請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Nai-Ning Chen | en |
| dc.contributor.author | 陳乃寧 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:10:54Z | - |
| dc.date.available | 2017-07-18 | |
| dc.date.copyright | 2012-07-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-13 | |
| dc.identifier.citation | 1. Smigal C, Jemal A, Ward E, Cokkinides V, Smith R, Howe HL, Thun M: Trends in Breast Cancer by Race and Ethnicity: Update 2006. CA Cancer J Clin 2006, 56:168-183.
2. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N: Triple-negative breast cancer--current status and future directions. Acta Oncol 2009, 20:1913-1927. 3. Rydberg B: Radiation-induced DNA damage and chromatin structure. Acta Oncol 2001, 40:682-685. 4. Normanno N, Morabito A, De Luca A, Piccirillo MC, Gallo M, Maiello MR, Perrone F: Target-based therapies in breast cancer: current status and future perspectives. Endocr Relat Cancer 2009, 16:675-702. 5. Pedersen PL, Ko YH, Hong S: ATP Synthases in the Year 2000: Evolving Views about the Structures of These Remarkable Enzyme Complexes. J Bioenerg Biomembr 2000, 32:325-332. 6. Pedersen PL, Amzel LM: ATP synthases. Structure, reaction center, mechanism, and regulation of one of nature's most unique machines. J Biol Chem 1993, 268:9937-9940. 7. Nakamoto R, Baylisscanlon J, Alshawi M: The rotary mechanism of the ATP synthase. Arch Biochem Biophys 2008, 476:43-50. 8. Pedersen PL: Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 2008, 39:349-355. 9. Hong S, Pedersen PL: ATP Synthase and the Actions of Inhibitors Utilized To Study Its Roles in Human Health, Disease, and Other Scientific Areas. Microbiol Mol Biol Rev 2008, 72:590-641. 10. von Ballmoos C, Wiedenmann A, Dimroth P: Essentials for ATP Synthesis by F1F0ATP Synthases. Annu Rev Biochem 2009, 78:649-672. 11. Moser TL, Stack MS, Asplin I, Enghild JJ, HOjrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV: Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A 1999, 96:2811-2816. 12. Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV: Endothelial cell surface F1-FO ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A 2001, 98:6656-6661. 13. Burrell HE, Wlodarski B, Foster BJ, Buckley KA, Sharpe GR, Quayle JM, Simpson AW, Gallagher JA: Human Keratinocytes Release ATP and Utilize Three Mechanisms for Nucleotide Interconversion at the Cell Surface. J Biol Chem 2005, 280:29667-29676. 14. Kim B-W, Choo H-J, Lee J-W, Kim J-H, Ko Y-G: Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp Mol Med 2004, 36:476-485. 15. Martinez LO, Jacquet Sb, Esteve J-P, Rolland C, Cabezo’n E, Champagne E, Pineauk T, Georgeaud Vr, Walker JE, Terce’ Fo et al: Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003, 421:75-79. 16. Chi SL, Pizzo SV: Cell surface F1Fo ATP synthase: A new paradigm? Ann Med 2006, 38:429-438. 17. Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV: Angiostatin's molecular mechanism: Aspects of specificity and regulation elucidated. J Cell Biochem 2005, 96:242-261. 18. Wahl ML, Grant DS: Effects of microenvironmental extracellular pH and extracellular matrix proteins on the angiostatin's activity on intracellular pH. Gen Pharmacol 2002, 35:277-285. 19. Chi SL: Angiostatin Is Directly Cytotoxic to Tumor Cells at Low Extracellular pH: A Mechanism Dependent on Cell Surface-Associated ATP Synthase. Cancer Research 2006, 66:875-882. 20. Martinez LO, Jacquet S, Terce F, Collet X, Perret B, Barbaras R: New insight on the molecular mechanisms of high-density lipoprotein cellular interactions. Cell Mol Life Sci 2004, 61:2343-2360. 21. Jacquet S, Malaval C, Martinez LO, Sak K, Rolland C, Perez C, Nauze M, Champagne E, Terce F, Gachet C et al: The nucleotide receptor P2Y13 is a key regulator of hepatic High-Density Lipoprotein (HDL) endocytosis. Cell Mol Life Sci 2005, 62:2508-2515. 22. Arakaki N, Nagao T, Niki R, Toyofuku A, Tanaka H, Kuramoto Y, Emoto Y, Shibata H, Magota K, Higuti T: Possible Role of Cell Surface H+-ATP Synthase in the Extracellular ATP Synthesis and Proliferation of Human Umbilical Vein Endothelial Cells. Mol Cancer Res 2003, 1:931-939. 23. Gause EM, Buck MA, Douglas MG: Binding of Citreoviridin to the β subunit of the Yeast Fl-ATPase. J Biol Chem 1981, 256:557-559. 24. Linnett PE, Mitchell AD, Osselton MD, Mulheirn LJ, Beechey RB: Citreoviridin, a Specific Inhibitor of the Mitochondrial adenosine triphosphatase. Biochem J 1978, 170:503-510. 25. Mulheirn LJ, Beechey RB, Leworthy DP, Osselton MD: Aurovertin B, a metabolite of Calcarisporium arbuscula. Journal of the Chemical Society, Chemical Communications 1974, 1974:874-876. 26. Palade GE: The endoplasmic reticulum. J Biophys Biochem Cytol 1956, 2:85-98. 27. Csala M, Banhegyi G, Benedetti A: Endoplasmic reticulum: A metabolic compartment. FEBS Lett 2006, 580:2160-2165. 28. Schroder M: Endoplasmic reticulum stress responses. Cell Mol Life Sci 2008, 65:862-894. 29. Kim I, Xu W, Reed JC: Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008, 7:1013-1030. 30. Frand AR, Cuozzo JW, Kaiser CA: Pathways for protein sidulphide bond formation. Trends Cell Biol 2000, 10:203-210. 31. Ma Y, Hendershot LM: ER chaperone functions during normal and stress conditions. J Chem Neuroanat 2004, 28:51-65. 32. Rutkowski DT, Kaufman RJ: A trip to the ER: coping with stress. Trends Cell Biol 2004, 14:20-28. 33. Benali-Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R, Ichas F, Rizzuto R et al: Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 2005, 24:4921-4933. 34. Ron D, Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007, 8:519-529. 35. Harding HP, Zhang Y, Ron D: Protein translation and folding are coupled by an endoplasmic reticulum resident kinase. Nature 1999, 397:271-274. 36. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D: Dynamic interaction of BiP and ER stress transducers in the unfolded protein response. Nat Cell Biol 2000, 2:326-332. 37. Liu CY, Schroder M, Kaufman RJ: Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 2000, 275:24881-24885. 38. Liu CY, Xu Z, Kaufman RJ: Structure and intermolecular interactions of the luminal dimerization domain of human IRE1alpha. J Biol Chem 2003, 278:17680-17687. 39. Ma K, Vattem KM, Wek RC: Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 2002, 277:18728-18735. 40. Shen J, Chen X, Hendershot L, Prywes R: ER stress regulation of ATF6 localization by dissocaition of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002, 3:99-111. 41. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC: Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 2003, 23:5651-5663. 42. Vattem KM, RC. W: Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 2004, 101:11269-11274. 43. Lu PD, Harding HP, Ron D: Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 2004, 167:27-33. 44. Haze K, Yoshida H, Yanagi H, Yura T, Mori K: Mammalian transcription factor ATF6 is synthesized as transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999, 10:3787-3799. 45. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K: Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 2002, 366:585-594. 46. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K: XBP1 mRNA is Induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001, 107:881-891. 47. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002, 415:92-96. 48. Zhang X, Gao F, Yu L-l, Peng Y, Liu H-h, Liu J-y, Yin M, Ni J: Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin 2008, 29:942-950. 49. Hsieh TC, Wijeratne EK, Liang JY, Gunatilaka AL, Wu JM: Differential control of growth, cell cycle progression, and expression of NF-kappaB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens. Biochem Biophys Res Commun 2005, 337:224-231. 50. Koleske AJ, Baltimore D, Lisanti MP: Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci U S A 1995, 92:1381-1385. 51. Kappler M, Bache M, Bartel F, Kotzsch M, Panian M, Wurl P, Blumke K, Schmidt H, Meye A, Taubert H: Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther 2004, 11:186-193. 52. Huang T-C, Chang H-Y, Hsu C-H, Kuo W-H, Chang K-J, Juan H-F: Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J Proteome Res 2008, 7:1433-1444. 53. Molinari M: Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 2000, 33:261-274. 54. Schafer KA: The Cell Cycle: A Review. Veterinary Pathology 1998, 35:461-478. 55. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ: The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinase. Cell 1993, 75:805-816. 56. Scriven P, Brown NJ, Pockley AG, Wyld L: The unfolded protein response and cancer: a brighter future unfolding? J Mol Med 2007, 85:331-341. 57. Lee AS: Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol 1992, 4:267-273. 58. Ma Y, Hendershot LM: The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004, 4:966-977. 59. Orlowski RZ, Albert S. Baldwin J: NF-kB as a therapeutic target in cancer. Trends Mol Med 2002, 8:385-389. 60. Voorhees PM, Dees EC, O'Neil B, Orlowski RZ: The proteasome as a target for cancer therapy. Clin Cancer Res 2003, 9:6316-6325. 61. Rajkumar SV, Richardson PG, Hideshima T, Anderson KC: Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 2004, 23:630-639. 62. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA: A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 2004, 429:841-847. 63. Kenan DJ, Wahl ML: Ectopic localization of mitochondrial ATP synthase: a target for anti-angiogenesis intervention? J Bioenerg Biomembr 2005, 37:461-465. 64. Aoyama K, Burns DM, Suh SW, Garnier P, Matsumori Y, Shiina H, Swanson RA: Acidosis causes endoplasmic reticulum stress and caspase-12-mediated astrocyte death. J Cereb Blood Flow Metab 2005, 25:358-370 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65745 | - |
| dc.description.abstract | ATP 合成酶在所有生物體中皆存在,且通常位於真核細胞粒線體的內膜上。我們先前的研究發現,相較於正常細胞,ATP合成酶在乳癌組織中表現量較高,且在腫瘤細胞表面上出現 (Journal of Proteome Research, 2008)。在此我們發現citreoviridin在MCF-7細胞中能顯著地抑制增生,原因可能為其具有促進細胞週期停滯之能力。為了能更清楚的闡述citreoviridin的機制,我們設計了一個結合二維電泳與基質輔助雷射脫附游離質譜儀的蛋白質體學實驗。藉由比較加入citreoviridin與對照組的蛋白質體,我們發現表現量出現明顯差異的蛋白質主要與蛋白質的摺疊有關。累積大量的未折疊蛋白在內質網的內膜上會活化未折疊蛋白質反應並造成細胞週期停滯在G0/G1期。我們證明citreoviridin可使細胞週期停滯在G0/G1期是藉由引發未折疊蛋白質反應,造成eIF2α的磷酸化並抑制轉譯,最後阻礙一般蛋白質合成,當中包括細胞週期調節因子cyclin D1和retinoblastoma蛋白。最後的結果證明citreoviridin這個ATP合成酶抑制劑是一具有潛力的乳癌治療藥物。 | zh_TW |
| dc.description.abstract | ATP synthase presents in all organisms and usually located on the membrane of mitochondria of eukaryotic cells. Our previous study showed that ATP synthase was upregulated in breast cancer tissues and could be expressed on tumor cell surface more than on normal cell surface (Journal of Proteome Research, 2008). Here, we found that citreoviridin displayed significant anti-proliferative activity in MCF-7 cells, which may be attributed to its induction of cell cycle arrest. To further elucidate the mechanism of citreoviridin, we performed a proteomic study combining two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. By comparing citreoviridin-treated and control proteome profiles of MCF-7 cells, we found the major function of these differential expressed proteins was related to protein folding. Accumulation of unfolded proteins in the lumen of the ER could activate the unfolding protein response (UPR), which could induce cell cycle arrest at G0/G1 phase. We demonstrated that citreoviridin could induce cell cycle arrest at G0/G1 phase through triggering of UPR, the phosphorylation of eIF2α and induction of translational inhibition, thereby blocking general protein synthesis including the cell cycle regulator cyclin D1 and retinoblastoma protein. Our results showed that ATP synthase inhibitor citreoviridin could be a potential drug for breast cancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:10:54Z (GMT). No. of bitstreams: 1 ntu-101-R98b43014-1.pdf: 3231398 bytes, checksum: 586a3e015aaf74fd548e6232def56a30 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 I 誌謝 II 中文摘要 IV Abstract V Contents VI List of Figures X List of Table XII Chapter 1 Introduction 1 1.1 Breast cancer 1 1.2 Targeting therapy 1 1.3 ATP synthase 2 1.4 ATP synthase inhibitor 4 1.5 Endoplasmic reticulum 4 1.6 Unfolding protein response 5 1.7 The role of BiP under ER stress 6 1.8 ER stress signaling 6 Chapter 2 Materials and Methods 8 2.1 Cell culture 8 2.2 Immunofluorescence 8 2.3 RTCA system 9 2.4 Colony formation assay 9 2.4.1 anchorage-dependent 9 2.4.2 anchorage-independent 10 2.5 Cell cycle analysis 11 2.6 Protein extraction 11 2.7 Western blot 12 2.8 Two dimensional electrophoresis (2DE) 13 2.9 In gel digestion 14 2.10 Protein identification 14 2.11 Small interfering RNAs and transfection 15 Chapter 3 Results 16 3.1 ATP synthase is present on the surface of MCF-7 cells 16 3.2 Citreoviridin inhibits the proliferation of MCF-7 breast cancer cells but not MCF-10A epithelial cells. 17 3.3 Citreoviridin induced MCF-7 cell cycle arrest at G0/G1 phase. 18 3.4 Citreoviridin decreased the expression of cyclin D1, Cdk4, and P-Rb. 18 3.5 Citreoviridin increased the expression of cyclin-dependent kinase inhibitor p21. 19 3.6 Identified proteins after citreoviridin treatment in MCF-7 cells 20 3.7 Citreoviridin induced unfolding protein response which is confirmed by western blot 21 3.8 Knockdown PERK decrease the phosphorylation of eIF2α 22 Chapter 4 Discussion 23 Chapter 5 Future works 27 Reference 28 Figures 38 Table 59 Appendix 60 Conference Proceeding:The 26th Joint Annual Conference of Biomedical Sciences, Taipei, Taiwan, March 19-20, 2011 61 國立台灣大學分子與細胞生物學研究所99學年度壁報競賽 62 | |
| dc.language.iso | en | |
| dc.subject | ATP合成酶 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | citreoviridin | zh_TW |
| dc.subject | 抑制生長 | zh_TW |
| dc.subject | breast cancer | en |
| dc.subject | ATP synthase | en |
| dc.subject | citreoviridin | en |
| dc.subject | anti-proliferative | en |
| dc.title | 探討ATP合成酶抑制劑citreoviridin抑制乳癌生長作用機制 | zh_TW |
| dc.title | Elucidating the molecular mechanism of ATP synthase inhibitor citreoviridin on anti-proliferative activity of breast cancer cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃宣誠(Hsuan-Cheng Huang),陳水田(Shui-Tein Chen),李岳倫(Yueh-Luen Lee),徐駿森(Chun-Hua Hsu) | |
| dc.subject.keyword | ATP合成酶,乳癌,citreoviridin,抑制生長, | zh_TW |
| dc.subject.keyword | ATP synthase,citreoviridin,breast cancer,anti-proliferative, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
