請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65728
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 閔明源 | |
dc.contributor.author | Yu-Cheng Luo | en |
dc.contributor.author | 羅宇承 | zh_TW |
dc.date.accessioned | 2021-06-17T00:01:55Z | - |
dc.date.available | 2014-07-19 | |
dc.date.copyright | 2012-07-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-16 | |
dc.identifier.citation | Aimone, L., S. Jones, et al. (1987). 'Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids.' Pain 31(1): 123-136.
Aston-Jones, G. and J. D. Cohen (2005). 'An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance.' Annu. Rev. Neurosci. 28: 403-450. Bajic, D. and H. K. Proudfit (1999). 'Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception.' J Comp Neurol 405(3): 359-379. Barbaro, N. M., D. L. Hammond, et al. (1985). 'Effects of intrathecally administered methysergide and yohimbine on microstimulation-produced antinociception in the rat.' Brain Res 343(2): 223-229. Bartolini, A., L. D. C. Mannelli, et al. (2011). 'Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms.' Recent Pat CNS Drug Discov 6(2): 119. Basbaum, A. I. and H. L. Fields (1984). 'Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry.' Annual review of neuroscience 7(1): 309-338. Best, A. R. and W. G. Regehr (2009). 'Inhibitory regulation of electrically coupled neurons in the inferior olive is mediated by asynchronous release of GABA.' Neuron 62(4): 555-565. Bevan, M. and J. Bolam (1995). 'Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat.' The journal of neuroscience 15(11): 7105-7120. Blaha, C. and P. Winn (1993). 'Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats.' The journal of neuroscience 13(3): 1035-1044. Bonner, T. I. (1989). 'The molecular basis of muscarinic receptor diversity.' Trends in neurosciences 12(4): 148-151. Burnett, A. and G. Gebhart (1991). 'Characterization of descending modulation of nociception from the A5 cell group.' Brain Res 546(2): 271-281. Caulfield, M. P. (1993). 'Muscarinic receptors--characterization, coupling and function.' Pharmacol Ther 58(3): 319-379. Charara, A., Y. Smith, et al. (1996). 'Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris‐leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry.' J Comp Neurol 364(2): 254-266. Clark, F. M. and H. K. Proudfit (1991a). 'The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry.' Brain Res 547(2): 279-288. Clark, F. M. and H. K. Proudfit (1991b). 'Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception.' Brain Res 540(1-2): 105-115. Clark, F. M. and H. K. Proudfit (1993). 'The projections of noradrenergic neurons in the A5 catecholamine cell group to the spinal cord in the rat: anatomical evidence that A5 neurons modulate nociception.' Brain Res 616(1-2): 200-210. Dahlström, A. and K. Fuxe (1964). 'Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons.' Acta Physiologica Scandinavica Supplementum 62(Supplementum 232). Dahlström, A. and K. Fuxe (1964). 'Localization of monoamines in the lower brain stem.' Cellular and Molecular Life Sciences 20(7): 398-399. Danzebrink, R. and G. Gebhart (1990). 'Antinociceptive effects of intrathecal adrenoceptor agonists in a rat model of visceral nociception.' Journal of Pharmacology and Experimental Therapeutics 253(2): 698-705. Del Castillo, J. and L. Stark (1952). 'Local responses in single medullated nerve fibres.' J Physiol 118(2): 207-215. Dias, Q. M., S. F. Crespilho, et al. (2009). 'Muscarinic and [alpha] 1-adrenergic mechanisms contribute to the spinal mediation of stimulation-induced antinociception from the pedunculopontine tegmental nucleus in the rat.' Pharmacology Biochemistry and Behavior 92(3): 488-494. Dodge Jr, F. and R. Rahamimoff (1967). 'Co-operative action of calcium ions in transmitter release at the neuromuscular junction.' J Physiol 193(2): 419-432. Eglen, R. (2006). 'Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function.' Autonomic & autacoid pharmacology 26(3): 219. Eglen, R. (2006). 'Muscarinic receptor subtypes in neuronal and non‐neuronal cholinergic function.' Autonomic and Autacoid Pharmacology 26(3): 219-233. Fernández-Chacón, R., A. Königstorfer, et al. (2001). 'Synaptotagmin I functions as a calcium regulator of release probability.' Nature 410(6824): 41-49. Geppert, M., Y. Goda, et al. (1994). 'Synaptotagmin I: A major Ca< sup> 2+</sup> sensor for transmitter release at a central synapse.' Cell 79(4): 717-727. Groffen, A. J., S. Martens, et al. (2010). 'Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release.' Science's STKE 327(5973): 1614. Groffen, A. J. A., R. Friedrich, et al. (2006). 'DOC2A and DOC2B are sensors for neuronal activity with unique calcium‐dependent and kinetic properties.' J Neurochem 97(3): 818-833. Guyenet, P. (1991). 'Central noradrenergic neurons: the autonomic connection.' Progress in brain research 88: 365. Holden, J., E. Schwartz, et al. (1999). 'Microinjection of morphine in the A7 catecholamine cell group produces opposing effects on nociception that are mediated by [alpha] 1-and [alpha] 2-adrenoceptors.' Neuroscience 91(3): 979-990. Holden, J. E. and J. A. Pizzi (2003). 'The challenge of chronic pain.' Advanced drug delivery reviews 55(8): 935-948. Holden, J. E., A. Y. Van Poppel, et al. (2002). 'Antinociception from lateral hypothalamic stimulation may be mediated by NK1 receptors in the A7 catecholamine cell group in rat.' Brain Res 953(1-2): 195-204. Iremonger, K. J. and J. S. Bains (2007). 'Integration of asynchronously released quanta prolongs the postsynaptic spike window.' The journal of neuroscience 27(25): 6684-6691. Ishii, M. and Y. Kurachi (2006). 'Muscarinic acetylcholine receptors.' Curr Pharm Des 12(28): 3573-3581. Iwamoto, E. and L. Marion (1993). 'Adrenergic, serotonergic and cholinergic components of nicotinic antinociception in rats.' Journal of Pharmacology and Experimental Therapeutics 265(2): 777-789. Iwamoto, E. T. (1989). 'Antinociception after nicotine administration into the mesopontine tegmentum of rats: evidence for muscarinic actions.' Journal of Pharmacology and Experimental Therapeutics 251(2): 412-421. Jensen, T. S. and T. L. Yaksh (1986). 'II. Examination of spinal monoamine receptors through which brainstem opiate-sensitive systems act in the rat.' Brain Res 363(1): 114-127. Jeong, D. G., W. K. Park, et al. (2008). 'Artemin activates axonal growth via SFK and ERK‐dependent signalling pathways in mature dorsal root ganglia neurons.' Cell biochemistry and function 26(2): 210-220. Katayama, Y., L. Watkins, et al. (1984). 'Non-opiate analgesia induced by carbachol microinjection into the pontine parabrachial region of the cat.' Brain Res 296(2): 263-283. Koh, T. W. and H. J. Bellen (2003). 'Synaptotagmin I, a Ca2+ sensor for neurotransmitter release.' Trends in neurosciences 26(8): 413-422. Kwiat, G. C. and A. I. Basbaum (1992). 'The origin of brainstem noradrenergic and serotonergic projections to the spinal cord dorsal horn in the rat.' Somatosensory & motor research 9(2): 157-173. Lau, P. M. and G. Q. Bi (2005). 'Synaptic mechanisms of persistent reverberatory activity in neuronal networks.' Proc Natl Acad Sci U S A 102(29): 10333. Lavoie, B. and A. Parent (1994). 'Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons.' J Comp Neurol 344(2): 190-209. Levitt, P. and R. Y. Moore (1979). 'Origin and organization of brainstem catecholamine innervation in the rat.' J Comp Neurol 186(4): 505-528. Lu, T. and L. O. Trussell (2000). 'Inhibitory transmission mediated by asynchronous transmitter release.' Neuron 26(3): 683-694. Lucas-Meunier, E., P. Fossier, et al. (2003). 'Cholinergic modulation of the cortical neuronal network.' Pflügers Archiv European Journal of Physiology 446(1): 17-29. Lynch, K. L., R. R. L. Gerona, et al. (2008). 'Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion.' Molecular biology of the cell 19(12): 5093-5103. Ma, H. C., S. Dohi, et al. (2001). 'The antinociceptive and sedative effects of carbachol and oxycodone administered into brainstem pontine reticular formation and spinal subarachnoid space in rats.' Anesthesia & Analgesia 92(5): 1307-1315. Martens, S., M. M. Kozlov, et al. (2007). 'How synaptotagmin promotes membrane fusion.' Science 316(5828): 1205-1208. Mesulam, M., E. Mufson, et al. (1984). 'Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry.' Neuroscience 12(3): 669-686. Mesulam, M., E. Mufson, et al. (1983). 'Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6).' Neuroscience 10(4): 1185-1201. Millan, M. J. (2002). 'Descending control of pain.' Progress in neurobiology 66(6): 355-474. Min, M., Y. Wu, et al. (2010). 'Roles of A-type potassium currents in tuning spike frequency and integrating synaptic transmission in noradrenergic neurons of the A7 catecholamine cell group in rats.' Neuroscience 168(3): 633-645. Min, M. Y., P. C. Hsu, et al. (2007). 'Postnatal development of noradrenergic terminals in the rat trigeminal motor nucleus: A light and electron microscopic immunocytochemical analysis.' The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 290(1): 96-107. Min, M. Y., Y. W. Wu, et al. (2008). 'Physiological and morphological properties of, and effect of substance P on, neurons in the A7 catecholamine cell group in rats.' Neuroscience 153(4): 1020-1033. Moore, R. and F. Bloom (1979). 'Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems.' Annual review of neuroscience 2(1): 113-168. Mufson, E., T. Martin, et al. (1986). 'Cholinergic projections from the parabigeminal nucleus (Ch8) to the superior colliculus in the mouse: a combined analysis of horseradish peroxidase transport and choline acetyltransferase immunohistochemistry.' Brain Res 370(1): 144-148. Nuseir, K. and H. Proudfit (2000). 'Bidirectional modulation of nociception by GABA neurons in the dorsolateral pontine tegmentum that tonically inhibit spinally projecting noradrenergic A7 neurons.' Neuroscience 96(4): 773-783. Olmstead, M. C., E. M. Munn, et al. (1998). 'Effects of pedunculopontine tegmental nucleus lesions on responding for intravenous heroin under different schedules of reinforcement.' The journal of neuroscience 18(13): 5035-5044. Pang, Z. P., O. H. Shin, et al. (2006). 'A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis.' The journal of neuroscience 26(48): 12556-12565. Paxinos, G. and C. Watson (2007). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition, Academic press. Peng, Y. B., Q. Lin, et al. (1996). 'Involvement of alpha-2 adrenoceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats.' Journal of Pharmacology and Experimental Therapeutics 278(1): 125-135. Pertovaara, A. (2006). 'Noradrenergic pain modulation.' Progress in neurobiology 80(2): 53-83. Peters, J. H., S. J. McDougall, et al. (2010). 'Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons.' Neuron 65(5): 657-669. Proudfit, H. and F. Clark (1991). 'The projections of locus coeruleus neurons to the spinal cord.' Prog Brain Res 88: 123-141. Proudfit, H. and M. Monsen (1999). 'Ultrastructural evidence that substance P neurons form synapses with noradrenergic neurons in the A7 catecholamine cell group that modulate nociception.' Neuroscience 91(4): 1499-1513. Ramana Reddy, S. and T. L. Yaksh (1980). 'Spinal noradrenergic terminal system mediates antinociception.' Brain Res 189(2): 391-401. Ryan, M. C. and A. L. Gundlach (1995). 'Anatomical localisation of preproatrial natriuretic peptide mRNA in the rat brain by in situ hybridisation histochemistry: Novel identification in olfactory regions.' J Comp Neurol 356(2): 168-182. Sagen, J. and H. K. Proudfit (1981). 'Hypoalgesia induced by blockade of noradrenergic projections to the raphe magnus: reversal by blockade of noradrenergic projections to the spinal cord.' Brain Res 223(2): 391-396. Takano, Y. and T. L. Yaksh (1992). 'Characterization of the pharmacology of intrathecally administered alpha-2 agonists and antagonists in rats.' Journal of Pharmacology and Experimental Therapeutics 261(2): 764-772. Thakkar, M. M., R. E. Strecker, et al. (1998). 'Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study.' The journal of neuroscience 18(14): 5490-5497. Vincent, S. and H. Kimura (1992). 'Histochemical mapping of nitric oxide synthase in the rat brain.' Neuroscience 46(4): 755-784. Vincent, S., K. Satoh, et al. (1986). 'Neuropeptides and NADPH-diaphorase activity in the ascending cholinergic reticular system of the rat.' Neuroscience 17(1): 167-182. Wess, J. (1996). 'Molecular biology of muscarinic acetylcholine receptors.' Critical reviews in neurobiology 10(1): 69. Westlund, K. and A. Craig (1996). 'Association of spinal lamina I projections with brainstem catecholamine neurons in the monkey.' Experimental brain research 110(2): 151-162. Westlund, K. N. and J. Dan Coulter (1980). 'Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: Axonal transport studies and dopamine-[beta]-hydroxylase immunocytochemistry.' Brain Research Reviews 2(1-3): 235-264. Winn, P. (2006). 'How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies.' J Neurol Sci 248(1-2): 234-250. Yang, W., L. D. Klaman, et al. (2006). 'An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival.' Developmental cell 10(3): 317-327. Yao, J., J. D. Gaffaney, et al. (2011). 'Doc2 Is a Ca< sup> 2+</sup> Sensor Required for Asynchronous Neurotransmitter Release.' Cell 147(3): 666-677. Yeomans, D. and H. Proudfit (1992). 'Antinociception induced by microinjection of substance P into the A7 catecholamine cell group in the rat.' Neuroscience 49(3): 681-691. Yeomans, D. C., F. M. Clark, et al. (1992). 'Antinociception induced by electrical stimulation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group of the rat.' Pain 48(3): 449-461. Zhao, Y., N. Zhang, et al. (2005). 'Change of gene expression pattern and regulation of SFK on the change in early stage after hemitransection of the spinal cord in rat].' Zhonghua yi xue za zhi 85(28): 1982. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65728 | - |
dc.description.abstract | 神經傳導物質乙醯膽鹼(acetylcholine, ACh)在痛覺的調控中扮演重要的角色。文獻指出,乙醯膽鹼參與鎮痛效果(analgesia),且在脊髓中,乙醯膽鹼及其他膽鹼性促效劑(cholinergic agonists)皆可與α2正腎上腺素受體(α2-adrenergic receptor)共同作用,以調控止痛效應。過去的行為實驗發現,蕈毒膽鹼性系統(muscarinic cholinergic system)可能藉由與正腎上腺素之下行性痛覺調控路徑(NAergic descending pain modulation pathway)交互作用,達到止痛的效果。形態及電生理的資料更顯示,包含了第五群膽鹼性神經元cholinergic neuron group CH5的腦核區─腳橋被蓋核區(pedunculopontine tegmental nucleus, PPTg),具有對正腎上腺素A7神經元(NAergic A7 neurons)之纖維投射。此位於腦幹的A7兒茶酚胺細胞群(catecholamine cell group)更能進一步投射其軸突至脊髓背角(dorsal horn),分泌正腎上腺素並進行痛覺訊息傳遞之調控。此外,電生理實驗也提出腳橋被蓋核區之麩胺酸性(glutamatergic)神經元具有對A7細胞群投射之可能性。在本實驗中,我們對幼鼠腦幹薄片的腳橋被蓋核區進行電刺激,並對其下游之A7細胞群進行全細胞紀錄,測量細胞膜電位被箝定在-70 mV時的刺激性突觸後電流(excitatory postsynaptic current, EPSC)。藉由提高胞外溶液之鈣離子濃度,非同步性神經傳導物質釋放(asynchronous neurotransmitter release)所佔之比例顯著提高,反之亦然。此結果顯示,胞外鈣離子環境之改變,可能成為神經細胞傾向於以同步性神經傳導物質釋放(synchronous neurotransmitter release)直接傳遞訊息、或以非同步性神經傳導物質釋放來調控突觸後刺激性(postsynaptic excitability)之重要變因。在電流箝制實驗中,由電刺激所引起的非同步動作電位可由慢性鈣離子螯合劑EGTA-AM抑制之,顯示非同步性神經傳導物質不僅可改變突觸後之活性,其累積也具直接傳遞神經訊息之功能。
藉由喜八辛(himbacine)在不同濃度下可抑制不同亞型之蕈毒膽鹼性受器的特性,腳橋被蓋核區對A7細胞群之投射被認為是藉由活化類M1亞型受器所調控。然而,在高鈣環境下對腳橋被蓋核區進行電刺激時加入蕈毒膽鹼性受器拮抗劑─阿托品(atropine),反而提升了非同步性神經傳導物質之釋放,顯示應有他種蕈毒膽鹼性亞型受器參與調控,我們認為此亞型受器藉由抑制腳橋被蓋核區之麩胺酸性投射,達到調節下游A7細胞群之功能。適當濃度的大豆異黃酮(Genistein)具有抑制酪胺酸激酶(tyrosine kinase)之效果。文獻指出G蛋白受器也可能透過酪胺酸激酶的Src family(Src family of tyrosine kinases, SFKs)調控下游的基因表現。然而,在本實驗中大豆異黃酮無法影響由膽鹼性促效劑─碳醯膽鹼素(carbachol, CCh)所引發的內流電流,顯示腳橋被蓋核區之蕈毒膽鹼性受器並非藉由SFKs對下游之A7細胞群做調控。 | zh_TW |
dc.description.abstract | Acetylcholine (ACh) is one of principal neurotransmitters involved in pain modulation. By behavioral researches, it has been found that there might be some supraspinal interactions between muscarinic cholinergic system and noradrenergic (NAergic) pain descending pathway. Moreover, morphological and electrophysiological data indicates that the cholinergic neuron group CH5, which distributes most of its neurons in pedunculopontine tegmental nucleus (PPTg), projects its fibers to downstream NAergic neurons of A7 catecholamine cell group, which further project NAergic fibers to the dorsal horn of the spinal cord to modulate nociceptive signaling. By electrically stimulating PPTg, glutamatergic projection to NAergic A7 neurons can be recorded and further inhibited by DNQX. In this study, excitatory postsynaptic currents (EPSCs) on NAergic A7 neurons evoked by electrical stimulation at PPTg were recorded under whole-cell patch clamp with membrane voltage at -70 mV. By application of solution with high extracellular calcium concentration, the proportion of asynchronous neurotransmitter release, which is believed to allows for the modulation of postsynaptic excitability and the alteration of action potential firing patterns increased. This result suggests that the change of extracellular calcium concentration, which in turn influences the calcium influx and neurotransmitter release, may provide a way for neural activity regulation. Under current-clamp mode, delayed stimulation-evoked action potentials was blocked by EGTA-AM, indicates that asynchronous neurotransmitter release could not only modulates neural activity but communicate with downstream neurons. Previous studies showed that PPTg might regulate downstream NAergic A7 neurons through M1-like mAChRs. However, application of atropine, a non-selective mAChR antagonist, increased stimulation-evoked asynchronous neurotransmitter release, suggesting that there might be other types of mAChR between PPTg and NAergic A7 neurons, and these mAChRs might modulate downstream NAergic A7 neurons by blocking the glutamatergic neurons projected from PPTg. By applying genistein with the concentration to be a tyrosine kinase inhibitor, the inward current induced by carbachol, a cholinergic agonist did not changed, indicating that the mAChRs might not transmit signals by activating the Src family of tyrosine kinases (SFKs). | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:01:55Z (GMT). No. of bitstreams: 1 ntu-101-R99b41014-1.pdf: 952007 bytes, checksum: 355e8c010209ea7441042c10a1180411 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Introduction 1 Noradrenergic system in central nervous system 1 The role of A7 catecholamine cell group in descending pain modulation pathway 3 The cholinergic system in the central nervous system 5 Cellular response to activation of muscarinic acetylcholine receptors 7 Role of cholinergic mechanism and pedunculopontine tegmental nucleus (PPTg) in pain modulation 7 Diverse projections of PPTg fibers to NAergic A7 neurons 10 Characteristics of synchronous and asynchronous neurotransmitter release 10 Aim of the study 11 Materials and Methods 12 Preparation of rat brain stem slices 12 Whole-cell patch clamp recording 12 Measurement of synchronous and asynchronous neurotransmitter release 14 Drug 15 Filling recorded neurons with biocytin and immunohistochemistry 15 Statistical analysis 16 Results 17 Identification and recording of NAergic neurons of the A7 cell group in sagittal rat brainstem slices 17 Extracellular Ca2+ concentration played a role in the modulation to NAergic A7 neurons by trains of stimulations at Pedunculopontine tegmental nucleus (PPTg) 18 Accumulative asynchronous neurotransmitter release of PPTg neurons could induce action potentials of NAergic A7 neurons. 19 Asynchronous neurotransmitter release from PPTg to NAergic A7 neurons could be blocked by mAChR inhibitor. 20 Tyrosine kinases were not involved in the activity of mAChR on NAergic A7 neurons 21 Discussion 23 The concentration of extracellular calcium affects the distribution of stimulation-evoked neurotransmitter release. 23 Accumulation of asynchronous neurotransmitter release is able to induce action potentials on downstream neurons. 24 PPTg projects the cholinergic fibers to its own glutamatergic fibers. 25 Tyrosine kinases are not involved in the activity of mAChRs on NAergic A7 neurons. 26 References 28 Figures 45 | |
dc.language.iso | en | |
dc.title | 大鼠腳橋被蓋核之膽鹼性及麩胺酸性投射對A7核區正腎上腺素神經元之協同調控機制 | zh_TW |
dc.title | Comodulation of Cholinergic and Glutamatergic Projection from Pedunculopotine Tegmental Nucleus to Noradrenergic A7 Neurons in Rats | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳志成,陳瑞芬,楊琇雯 | |
dc.subject.keyword | A7正腎上腺素分泌神經元,腳橋被蓋核,蕈毒膽鹼性受器,麩胺酸性投射,非同步性神經傳導物質釋放,痛覺傳導, | zh_TW |
dc.subject.keyword | NAergic A7 neurons,PPTg,mAChR,glumatergic projection,asynchronous neurotransmitter release,pain modulation, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-16 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 929.69 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。