Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65754
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳義雄
dc.contributor.authorChia-Jen Tsengen
dc.contributor.author曾嘉珍zh_TW
dc.date.accessioned2021-06-17T00:11:07Z-
dc.date.available2015-07-26
dc.date.copyright2012-07-26
dc.date.issued2012
dc.date.submitted2012-07-13
dc.identifier.citationAlland, L., Muhle, R., Hou, H., Jr., Potes, J., Chin, L., Schreiber-Agus, N., and
DePinho, R.A. (1997). Role for N-CoR and histone deacetylase in Sin3-mediated
transcriptional repression. Nature 387, 49-55.
Amanchy, R., Periaswamy, B., Mathivanan, S., Reddy, R., Tattikota, S.G., and
Pandey, A. (2007). A curated compendium of phosphorylation motifs. Nat Biotechnol
25, 285-286.
Arcelay, E., Salicioni, A.M., Wertheimer, E., and Visconti, P.E. (2008).
Identification of proteins undergoing tyrosine phosphorylation during mouse sperm
capacitation. Int J Dev Biol 52, 463-472.
Aulmann, S., Blaker, H., Penzel, R., Rieker, R.J., Otto, H.F., and Sinn, H.P.
(2003). CTCF gene mutations in invasive ductal breast cancer. Breast Cancer Res
Treat 80, 347-352.
Austin, C.R. (1951). Observations on the penetration of the sperm in the mammalian
egg. Aust J Sci Res B 4, 581-596.
Bailey, J.L., Tardif, S., Dube, C., Beaulieu, M., Reyes-Moreno, C., Lefievre, L.,
and Leclerc, P. (2005). Use of phosphoproteomics to study tyrosine kinase activity in
capacitating boar sperm. Kinase activity and capacitation. Theriogenology 63,
599-614.
Baker, M.A., Reeves, G., Hetherington, L., Muller, J., Baur, I., and Aitken, R.J.
(2007). Identification of gene products present in Triton X-100 soluble and insoluble
fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin
Appl 1, 524-532.
Baniahmad, A., Steiner, C., Kohne, A.C., and Renkawitz, R. (1990). Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone
receptor binding site. Cell 61, 505-514.
Barbonetti, A., Vassallo, M.R., Cordeschi, G., Venetis, D., Carboni, A., Sperandio,
A., Felzani, G., Francavilla, S., and Francavilla, F. (2010). Protein tyrosine
phosphorylation of the human sperm head during capacitation: immunolocalization
and relationship with acquisition of sperm-fertilizing ability. Asian J Androl 12,
853-861.
Bedford, J.M. (1970). Sperm capacitation and fertilization in mammals. Biol Reprod
2, Suppl 2:128-158.
Bell, A.C., and Felsenfeld, G. (2000). Methylation of a CTCF-dependent boundary
controls imprinted expression of the Igf2 gene. Nature 405, 482-485.
Bell, A.C., West, A.G., and Felsenfeld, G. (1999). The protein CTCF is required for
the enhancer blocking activity of vertebrate insulators. Cell 98, 387-396.
Bellve, A.R., Zheng, W., and Martinova, Y.S. (1993). Recovery, capacitation,
acrosome reaction, and fractionation of sperm. Methods Enzymol 225, 113-136.
Bielfeld, P., Jeyendran, R.S., and Zaneveld, L.J. (1991). Human spermatozoa do
not undergo the acrosome reaction during storage in the cervix. Int J Fertil 36,
302-306.
Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., and Brunak, S. (2004).
Prediction of post-translational glycosylation and phosphorylation of proteins from
the amino acid sequence. Proteomics 4, 1633-1649.
Boatman, D.E., and Robbins, R.S. (1991). Bicarbonate: carbon-dioxide regulation of sperm capacitation, hyperactivated motility, and acrosome reactions. Biol Reprod
44, 806-813.
Brucker, C., and Lipford, G.B. (1995). The human sperm acrosome reaction:
physiology and regulatory mechanisms. An update. Hum Reprod Update 1, 51-62.
86
Burcin, M., Arnold, R., Lutz, M., Kaiser, B., Runge, D., Lottspeich, F., Filippova,
G.N., Lobanenkov, V.V., and Renkawitz, R. (1997). Negative protein 1, which is
required for function of the chicken lysozyme gene silencer in conjunction with
hormone receptors, is identical to the multivalent zinc finger repressor CTCF. Mol
Cell Biol 17, 1281-1288.
Burke, L.J., Zhang, R., Bartkuhn, M., Tiwari, V.K., Tavoosidana, G., Kurukuti,
S., Weth, C., Leers, J., Galjart, N., Ohlsson, R., and Renkawitz, R. (2005). CTCF
binding and higher order chromatin structure of the H19 locus are maintained in
mitotic chromatin. EMBO J 24, 3291-3300.
Burton, T., Liang, B., Dibrov, A., and Amara, F. (2002). Transforming growth
factor-beta-induced transcription of the Alzheimer beta-amyloid precursor protein
gene involves interaction between the CTCF-complex and Smads. Biochem Biophys
Res Commun 295, 713-723.
Carrera, A., Moos, J., Ning, X.P., Gerton, G.L., Tesarik, J., Kopf, G.S., and Moss,
S.B. (1996). Regulation of protein tyrosine phosphorylation in human sperm by a
calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins
as major substrates for tyrosine phosphorylation. Dev Biol 180, 284-296.
Chakravarty, S., Kadunganattil, S., Bansal, P., Sharma, R.K., and Gupta, S.K.
(2008). Relevance of glycosylation of human zona pellucida glycoproteins for their
binding to capacitated human spermatozoa and subsequent induction of acrosomal
exocytosis. Mol Reprod Dev 75, 75-88.
Chang, M.C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian
tubes. Nature 168, 697-698.
Chatterjee, M., Nandi, P., Ghosh, S., and Sen, P.C. (2009). Regulation of tyrosine
kinase activity during capacitation in goat sperm. Mol Cell Biochem 336, 39-48.
Chernak, J.M. (1993). Structural features of the 5' upstream regulatory region of the gene encoding rat amyloid precursor protein. Gene 133, 255-260.
Cirpan, T., Aygul, S., Terek, M.C., Kazandi, M., Dikmen, Y., Zekioglu, O., and
Sagol, S. (2007). MMAC tumor supressor gene expression in ovarian endometriosis
and ovarian adenocarcinoma. Eur J Gynaecol Oncol 28, 278-281.
Codrington, A.M., Hales, B.F., and Robaire, B. (2007). Exposure of male rats to
cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa.
Hum Reprod 22, 1431-1442.
Cross, N.L. (1998). Role of cholesterol in sperm capacitation. Biol Reprod 59, 7-11.
Darszon, A., Labarca, P., Nishigaki, T., and Espinosa, F. (1999). Ion channels in
sperm physiology. Physiol Rev 79, 481-510.
DasGupta, S., Mills, C.L., and Fraser, L.R. (1994). A possible role for
Ca(2+)-ATPase in human sperm capacitation. J Reprod Fertil 102, 107-116.
de Mateo, S., Martinez-Heredia, J., Estanyol, J.M., Dominguez-Fandos, D.,
Vidal-Taboada, J.M., Ballesca, J.L., and Oliva, R. (2007). Marked correlations in
protein expression identified by proteomic analysis of human spermatozoa.
Proteomics 7, 4264-4277.
DePinho, R.A. (1998). Transcriptional repression. The cancer-chromatin connection.
Nature 391, 533, 535-536.
Ecroyd, H., Jones, R.C., and Aitken, R.J. (2003). Tyrosine phosphorylation of
HSP-90 during mammalian sperm capacitation. Biol Reprod 69, 1801-1807.
Ficarro, S., Chertihin, O., Westbrook, V.A., White, F., Jayes, F., Kalab, P., Marto, J.A.,
Shabanowitz, J., Herr, J.C., Hunt, D.F., and Visconti, P.E. (2003).
Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine
phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97
during capacitation. J Biol Chem 278, 11579-11589.
Filippova, G.N., Fagerlie, S., Klenova, E.M., Myers, C., Dehner, Y., Goodwin, G., Neiman, P.E., Collins, S.J., and Lobanenkov, V.V. (1996). An exceptionally
conserved transcriptional repressor, CTCF, employs different combinations of zinc
fingers to bind diverged promoter sequences of avian and mammalian c-myc
oncogenes. Mol Cell Biol 16, 2802-2813.
Filippova, G.N., Lindblom, A., Meincke, L.J., Klenova, E.M., Neiman, P.E.,
Collins, S.J., Doggett, N.A., and Lobanenkov, V.V. (1998). A widely expressed
transcription factor with multiple DNA sequence specificity, CTCF, is localized at
chromosome segment 16q22.1 within one of the smallest regions of overlap for
common deletions in breast and prostate cancers. Genes Chromosomes Cancer 22,
26-36.
Florman, H.M., and Babcock, D.F. (1991). Progress towards understanding the
molecular basis of capacitation., Vol I (Florida: CRC Press).
Fraser, L.R. (1977). Differing requirements for capacitation in vitro of mouse
spermatozoa from two strains. J Reprod Fertil 49, 83-87.
Galantino-Homer, H.L., Visconti, P.E., and Kopf, G.S. (1997). Regulation of
protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic
adenosine 3'5'-monophosphate-dependent pathway. Biol Reprod 56, 707-719.
Go, K.J., and Wolf, D.P. (1985). Albumin-mediated changes in sperm sterol content
during capacitation. Biol Reprod 32, 145-153.
Green, A.R., Krivinskas, S., Young, P., Rakha, E.A., Paish, E.C., Powe, D.G., and
Ellis, I.O. (2009). Loss of expression of chromosome 16q genes DPEP1 and CTCF in
lobular carcinoma in situ of the breast. Breast Cancer Res Treat 113, 59-66.
Hall, J.C., and Killian, G.J. (1987). Changes in rat sperm membrane glycosidase activities and carbohydrate and protein contents associated with epididymal transit.
Biology of reproduction 36, 709-718.
Hark, A.T., Schoenherr, C.J., Katz, D.J., Ingram, R.S., Levorse, J.M., and
89
Tilghman, S.M. (2000). CTCF mediates methylation-sensitive enhancer-blocking
activity at the H19/Igf2 locus. Nature 405, 486-489.
Herrada, G., and Wolgemuth, D.J. (1997). The mouse transcription factor Stat4 is
expressed in haploid male germ cells and is present in the perinuclear theca of
spermatozoa. J Cell Sci 110 ( Pt 14), 1543-1553.
Izumi, R., Yamada, T., Yoshikai, S., Sasaki, H., Hattori, M., and Sakaki, Y. (1992).
Positive and negative regulatory elements for the expression of the Alzheimer's
disease amyloid precursor-encoding gene in mouse. Gene 112, 189-195.
Jha, K.N., and Shivaji, S. (2002). Identification of the major tyrosine phosphorylated
protein of capacitated hamster spermatozoa as a homologue of mammalian sperm a
kinase anchoring protein. Mol Reprod Dev 61, 258-270.
Kalab, P., Visconti, P., Leclerc, P., and Kopf, G.S. (1994). p95, the major phosphotyrosine-containing protein in mouse spermatozoa, is a hexokinase with
unique properties. J Biol Chem 269, 3810-3817.
Kanduri, C., Pant, V., Loukinov, D., Pugacheva, E., Qi, C.F., Wolffe, A., Ohlsson,
R., and Lobanenkov, V.V. (2000). Functional association of CTCF with the insulator
upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr
Biol 10, 853-856.
Kanduri, M., Kanduri, C., Mariano, P., Vostrov, A.A., Quitschke, W.,
Lobanenkov, V., and Ohlsson, R. (2002). Multiple nucleosome positioning sites
regulate the CTCF-mediated insulator function of the H19 imprinting control region.
Mol Cell Biol 22, 3339-3344.
Klenova, E.M., Chernukhin, I.V., El-Kady, A., Lee, R.E., Pugacheva, E.M.,
Loukinov, D.I., Goodwin, G.H., Delgado, D., Filippova, G.N., Leon, J., et al.
(2001). Functional phosphorylation sites in the C-terminal region of the multivalent
multifunctional transcriptional factor CTCF. Mol Cell Biol 21, 2221-2234.
Klenova, E.M., Nicolas, R.H., U, S., Carne, A.F., Lee, R.E., Lobanenkov, V.V.,
and Goodwin, G.H. (1997). Molecular weight abnormalities of the CTCF
transcription factor: CTCF migrates aberrantly in SDS-PAGE and the size of the
expressed protein is affected by the UTRs and sequences within the coding region of
the CTCF gene. Nucleic Acids Res 25, 466-474.
Koscielny, S., F, V.E., and Dahse, R. (2004). [Investigations to the influence of
tumor supressor gene p16 inactivation on the prognosis of head and neck squamous
cell carcinoma]. Laryngorhinootologie 83, 374-380.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the
head of bacteriophage T4. Nature 227, 680-685.
Leclerc, P., de Lamirande, E., and Gagnon, C. (1997). Regulation of
protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen
derivatives. Free Radic Biol Med 22, 643-656.
Lee, M.A., and Storey, B.T. (1985). Evidence for plasma membrane impermeability
to small ions in acrosome-intact mouse spermatozoa bound to mouse zonae pellucidae,
using an aminoacridine fluorescent pH probe: time course of the zona-induced
acrosome reaction monitored by both chlortetracycline and pH probe fluorescence.
Biol Reprod 33, 235-246.
Lee, M.A., and Storey, B.T. (1986). Bicarbonate is essential for fertilization of
mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod
34, 349-356.
Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D., and Felsenfeld, G. (2001).
Correlation between histone lysine methylation and developmental changes at the
chicken beta-globin locus. Science 293, 2453-2455.
Lobanenkov, V.V., Nicolas, R.H., Adler, V.V., Paterson, H., Klenova, E.M.,
Polotskaja, A.V., and Goodwin, G.H. (1990). A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the
CCCTC-motif in the 5'-flanking sequence of the chicken c-myc gene. Oncogene 5,
1743-1753.
Luconi, M., Porazzi, I., Ferruzzi, P., Marchiani, S., Forti, G., and Baldi, E. (2005).
Tyrosine phosphorylation of the a kinase anchoring protein 3 (AKAP3) and soluble
adenylate cyclase are involved in the increase of human sperm motility by bicarbonate.
Biol Reprod 72, 22-32.
Lutz, M., Burke, L.J., Barreto, G., Goeman, F., Greb, H., Arnold, R., Schultheiss,
H., Brehm, A., Kouzarides, T., Lobanenkov, V., and Renkawitz, R. (2000).
Transcriptional repression by the insulator protein CTCF involves histone
deacetylases. Nucleic Acids Res 28, 1707-1713.
Lutz, M., Burke, L.J., LeFevre, P., Myers, F.A., Thorne, A.W., Crane-Robinson,
C., Bonifer, C., Filippova, G.N., Lobanenkov, V., and Renkawitz, R. (2003).
Thyroid hormone-regulated enhancer blocking: cooperation of CTCF and thyroid
hormone receptor. EMBO J 22, 1579-1587.
Mahanes, M.S., Ochs, D.L., and Eng, L.A. (1986). Cell calcium of ejaculated rabbit
spermatozoa before and following in vitro capacitation. Biochem Biophys Res
Commun 134, 664-670.
Martinez-Heredia, J., de Mateo, S., Vidal-Taboada, J.M., Ballesca, J.L., and
Oliva, R. (2008). Identification of proteomic differences in asthenozoospermic sperm
samples. Hum Reprod 23, 783-791.
Martinez-Heredia, J., Estanyol, J.M., Ballesca, J.L., and Oliva, R. (2006).
Proteomic identification of human sperm proteins. Proteomics 6, 4356-4369.
Muratori, M., Marchiani, S., Tamburrino, L., Forti, G., Luconi, M., and Baldi, E.
(2011). Markers of human sperm functions in the ICSI era. Front Biosci 16,
1344-1363.
Naaby-Hansen, S., Mandal, A., Wolkowicz, M.J., Sen, B., Westbrook, V.A., Shetty,
J., Coonrod, S.A., Klotz, K.L., Kim, Y.H., Bush, L.A., et al. (2002). CABYR, a
novel calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein
involved in capacitation. Dev Biol 242, 236-254.
Neill, J.M., and Olds-Clarke, P. (1987). A computer-assisted assay for mouse sperm
hyperactivation demonstrates that bicarbonate but not bovine serum albumin is
required. Gamete Res 18, 121-140.
Ohta, T., Gray, T.A., Rogan, P.K., Buiting, K., Gabriel, J.M., Saitoh, S.,
Muralidhar, B., Bilienska, B., Krajewska-Walasek, M., Driscoll, D.J., et al. (1999).
Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet 64,
397-413.
Okamura, N., Tajima, Y., Soejima, A., Masuda, H., and Sugita, Y. (1985). Sodium
bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa
through direct activation of adenylate cyclase. J Biol Chem 260, 9699-9705.
Oliva, R., Martinez-Heredia, J., and Estanyol, J.M. (2008). Proteomics in the
study of the sperm cell composition, differentiation and function. Syst Biol Reprod
Med 54, 23-36.
Piehler, E., Petrunkina, A.M., Ekhlasi-Hundrieser, M., and Topfer-Petersen, E.
(2006). Dynamic quantification of the tyrosine phosphorylation of the sperm surface
proteins during capacitation. Cytometry A 69, 1062-1070.
Platt, M.D., Salicioni, A.M., Hunt, D.F., and Visconti, P.E. (2009). Use of
differential isotopic labeling and mass spectrometry to analyze capacitation-associated
changes in the phosphorylation status of mouse sperm proteins. J Proteome Res 8,
1431-1440.
Prawitt, D., Enklaar, T., Gartner-Rupprecht, B., Spangenberg, C., Oswald, M.,
Lausch, E., Schmidtke, P., Reutzel, D., Fees, S., Lucito, R., et al. (2005).
Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15
imprinting center in Beckwith-Wiedemann syndrome and Wilms' tumor. Proc Natl
Acad Sci U S A 102, 4085-4090.
Rakha, E.A., Pinder, S.E., Paish, C.E., and Ellis, I.O. (2004). Expression of the
transcription factor CTCF in invasive breast cancer: a candidate gene located at
16q22.1. Br J Cancer 91, 1591-1596.
Ravnik, S.E., Albers, J.J., and Muller, C.H. (1993). A novel view of
albumin-supported sperm capacitation: role of lipid transfer protein-I. Fertil Steril 59,
629-638.
Ravnik, S.E., Zarutskie, P.W., and Muller, C.H. (1992). Purification and
characterization of a human follicular fluid lipid transfer protein that stimulates
human sperm capacitation. Biol Reprod 47, 1126-1133.
Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in
mammalian development. Science 293, 1089-1093.
Rodriguez-Cruz, M., del Prado, M., and Salcedo, M. (2005). [Genomic
retinoblastoma perspectives: implications of tumor supressor gene RB1]. Rev Invest
Clin 57, 572-581.
Rousseaux, S., Reynoird, N., Escoffier, E., Thevenon, J., Caron, C., and
Khochbin, S. (2008). Epigenetic reprogramming of the male genome during
gametogenesis and in the zygote. Reprod Biomed Online 16, 492-503.
Rufo, G.A., Jr., Schoff, P.K., and Lardy, H.A. (1984). Regulation of calcium content
in bovine spermatozoa. J Biol Chem 259, 2547-2552.
Schwartz, D., and Gygi, S.P. (2005). An iterative statistical approach to the
identification of protein phosphorylation motifs from large-scale data sets. Nat
Biotechnol 23, 1391-1398.
Signorelli, J., Diaz, E.S., and Morales, P. (2012). Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res.
Skudlarek, M.D., Tulsiani, D.R., Nagdas, S.K., and Orgebin-Crist, M.C. (1993).
Beta-D-galactosidase of rat spermatozoa: subcellular distribution, substrate specificity,
and molecular changes during epididymal maturation. Biology of reproduction 49,
204-213.
Smith, Z.D., Chan, M.M., Mikkelsen, T.S., Gu, H., Gnirke, A., Regev, A., and
Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early
mammalian embryo. Nature 484, 339-344.
Songyang, Z., and Cantley, L.C. (1995). Recognition and specificity in protein
tyrosine kinase-mediated signalling. Trends Biochem Sci 20, 470-475.
Tang, J.B., and Chen, Y.H. (2006). Identification of a tyrosine-phosphorylated
CCCTC-binding nuclear factor in capacitated mouse spermatozoa. Proteomics 6,
4800-4807.
Tanimoto, K., Sugiura, A., Omori, A., Felsenfeld, G., Engel, J.D., and Fukamizu,
A. (2003). Human beta-globin locus control region HS5 contains CTCF- and
developmental stage-dependent enhancer-blocking activity in erythroid cells. Mol
Cell Biol 23, 8946-8952.
Therien, I., Soubeyrand, S., and Manjunath, P. (1997). Major proteins of bovine
seminal plasma modulate sperm capacitation by high-density lipoprotein. Biol Reprod
57, 1080-1088.
Tilghman, S.M. (1999). The sins of the fathers and mothers: genomic imprinting in
mammalian development. Cell 96, 185-193.
Tulsiani, D.R., Skudlarek, M.D., Holland, M.K., and Orgebin-Crist, M.C. (1993).
Glycosylation of rat sperm plasma membrane during epididymal maturation. Biology
of reproduction 48, 417-428.
Turner, R.M., Musse, M.P., Mandal, A., Klotz, K., Jayes, F.C., Herr, J.C., Gerton, G.L., Moss, S.B., and Chemes, H.E. (2001). Molecular genetic analysis of two
human sperm fibrous sheath proteins, AKAP4 and AKAP3, in men with dysplasia of
the fibrous sheath. J Androl 22, 302-315.
Urner, F., Leppens-Luisier, G., and Sakkas, D. (2001). Protein tyrosine
phosphorylation in sperm during gamete interaction in the mouse: the influence of
glucose. Biol Reprod 64, 1350-1357.
Visconti, P.E. (2009). Understanding the molecular basis of sperm capacitation
through kinase design. Proc Natl Acad Sci U S A 106, 667-668.
Visconti, P.E., Bailey, J.L., Moore, G.D., Pan, D., Olds-Clarke, P., and Kopf, G.S.
(1995a). Capacitation of mouse spermatozoa. I. Correlation between the capacitation
state and protein tyrosine phosphorylation. Development 121, 1129-1137.
Visconti, P.E., Moore, G.D., Bailey, J.L., Leclerc, P., Connors, S.A., Pan, D.,
Olds-Clarke, P., and Kopf, G.S. (1995b). Capacitation of mouse spermatozoa. II.
Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent
pathway. Development 121, 1139-1150.
Vostrov, A.A., Taheny, M.J., and Quitschke, W.W. (2002). A region to the
N-terminal side of the CTCF zinc finger domain is essential for activating
transcription from the amyloid precursor protein promoter. J Biol Chem 277,
1619-1627.
Ward, C.R., and Storey, B.T. (1984). Determination of the time course of
capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev
Biol 104, 287-296.
Wincek, T.J., Parrish, R.F., and Polakoski, K.L. (1979). Fertilization: a uterine
glycosaminoglycan stimulates the conversion of sperm proacrosin to acrosin. Science
203, 553-554.
Yanagimachi, R. (1970). The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil 23, 193-196.
Yanagimachi, R. (1994). Fertility of mammalian spermatozoa: its development and
relativity. Zygote 2, 371-372.
Yeh, A., Wei, M., Golub, S.B., Yamashiro, D.J., Murty, V.V., and Tycko, B. (2002).
Chromosome arm 16q in Wilms tumors: unbalanced chromosomal translocations, loss
of heterozygosity, and assessment of the CTCF gene. Genes Chromosomes Cancer 35,
156-163.
Yoon, B., Herman, H., Hu, B., Park, Y.J., Lindroth, A., Bell, A., West, A.G.,
Chang, Y., Stablewski, A., Piel, J.C., et al. (2005). Rasgrf1 imprinting is regulated
by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 25,
11184-11190.
Zhou, X.L., Werelius, B., and Lindblom, A. (2004). A screen for germline mutations
in the gene encoding CCCTC-binding factor (CTCF) in familial non-BRCA1/BRCA2
breast cancer. Breast Cancer Res 6, R187-190.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65754-
dc.description.abstractCTCF 是一個分佈廣且高度保守的轉錄因子,其分子量約82 kDa。先
前證實獲能的小白鼠精子之CTCF 會在酪胺酸基磷酸化。本研究探討這一
個巨大蛋白分子的酪胺酸磷酸化位置,並評估該化學修飾對標的核酸親和
力的影響。我們發現頂體反應不會導致存於頂體內CTCF 的釋放。運用基
因重組技術,融合GST 於CTCF 三個區域(domain),包括鋅指部位
(Zinc-finger domain,ZD/ residues 266-573),ZD 的N-端區域(ND/ residues
1-265)和ZD 的C-端區域(CD/ residues 574-736)。GST-ND 可被獲能精
子的酪胺酸激酶活性磷酸化,但GST-ZD 和GST-CD 卻不會。進一步將ND
的Y25, Y138, Y197, Y214, or Y226 突變成苯丙胺酸(Phenylalanine)而製備了突變
蛋白。相對原始蛋白(wild-type GST-ND),Y25F、Y138F 和Y214F 具有
相同的激酶基質活化,但Y197F 和Y226F 的基質活性則顯著降低,提示
Y197F 和Y226F 是兩個主要的磷酸化位置。進一步發現EGFR 的抑制劑
AG1478 可降低激酶對GST-ND 的磷酸化。配合可被磷酸化酪胺酸鄰近胺
基酸順序預測Y197 可被EGFR 磷酸化。運用核酸電泳動移動分析法
(electrophoretic mobility shift assay)量測CTCF 對β-APP、FpV 和c-Myc 啟
動子的親和力。相對於尚未獲能精子的CTCF,獲能精子的CTCF 對三個
啟動子的親和力較弱,但對甲基化的啟動子則親和力較強。
zh_TW
dc.description.abstractThe CCCTC-binding nuclear factor (CTCF) is a widely expressed and highly
conserved 82-KDa protein. Using mice as experimental animals, work of our
previous study identified the tyrosine-phosphorylated form of CTCF in the
capacitated sperm. This work was conducted to determine the
tyrosine-phosphorylated sites in the CTCF molecule and to assess the impact of such
a phosphorylation modification on the affinity of this nuclear factor to its target
DNAs. We found that acrosomal exocytosis did not result in the release of CTCF
residing in spermatozoal acrosome region. We made recombinant polypeptides of
GST in frame with the N-terminal (ND/residues 1-265), zinc-finger domain
(ZD/residues 266-573) and C-terminal domain (CD/residues 574-736) in CTCF.
Neither GST-ZD nor GST-CD but GST-ND could be phosphorylated by the tyrosine
kinase activity in the capacitated sperm. Further, Y25, Y138, Y197, Y214, or Y226 in ND
of GST-ND was mutated to phenylalanine. Mutants Y25F, Y138F, and Y214F showed
virtually the same substrate activity as the wild type GST-ND for the
capacitation-related tyrosine phosphorylation, whereas the mutants Y197F and Y226F
showed weaker substrate activity, manifesting Y197 and Y226 as the two major
phosphorylation sites in which the modification of Y197 could be suppressed by an
EGFR inhibitor AG1478. The electrophoretic mobility shift assay was applied to
measure the affinity of spermatozoal CTCF to its DNA target sequences found in the
promotors of amyloid β-protein precursor (β-APP), FpV and c-Myc. Relative to
CTCF in the incapacitated sperm, the tyrosine-phosphorylated protein in the
BSA-treated sperm gave weaker affinity to each target DNA, whereas it showed
stronger affinity to the methylated forms of these target DNAs.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:11:07Z (GMT). No. of bitstreams: 1
ntu-101-D91242007-1.pdf: 1630382 bytes, checksum: 25c2395cae36ecdd000e8bc4a09cdd13 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents縮寫表…………………………………………………………………………… 4
中文摘要………………………………………………………………………… 5
英文摘要………………………………………………………………………… 6
論文內容
第一章 概論
1.1. 哺乳類有性生殖…………………………………………………………....7
1.2. 精子的分化過程…………………………………………………….…...…7
1.3. 成熟精子在副睪進行的修飾………………………………………………9
1.4. 哺乳類雄性附屬性腺…………………………………………...….……....9
1.5. 精子的結構與獲能效應……………………………………………………9
1.6. 精子獲能效應的生理變化…………………………………….…...………12
1.7. 頂體反應(Acrosome reaction) ……………………………....…………12
1.8. 體外獲能效應的進行(In vitro capacitation)……………...……….……13
1.9. 精子獲能作用相關之蛋白質酪胺酸磷酸化研究…………...…………….16
1.10. CCCTC-結合轉錄因子(CCCTC-binding nuclear factor, CTCF)...….…17
1.11. 研究背景與本論文研究重點………………………………....……………20
第二章 實驗材料與方法
2.1. 動物實驗方法
2.1.1. 實驗動物……………………….…………………………….………21
2.1.2. 精子的製備……………………….………………………….………21
2.1.3. 試管獲能化效應( In vitro capacitation )………………..………22
2.1.4. 計算細胞的數量………………………….…………………….……23
2.1.5. 間接免疫螢光染色法………………………….……………….……24
2.1.6. 精子蛋白質酪胺酸磷酸化的偵測………………………….….……24
2.1.7. 精子頂體之觀察…………………………. …………………………25
2.1.8. 精子頂體反應的誘發………………………….………………….…25
2.1.9. 精子獲能效應在實驗上的觀察,定義及分析……………..………26
2.2. 分子生物學實驗方法
2.2.1. 聚合酶鏈鎖反應………………………….…………………….……27
2.2.2. 小量質體萃取………………………….……………………….……29
2.2.3. 重組質體製備………………………….……………………….……29
2.2.4. 質體轉型………………………….…………………………….……31
2.2.5. CTCF N 端的定點突變( Site-directed mutagenesis ) ………………31
2.3. 蛋白質實驗方法
2.3.1. GST 融和重組蛋白純化………………………….……………....…34
2.3.2. 還原性硫酸十二酯鈉聚丙烯醯胺凝膠電泳………………..........…35
2.3.3. 蛋白質染色分析- Coomassie Blue 染色…………………........……36
2.3.4. 西方墨點法(Western blotting)…………………………….…...…37
2.3.5. 蛋白質定量………………………….………….………...…....….…39
2.3.6. 免疫沉澱(Immunoprecipitation)……………………...…....….…40
2.3.7. In vitro kinase assay……………….………….…………….…..……40
2.3.8. In vitro kinase assay couple solid phase assay……….......…………..42
2.3.9. GST pull down………………………….……………..…….….……43
2.3.10.電泳膠體遲緩試驗………………………….….…..……….….……44
2.3.11.統計方法………………………….………….…….....…....…..….…46
第三章 結果
3.1. 精子頂體反應伴隨的CTCF 蛋白質酪胺酸磷酸化修飾.....…....…..….….47
3.2. 探討獲能效應引發CTCF 酪胺酸磷酸化修飾位置.....….............…..….…49
3.3. 探討獲能效應精子中會引發CTCF 酪胺酸磷酸化的激酶.....…....…..….52
3.4. 探討精子獲能效應之CTCF 對標的啟動子的親和力.....…....……..…….53
第四章 討論……………………….………….…….....……….......…..….…54
圖目錄……………….……………………..…….…….....……….......…..….…57
圖 1:Confirmation of CTCF in sperm at different stages.......…..….…………. 58
圖 2:Subcellular localization of CTCF in sperm at different stages…………... 60
圖 3:Electrophoretic analyses of the three bacterial expressed CTCF domains 62
圖 4:CTCF N terminal is the major capacitation-related tyrosine
phosphorylation domain in vitro………………………………………… 64
圖 5:Identification of major capacitation-related tyrosine phosphorylation
domain of CTCF by solid-phase assay …………………………………...66
圖 6:Expression profiles of the GST-ND mutants…………………………….. 68
圖 7:The capacitation –related tyrosine phosphorylation of GST-ND and its
mutants pulled down from the reaction mixture by the GST beads.….….70
圖 8:Y197and Y226 are the dominant tyrosine phosphorylation sites of CTCF …....72
圖 9:Solid-phase assay for the capacitation-related phosphorylation of CTCF..74
圖10:Prediction of tyrosine kinase phosphorylation sites in ND of CTCF…....76
圖11:Impacts of several tyrosine kinase inhibitors on the phosphorylation of ND
…………………………………………………………………………..78
圖12:Amino acid alignment for the CTCF ND from different species....80
圖 13:Binding ability of spermatozoal CTCF to its target DNA sequences….....82
參考文獻………………………………………………………………………..84
dc.language.isozh-TW
dc.title以小白鼠為模式探討哺乳類精子轉錄因子CTCF:獲能效應引發CTCF酪胺酸基磷酸化會強化對甲基化標的核酸的親和力zh_TW
dc.titleStudy on the spermatozoal CCCTC-binding nuclear factor (CTCF) using mice as a model :The capacitation-related tyrosine phosphorylation of CTCF strengthens its affinity to the methylated target DNAsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee潘榮隆,李明亭,蔡懷楨,梁博煌,李勝祥
dc.subject.keyword精子,頂體,CTCF,獲能效應,酪胺酸磷酸化,zh_TW
dc.subject.keywordsperm,acrosome,CTCF,capacitation,tyrosine phosphorylation,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2012-07-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
1.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved