-296. Chakravarty, S., Kadunganattil, S., Bansal, P., Sharma, R.K., and Gupta, S.K. (2008). Relevance of glycosylation of human zona pellucida glycoproteins for their binding to capacitated human spermatozoa and subsequent induction of acrosomal exocytosis. Mol Reprod Dev 75, 75-88. Chang, M.C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168, 697-698. Chatterjee, M., Nandi, P., Ghosh, S., and Sen, P.C. (2009). Regulation of tyrosine kinase activity during capacitation in goat sperm. Mol Cell Biochem 336, 39-48. Chernak, J.M. (1993). Structural features of the 5' upstream regulatory region of the gene encoding rat amyloid precursor protein. Gene 133, 255-260. Cirpan, T., Aygul, S., Terek, M.C., Kazandi, M., Dikmen, Y., Zekioglu, O., and Sagol, S. (2007). MMAC tumor supressor gene expression in ovarian endometriosis and ovarian adenocarcinoma. Eur J Gynaecol Oncol 28, 278-281. Codrington, A.M., Hales, B.F., and Robaire, B. (2007). Exposure of male rats to cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa. Hum Reprod 22, 1431-1442. Cross, N.L. (1998). Role of cholesterol in sperm capacitation. Biol Reprod 59, 7-11. Darszon, A., Labarca, P., Nishigaki, T., and Espinosa, F. (1999). Ion channels in sperm physiology. Physiol Rev 79, 481-510. DasGupta, S., Mills, C.L., and Fraser, L.R. (1994). A possible role for Ca(2+)-ATPase in human sperm capacitation. J Reprod Fertil 102, 107-116. de Mateo, S., Martinez-Heredia, J., Estanyol, J.M., Dominguez-Fandos, D., Vidal-Taboada, J.M., Ballesca, J.L., and Oliva, R. (2007). Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics 7, 4264-4277. DePinho, R.A. (1998). Transcriptional repression. The cancer-chromatin connection. Nature 391, 533, 535-536. Ecroyd, H., Jones, R.C., and Aitken, R.J. (2003). Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation. Biol Reprod 69, 1801-1807. Ficarro, S., Chertihin, O., Westbrook, V.A., White, F., Jayes, F., Kalab, P., Marto, J.A., Shabanowitz, J., Herr, J.C., Hunt, D.F., and Visconti, P.E. (2003). Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 278, 11579-11589. Filippova, G.N., Fagerlie, S., Klenova, E.M., Myers, C., Dehner, Y., Goodwin, G., Neiman, P.E., Collins, S.J., and Lobanenkov, V.V. (1996). An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16, 2802-2813. Filippova, G.N., Lindblom, A., Meincke, L.J., Klenova, E.M., Neiman, P.E., Collins, S.J., Doggett, N.A., and Lobanenkov, V.V. (1998). A widely expressed transcription factor with multiple DNA sequence specificity, CTCF, is localized at chromosome segment 16q22.1 within one of the smallest regions of overlap for common deletions in breast and prostate cancers. Genes Chromosomes Cancer 22, 26-36. Florman, H.M., and Babcock, D.F. (1991). Progress towards understanding the molecular basis of capacitation., Vol I (Florida: CRC Press). Fraser, L.R. (1977). Differing requirements for capacitation in vitro of mouse spermatozoa from two strains. J Reprod Fertil 49, 83-87. Galantino-Homer, H.L., Visconti, P.E., and Kopf, G.S. (1997). Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3'5'-monophosphate-dependent pathway. Biol Reprod 56, 707-719. Go, K.J., and Wolf, D.P. (1985). Albumin-mediated changes in sperm sterol content during capacitation. Biol Reprod 32, 145-153. Green, A.R., Krivinskas, S., Young, P., Rakha, E.A., Paish, E.C., Powe, D.G., and Ellis, I.O. (2009). Loss of expression of chromosome 16q genes DPEP1 and CTCF in lobular carcinoma in situ of the breast. Breast Cancer Res Treat 113, 59-66. Hall, J.C., and Killian, G.J. (1987). Changes in rat sperm membrane glycosidase activities and carbohydrate and protein contents associated with epididymal transit. Biology of reproduction 36, 709-718. Hark, A.T., Schoenherr, C.J., Katz, D.J., Ingram, R.S., Levorse, J.M., and 89 Tilghman, S.M. (2000). CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486-489. Herrada, G., and Wolgemuth, D.J. (1997). The mouse transcription factor Stat4 is expressed in haploid male germ cells and is present in the perinuclear theca of spermatozoa. J Cell Sci 110 ( Pt 14), 1543-1553. Izumi, R., Yamada, T., Yoshikai, S., Sasaki, H., Hattori, M., and Sakaki, Y. (1992). Positive and negative regulatory elements for the expression of the Alzheimer's disease amyloid precursor-encoding gene in mouse. Gene 112, 189-195. Jha, K.N., and Shivaji, S. (2002). Identification of the major tyrosine phosphorylated protein of capacitated hamster spermatozoa as a homologue of mammalian sperm a kinase anchoring protein. Mol Reprod Dev 61, 258-270. Kalab, P., Visconti, P., Leclerc, P., and Kopf, G.S. (1994). p95, the major phosphotyrosine-containing protein in mouse spermatozoa, is a hexokinase with unique properties. J Biol Chem 269, 3810-3817. Kanduri, C., Pant, V., Loukinov, D., Pugacheva, E., Qi, C.F., Wolffe, A., Ohlsson, R., and Lobanenkov, V.V. (2000). Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10, 853-856. Kanduri, M., Kanduri, C., Mariano, P., Vostrov, A.A., Quitschke, W., Lobanenkov, V., and Ohlsson, R. (2002). Multiple nucleosome positioning sites regulate the CTCF-mediated insulator function of the H19 imprinting control region. Mol Cell Biol 22, 3339-3344. Klenova, E.M., Chernukhin, I.V., El-Kady, A., Lee, R.E., Pugacheva, E.M., Loukinov, D.I., Goodwin, G.H., Delgado, D., Filippova, G.N., Leon, J., et al. (2001). Functional phosphorylation sites in the C-terminal region of the multivalent multifunctional transcriptional factor CTCF. Mol Cell Biol 21, 2221-2234. Klenova, E.M., Nicolas, R.H., U, S., Carne, A.F., Lee, R.E., Lobanenkov, V.V., and Goodwin, G.H. (1997). Molecular weight abnormalities of the CTCF transcription factor: CTCF migrates aberrantly in SDS-PAGE and the size of the expressed protein is affected by the UTRs and sequences within the coding region of the CTCF gene. Nucleic Acids Res 25, 466-474. Koscielny, S., F, V.E., and Dahse, R. (2004). [Investigations to the influence of tumor supressor gene p16 inactivation on the prognosis of head and neck squamous cell carcinoma]. Laryngorhinootologie 83, 374-380. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. Leclerc, P., de Lamirande, E., and Gagnon, C. (1997). Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med 22, 643-656. Lee, M.A., and Storey, B.T. (1985). Evidence for plasma membrane impermeability to small ions in acrosome-intact mouse spermatozoa bound to mouse zonae pellucidae, using an aminoacridine fluorescent pH probe: time course of the zona-induced acrosome reaction monitored by both chlortetracycline and pH probe fluorescence. Biol Reprod 33, 235-246. Lee, M.A., and Storey, B.T. (1986). Bicarbonate is essential for fertilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod 34, 349-356. Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D., and Felsenfeld, G. (2001). Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293, 2453-2455. Lobanenkov, V.V., Nicolas, R.H., Adler, V.V., Paterson, H., Klenova, E.M., Polotskaja, A.V., and Goodwin, G.H. (1990). A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5'-flanking sequence of the chicken c-myc gene. Oncogene 5, 1743-1753. Luconi, M., Porazzi, I., Ferruzzi, P., Marchiani, S., Forti, G., and Baldi, E. (2005). Tyrosine phosphorylation of the a kinase anchoring protein 3 (AKAP3) and soluble adenylate cyclase are involved in the increase of human sperm motility by bicarbonate. Biol Reprod 72, 22-32. Lutz, M., Burke, L.J., Barreto, G., Goeman, F., Greb, H., Arnold, R., Schultheiss, H., Brehm, A., Kouzarides, T., Lobanenkov, V., and Renkawitz, R. (2000). Transcriptional repression by the insulator protein CTCF involves histone deacetylases. Nucleic Acids Res 28, 1707-1713. Lutz, M., Burke, L.J., LeFevre, P., Myers, F.A., Thorne, A.W., Crane-Robinson, C., Bonifer, C., Filippova, G.N., Lobanenkov, V., and Renkawitz, R. (2003). Thyroid hormone-regulated enhancer blocking: cooperation of CTCF and thyroid hormone receptor. EMBO J 22, 1579-1587. Mahanes, M.S., Ochs, D.L., and Eng, L.A. (1986). Cell calcium of ejaculated rabbit spermatozoa before and following in vitro capacitation. Biochem Biophys Res Commun 134, 664-670. Martinez-Heredia, J., de Mateo, S., Vidal-Taboada, J.M., Ballesca, J.L., and Oliva, R. (2008). Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod 23, 783-791. Martinez-Heredia, J., Estanyol, J.M., Ballesca, J.L., and Oliva, R. (2006). Proteomic identification of human sperm proteins. Proteomics 6, 4356-4369. Muratori, M., Marchiani, S., Tamburrino, L., Forti, G., Luconi, M., and Baldi, E. (2011). Markers of human sperm functions in the ICSI era. Front Biosci 16, 1344-1363. Naaby-Hansen, S., Mandal, A., Wolkowicz, M.J., Sen, B., Westbrook, V.A., Shetty, J., Coonrod, S.A., Klotz, K.L., Kim, Y.H., Bush, L.A., et al. (2002). CABYR, a novel calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein involved in capacitation. Dev Biol 242, 236-254. Neill, J.M., and Olds-Clarke, P. (1987). A computer-assisted assay for mouse sperm hyperactivation demonstrates that bicarbonate but not bovine serum albumin is required. Gamete Res 18, 121-140. Ohta, T., Gray, T.A., Rogan, P.K., Buiting, K., Gabriel, J.M., Saitoh, S., Muralidhar, B., Bilienska, B., Krajewska-Walasek, M., Driscoll, D.J., et al. (1999). Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet 64, 397-413. Okamura, N., Tajima, Y., Soejima, A., Masuda, H., and Sugita, Y. (1985). Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 260, 9699-9705. Oliva, R., Martinez-Heredia, J., and Estanyol, J.M. (2008). Proteomics in the study of the sperm cell composition, differentiation and function. Syst Biol Reprod Med 54, 23-36. Piehler, E., Petrunkina, A.M., Ekhlasi-Hundrieser, M., and Topfer-Petersen, E. (2006). Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytometry A 69, 1062-1070. Platt, M.D., Salicioni, A.M., Hunt, D.F., and Visconti, P.E. (2009). Use of differential isotopic labeling and mass spectrometry to analyze capacitation-associated changes in the phosphorylation status of mouse sperm proteins. J Proteome Res 8, 1431-1440. Prawitt, D., Enklaar, T., Gartner-Rupprecht, B., Spangenberg, C., Oswald, M., Lausch, E., Schmidtke, P., Reutzel, D., Fees, S., Lucito, R., et al. (2005). Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms' tumor. Proc Natl Acad Sci U S A 102, 4085-4090. Rakha, E.A., Pinder, S.E., Paish, C.E., and Ellis, I.O. (2004). Expression of the transcription factor CTCF in invasive breast cancer: a candidate gene located at 16q22.1. Br J Cancer 91, 1591-1596. Ravnik, S.E., Albers, J.J., and Muller, C.H. (1993). A novel view of albumin-supported sperm capacitation: role of lipid transfer protein-I. Fertil Steril 59, 629-638. Ravnik, S.E., Zarutskie, P.W., and Muller, C.H. (1992). Purification and characterization of a human follicular fluid lipid transfer protein that stimulates human sperm capacitation. Biol Reprod 47, 1126-1133. Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089-1093. Rodriguez-Cruz, M., del Prado, M., and Salcedo, M. (2005). [Genomic retinoblastoma perspectives: implications of tumor supressor gene RB1]. Rev Invest Clin 57, 572-581. Rousseaux, S., Reynoird, N., Escoffier, E., Thevenon, J., Caron, C., and Khochbin, S. (2008). Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 16, 492-503. Rufo, G.A., Jr., Schoff, P.K., and Lardy, H.A. (1984). Regulation of calcium content in bovine spermatozoa. J Biol Chem 259, 2547-2552. Schwartz, D., and Gygi, S.P. (2005). An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 23, 1391-1398. Signorelli, J., Diaz, E.S., and Morales, P. (2012). Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res. Skudlarek, M.D., Tulsiani, D.R., Nagdas, S.K., and Orgebin-Crist, M.C. (1993). Beta-D-galactosidase of rat spermatozoa: subcellular distribution, substrate specificity, and molecular changes during epididymal maturation. Biology of reproduction 49, 204-213. Smith, Z.D., Chan, M.M., Mikkelsen, T.S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339-344. Songyang, Z., and Cantley, L.C. (1995). Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci 20, 470-475. Tang, J.B., and Chen, Y.H. (2006). Identification of a tyrosine-phosphorylated CCCTC-binding nuclear factor in capacitated mouse spermatozoa. Proteomics 6, 4800-4807. Tanimoto, K., Sugiura, A., Omori, A., Felsenfeld, G., Engel, J.D., and Fukamizu, A. (2003). Human beta-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells. Mol Cell Biol 23, 8946-8952. Therien, I., Soubeyrand, S., and Manjunath, P. (1997). Major proteins of bovine seminal plasma modulate sperm capacitation by high-density lipoprotein. Biol Reprod 57, 1080-1088. Tilghman, S.M. (1999). The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96, 185-193. Tulsiani, D.R., Skudlarek, M.D., Holland, M.K., and Orgebin-Crist, M.C. (1993). Glycosylation of rat sperm plasma membrane during epididymal maturation. Biology of reproduction 48, 417-428. Turner, R.M., Musse, M.P., Mandal, A., Klotz, K., Jayes, F.C., Herr, J.C., Gerton, G.L., Moss, S.B., and Chemes, H.E. (2001). Molecular genetic analysis of two human sperm fibrous sheath proteins, AKAP4 and AKAP3, in men with dysplasia of the fibrous sheath. J Androl 22, 302-315. Urner, F., Leppens-Luisier, G., and Sakkas, D. (2001). Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose. Biol Reprod 64, 1350-1357. Visconti, P.E. (2009). Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci U S A 106, 667-668. Visconti, P.E., Bailey, J.L., Moore, G.D., Pan, D., Olds-Clarke, P., and Kopf, G.S. (1995a). Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121, 1129-1137. Visconti, P.E., Moore, G.D., Bailey, J.L., Leclerc, P., Connors, S.A., Pan, D., Olds-Clarke, P., and Kopf, G.S. (1995b). Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121, 1139-1150. Vostrov, A.A., Taheny, M.J., and Quitschke, W.W. (2002). A region to the N-terminal side of the CTCF zinc finger domain is essential for activating transcription from the amyloid precursor protein promoter. J Biol Chem 277, 1619-1627. Ward, C.R., and Storey, B.T. (1984). Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev Biol 104, 287-296. Wincek, T.J., Parrish, R.F., and Polakoski, K.L. (1979). Fertilization: a uterine glycosaminoglycan stimulates the conversion of sperm proacrosin to acrosin. Science 203, 553-554. Yanagimachi, R. (1970). The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil 23, 193-196. Yanagimachi, R. (1994). Fertility of mammalian spermatozoa: its development and relativity. Zygote 2, 371-372. Yeh, A., Wei, M., Golub, S.B., Yamashiro, D.J., Murty, V.V., and Tycko, B. (2002). Chromosome arm 16q in Wilms tumors: unbalanced chromosomal translocations, loss of heterozygosity, and assessment of the CTCF gene. Genes Chromosomes Cancer 35, 156-163. Yoon, B., Herman, H., Hu, B., Park, Y.J., Lindroth, A., Bell, A., West, A.G., Chang, Y., Stablewski, A., Piel, J.C., et al. (2005). Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 25, 11184-11190. Zhou, X.L., Werelius, B., and Lindblom, A. (2004). A screen for germline mutations in the gene encoding CCCTC-binding factor (CTCF) in familial non-BRCA1/BRCA2 breast cancer. Breast Cancer Res 6, R187-190. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65754 | - |
dc.description.abstract | CTCF 是一個分佈廣且高度保守的轉錄因子,其分子量約82 kDa。先
前證實獲能的小白鼠精子之CTCF 會在酪胺酸基磷酸化。本研究探討這一 個巨大蛋白分子的酪胺酸磷酸化位置,並評估該化學修飾對標的核酸親和 力的影響。我們發現頂體反應不會導致存於頂體內CTCF 的釋放。運用基 因重組技術,融合GST 於CTCF 三個區域(domain),包括鋅指部位 (Zinc-finger domain,ZD/ residues 266-573),ZD 的N-端區域(ND/ residues 1-265)和ZD 的C-端區域(CD/ residues 574-736)。GST-ND 可被獲能精 子的酪胺酸激酶活性磷酸化,但GST-ZD 和GST-CD 卻不會。進一步將ND 的Y25, Y138, Y197, Y214, or Y226 突變成苯丙胺酸(Phenylalanine)而製備了突變 蛋白。相對原始蛋白(wild-type GST-ND),Y25F、Y138F 和Y214F 具有 相同的激酶基質活化,但Y197F 和Y226F 的基質活性則顯著降低,提示 Y197F 和Y226F 是兩個主要的磷酸化位置。進一步發現EGFR 的抑制劑 AG1478 可降低激酶對GST-ND 的磷酸化。配合可被磷酸化酪胺酸鄰近胺 基酸順序預測Y197 可被EGFR 磷酸化。運用核酸電泳動移動分析法 (electrophoretic mobility shift assay)量測CTCF 對β-APP、FpV 和c-Myc 啟 動子的親和力。相對於尚未獲能精子的CTCF,獲能精子的CTCF 對三個 啟動子的親和力較弱,但對甲基化的啟動子則親和力較強。 | zh_TW |
dc.description.abstract | The CCCTC-binding nuclear factor (CTCF) is a widely expressed and highly
conserved 82-KDa protein. Using mice as experimental animals, work of our previous study identified the tyrosine-phosphorylated form of CTCF in the capacitated sperm. This work was conducted to determine the tyrosine-phosphorylated sites in the CTCF molecule and to assess the impact of such a phosphorylation modification on the affinity of this nuclear factor to its target DNAs. We found that acrosomal exocytosis did not result in the release of CTCF residing in spermatozoal acrosome region. We made recombinant polypeptides of GST in frame with the N-terminal (ND/residues 1-265), zinc-finger domain (ZD/residues 266-573) and C-terminal domain (CD/residues 574-736) in CTCF. Neither GST-ZD nor GST-CD but GST-ND could be phosphorylated by the tyrosine kinase activity in the capacitated sperm. Further, Y25, Y138, Y197, Y214, or Y226 in ND of GST-ND was mutated to phenylalanine. Mutants Y25F, Y138F, and Y214F showed virtually the same substrate activity as the wild type GST-ND for the capacitation-related tyrosine phosphorylation, whereas the mutants Y197F and Y226F showed weaker substrate activity, manifesting Y197 and Y226 as the two major phosphorylation sites in which the modification of Y197 could be suppressed by an EGFR inhibitor AG1478. The electrophoretic mobility shift assay was applied to measure the affinity of spermatozoal CTCF to its DNA target sequences found in the promotors of amyloid β-protein precursor (β-APP), FpV and c-Myc. Relative to CTCF in the incapacitated sperm, the tyrosine-phosphorylated protein in the BSA-treated sperm gave weaker affinity to each target DNA, whereas it showed stronger affinity to the methylated forms of these target DNAs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:11:07Z (GMT). No. of bitstreams: 1 ntu-101-D91242007-1.pdf: 1630382 bytes, checksum: 25c2395cae36ecdd000e8bc4a09cdd13 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 縮寫表…………………………………………………………………………… 4
中文摘要………………………………………………………………………… 5 英文摘要………………………………………………………………………… 6 論文內容 第一章 概論 1.1. 哺乳類有性生殖…………………………………………………………....7 1.2. 精子的分化過程…………………………………………………….…...…7 1.3. 成熟精子在副睪進行的修飾………………………………………………9 1.4. 哺乳類雄性附屬性腺…………………………………………...….……....9 1.5. 精子的結構與獲能效應……………………………………………………9 1.6. 精子獲能效應的生理變化…………………………………….…...………12 1.7. 頂體反應(Acrosome reaction) ……………………………....…………12 1.8. 體外獲能效應的進行(In vitro capacitation)……………...……….……13 1.9. 精子獲能作用相關之蛋白質酪胺酸磷酸化研究…………...…………….16 1.10. CCCTC-結合轉錄因子(CCCTC-binding nuclear factor, CTCF)...….…17 1.11. 研究背景與本論文研究重點………………………………....……………20 第二章 實驗材料與方法 2.1. 動物實驗方法 2.1.1. 實驗動物……………………….…………………………….………21 2.1.2. 精子的製備……………………….………………………….………21 2.1.3. 試管獲能化效應( In vitro capacitation )………………..………22 2.1.4. 計算細胞的數量………………………….…………………….……23 2.1.5. 間接免疫螢光染色法………………………….……………….……24 2.1.6. 精子蛋白質酪胺酸磷酸化的偵測………………………….….……24 2.1.7. 精子頂體之觀察…………………………. …………………………25 2.1.8. 精子頂體反應的誘發………………………….………………….…25 2.1.9. 精子獲能效應在實驗上的觀察,定義及分析……………..………26 2.2. 分子生物學實驗方法 2.2.1. 聚合酶鏈鎖反應………………………….…………………….……27 2.2.2. 小量質體萃取………………………….……………………….……29 2.2.3. 重組質體製備………………………….……………………….……29 2.2.4. 質體轉型………………………….…………………………….……31 2.2.5. CTCF N 端的定點突變( Site-directed mutagenesis ) ………………31 2.3. 蛋白質實驗方法 2.3.1. GST 融和重組蛋白純化………………………….……………....…34 2.3.2. 還原性硫酸十二酯鈉聚丙烯醯胺凝膠電泳………………..........…35 2.3.3. 蛋白質染色分析- Coomassie Blue 染色…………………........……36 2.3.4. 西方墨點法(Western blotting)…………………………….…...…37 2.3.5. 蛋白質定量………………………….………….………...…....….…39 2.3.6. 免疫沉澱(Immunoprecipitation)……………………...…....….…40 2.3.7. In vitro kinase assay……………….………….…………….…..……40 2.3.8. In vitro kinase assay couple solid phase assay……….......…………..42 2.3.9. GST pull down………………………….……………..…….….……43 2.3.10.電泳膠體遲緩試驗………………………….….…..……….….……44 2.3.11.統計方法………………………….………….…….....…....…..….…46 第三章 結果 3.1. 精子頂體反應伴隨的CTCF 蛋白質酪胺酸磷酸化修飾.....…....…..….….47 3.2. 探討獲能效應引發CTCF 酪胺酸磷酸化修飾位置.....….............…..….…49 3.3. 探討獲能效應精子中會引發CTCF 酪胺酸磷酸化的激酶.....…....…..….52 3.4. 探討精子獲能效應之CTCF 對標的啟動子的親和力.....…....……..…….53 第四章 討論……………………….………….…….....……….......…..….…54 圖目錄……………….……………………..…….…….....……….......…..….…57 圖 1:Confirmation of CTCF in sperm at different stages.......…..….…………. 58 圖 2:Subcellular localization of CTCF in sperm at different stages…………... 60 圖 3:Electrophoretic analyses of the three bacterial expressed CTCF domains 62 圖 4:CTCF N terminal is the major capacitation-related tyrosine phosphorylation domain in vitro………………………………………… 64 圖 5:Identification of major capacitation-related tyrosine phosphorylation domain of CTCF by solid-phase assay …………………………………...66 圖 6:Expression profiles of the GST-ND mutants…………………………….. 68 圖 7:The capacitation –related tyrosine phosphorylation of GST-ND and its mutants pulled down from the reaction mixture by the GST beads.….….70 圖 8:Y197and Y226 are the dominant tyrosine phosphorylation sites of CTCF …....72 圖 9:Solid-phase assay for the capacitation-related phosphorylation of CTCF..74 圖10:Prediction of tyrosine kinase phosphorylation sites in ND of CTCF…....76 圖11:Impacts of several tyrosine kinase inhibitors on the phosphorylation of ND …………………………………………………………………………..78 圖12:Amino acid alignment for the CTCF ND from different species....80 圖 13:Binding ability of spermatozoal CTCF to its target DNA sequences….....82 參考文獻………………………………………………………………………..84 | |
dc.language.iso | zh-TW | |
dc.title | 以小白鼠為模式探討哺乳類精子轉錄因子CTCF:獲能效應引發CTCF酪胺酸基磷酸化會強化對甲基化標的核酸的親和力 | zh_TW |
dc.title | Study on the spermatozoal CCCTC-binding nuclear factor (CTCF) using mice as a model :The capacitation-related tyrosine phosphorylation of CTCF strengthens its affinity to the methylated target DNAs | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 潘榮隆,李明亭,蔡懷楨,梁博煌,李勝祥 | |
dc.subject.keyword | 精子,頂體,CTCF,獲能效應,酪胺酸磷酸化, | zh_TW |
dc.subject.keyword | sperm,acrosome,CTCF,capacitation,tyrosine phosphorylation, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-13 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。