請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65692完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳延平(Yan-Ping Chen) | |
| dc.contributor.author | Chun-Hung Liu | en |
| dc.contributor.author | 劉俊鴻 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:59:26Z | - |
| dc.date.available | 2012-07-19 | |
| dc.date.copyright | 2012-07-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-17 | |
| dc.identifier.citation | Adami R., Osseo L.S., Reverchon E., Micronization of Lysozyme by Supercritical Assisted Atomization, Biotechnology and Bioengineering 104 (2009) 1162-1170
Brun G.W., Martin A., Cassel E., Vargas R.M.F., Cocero M.J., Crystallization of Caffeine by Supercritical Antisolvent (SAS) Process: Analysis of Process Parameters and Control of Polymorphism, Crystal Growth & Design 12 (2012) 1943-1951 Chan H.K., Kwok P.C.L., Production methods for nanodrug particles using the bottom-up approach, Advanced Drug Delivery Reviews 63 (2011) 406-416 Chen C., Zhan S.P., Zhang M.M., Liu Z.J., Li Z.Y., Preparation of poly(L-lactide) microparticles by a supercritical antisolvent process with a mixed solvent, Journal of Applied Polymer Science 124 (2012) 3744-3750 Cho Y.C., Cheng J.H., Hsu S.L., Hong S.E., Lee T.M., Chang C.M.J., Supercritical carbon dioxide anti-solvent precipitation of anti-oxidative zeaxanthin highly recovered by elution chromatography from Nannochloropsis oculata, Separation and Purification Technology 78 (2011) 274-280 de la Puente M.L., Soto-Yarritu P.L., Burnett J., Supercritical fluid chromatography in research laboratories: Design, development and implementation of an efficient generic screening for exploiting this technique in the achiral environment, Journal of Chromatography A 1218 (2011) 8551-8560 De Marco I., Reverchon E., Nanostructured cellulose acetate filaments produced by supercritical antisolvent precipitation, Journal of Supercritical Fluids 55 (2011) 1095-1103 de Paz E., Martin A., Duarte C.M.M., Cocero M.J., Formulation of beta-carotene with poly-(epsilon-caprolactones) by PGSS process, Powder Technology 217 (2012) 77-83 Florey K., Profiles of Drug Substances, Excipients and Related Methodology Center for Pharmaceutical Physics, Milford, NJ, U.S.A. 5 (1976) Gao Z.M., Mathematical Modeling of Variables Involved in Dissolution Testing, Journal of Pharmaceutical Sciences 100 (2011) 4934-4942 Hezave A.Z., Esmaeilzadeh F., Crystallization of micro particles of sulindac using rapid expansion of supercritical solution, Journal of Crystal Growth 312 (2010) 3373-3383 Hezave A.Z., Esmaeilzadeh F., The effects of RESS parameters on the diclofenac particle size, Advanced Powder Technology 22 (2011) 587-595 Hira D., Okuda T., Ichihashi M., Kojima H., Okamoto H., Development of Dry Salbutamol Sulfate Powder with High Inhalation Performance Independent of Inhalation Patterns, Chemical & Pharmaceutical Bulletin 60 (2012) 334-340 Hu D.D., Lin C.C., Liu L., Li S.N., Zhao Y.P., Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids, Journal of Food Engineering 109 (2012) 545-552 Imsanguan P., Pongamphai S., Douglas S., Teppaitoon W., Douglas P.L., Supercritical antisolvent precipitation of andrographolide from Andrographis paniculata extracts: Effect of pressure, temperature and CO2 flow rate, Powder Technology 200 (2010) 246-253 Jiang Y.B., Sun W.L., Wang W., Recrystallization and Micronization of 10-Hydroxycamptothecin by Supercritical Antisolvent Process, Industrial & Engineering Chemistry Research 51 (2012) 2596-2602 Jin H.Y., Hemingway M., Gupta R.B., Xia F., Zhao Y.P., Preparation of thalidomide nano-flakes by supercritical antisolvent with enhanced mass transfer, Particuology 10 (2012a) 17-23 Jin H.Y., Xia F., Zhao Y.P., Preparation of hydroxypropyl methyl cellulose phthalate nanoparticles with mixed solvent using supercritical antisolvent process and its application in co-precipitation of insulin, Advanced Powder Technology 23 (2012b) 157-163 Kalani M., Yunus R., Abdullah N., Optimizing supercritical antisolvent process parameters to minimize the particle size of paracetamol nanoencapsulated in L-polylactide, International Journal of Nanomedicine 6 (2011) 1101-1105 Keshavarz A., Karimi-Sabet J., Fattahi A., Golzary A., Rafiee-Tehrani M., Dorkoosh F.A., Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS), Journal of Supercritical Fluids 63 (2012) 169-179 Kikic I., Alessi P., Eva F., Moneghini M., Perissutti B., Supercritical antisolvent precipitation of atenolol: The influence of the organic solvent and of the processing approach, Journal of Supercritical Fluids 38 (2006) 434-441 Kim E.B., Kim J.T., Kim S.Y., Ju C.S., Synthesis of copper-poly tetrafluoro-ethylene composites by supercritical impregnation process, Korean Journal of Chemical Engineering 28 (2011) 440-444 Kim M.S., Lee S., Park J.S., Woo J.S., Hwang S.J., Micronization of cilostazol using supercritical antisolvent (SAS) process: Effect of process parameters, Powder Technology 177 (2007) 64-70 Kim M.S., Song H.S., Park H.J., Hwang S.J., Effect of Solvent Type on the Nanoparticle Formation of Atorvastatin Calcium by the Supercritical Antisolvent Process, Chemical & Pharmaceutical Bulletin 60 (2012) 543-547 Lang Z.M., Hong H.L., Han L.M., Zhu N., Suo Q.L., Preparation of Emodin-Polyethylene Glycol Composite Microparticles Using a Supercritical Antisolvent Process, Chemical Engineering & Technology 35 (2012) 362-368 Lesoin L., Crampon C., Boutin O., Badens E., Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method, Journal of Supercritical Fluids 57 (2011) 162-174 Loth H., Hemgesberg E., Properties and Dissolution of Drugs Micronized by Crystallization from Supercritical Gases, International Journal of Pharmaceutics 32 (1986) 265-267 Mandzuka Z., Knez Z., Influence of temperature and pressure during PGSS (TM) micronization and storage time on degree of crystallinity and crystal forms of monostearate and tristearate, Journal of Supercritical Fluids 45 (2008) 102-111 Martin A., Scholle K., Mattea F., Meterc D., Cocero M.J., Production of Polymorphs of Ibuprofen Sodium by Supercritical Antisolvent (SAS) Precipitation, Crystal Growth & Design 9 (2009) 2504-2511 Masmoudi Y., Ben Azzouk L., Forzano O., Andre J.M., Badens E., Supercritical impregnation of intraocular lenses, Journal of Supercritical Fluids 60 (2011) 98-105 Montes A., Gordillo M.D., Pereyra C., de la Ossa E.J.M., Polymer and ampicillin co-precipitation by supercritical antisolvent process, Journal of Supercritical Fluids 63 (2012) 92-98 Montes A., Tenorio A., Gordillo M.D., Pereyra C.M., de la Ossa E.J.M., Supercritical Antisolvent Precipitation of Ampicillin in Complete Miscibility Conditions, Industrial & Engineering Chemistry Research 50 (2011) 2343-2347 Mota F.L., Carneiro A.R., Queimada A.J., Pinho S.P., Macedo E.A., Temperature and solvent effects in the solubility of some pharmaceutical compounds: Measurements and modeling, European Journal of Pharmaceutical Sciences 37 (2009) 499-507 Muller M., Meier U., Kessler A., Mazzotti M., Experimental study of the effect of process parameters in the recrystallization of an organic compound using compressed carbon dioxide as antisolvent, Industrial & Engineering Chemistry Research 39 (2000) 2260-2268 Pochopin N.L., Charman W.N., Stella V.J., Amino-Acid Derivatives of Dapsone as Water-Soluble Prodrugs, International Journal of Pharmaceutics 121 (1995) 157-167 Priamo W.L., de Cezaro A.M., Benetti S.C., Oliveira J.V., Ferreira S.R.S., In vitro release profiles of beta-carotene encapsulated in PHBV by means of supercritical carbon dioxide micronization technique, Journal of Supercritical Fluids 56 (2011) 137-143 Ramsey E., Sun Q.B., Zhang Z.Q., Zhang C.M., Gou W., Mini-Review: Green sustainable processes using supercritical fluid carbon dioxide, Journal of Environmental Sciences-China 21 (2009) 720-726 Reverchon E., Supercritical-assisted atomization to produce micro- and/or nanoparticles of controlled size and distribution, Industrial & Engineering Chemistry Research 41 (2002) 2405-2411 Roy C., Vrel D., Vega-Gonzalez A., Jestin P., Laugier S., Subra-Paternault P., Effect of CO2-antisolvent techniques on size distribution and crystal lattice of theophylline, Journal of Supercritical Fluids 57 (2011) 267-277 Sathigari S.K., Ober C.A., Sanganwar G.P., Gupta R.B., Babu R.J., Single-Step Preparation and Deagglomeration of Itraconazole Microflakes by Supercritical Antisolvent Method for Dissolution Enhancement, Journal of Pharmaceutical Sciences 100 (2011) 2952-2965 Sosa M.V., Rodriguez-Rojo S., Mattea F., Cismondi M., Cocero M.J., Green tea encapsulation by means of high pressure antisolvent coprecipitation, Journal of Supercritical Fluids 56 (2011) 304-311 Stippler E., Kopp S., B.Dressman J., Comparison of US pharmacopeia simulated intestinal fluid TS (without pancreatin) and phosphate standard buffer ph 6.8, TS of the international pharmacopoeia with respect to their use in in vitro dissolution testing, Dissolution Technologies 11 (2004) 6-10 Su C.S., Lo W.S., Lien L.H., Micronization of Fluticasone Propionate using Supercritical Antisolvent Process, Chemical Engineering & Technology 34 (2011) 535-541 Subra-Paternault P., Vrel D., Roy C., Coprecipitation on slurry to prepare drug-silica-polymer formulations by compressed antisolvent, Journal of Supercritical Fluids 63 (2012) 69-80 Subra P., Jestin P., Powders elaboration in supercritical media: comparison with conventional routes, Powder Technology 103 (1999) 2-9 Sui X.Y., Wei W., Yang L., Zu Y.G., Zhao C.J., Zhang L., Yang F.J., Zhang Z.H., Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process, International Journal of Pharmaceutics 423 (2012) 471-479 Thakur R., Gupta R.B., Rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process: Formation of griseofulvin nanoparticles, Industrial & Engineering Chemistry Research 44 (2005) 7380-7387 USP, The United States Pharmacopedia, 32th Edition (2009) Wasjingtone, D.C. Uzun I.N., Sipahigil O., Dincer S., Coprecipitation of Cefuroxime Axetil-PVP composite microparticles by batch supercritical antisolvent process, Journal of Supercritical Fluids 55 (2011) 1059-1069 Varughese P., Li J., Wang W., Winstead D., Supercritical antisolvent processing of gamma-Indomethacin: Effects of solvent, concentration, pressure and temperature on SAS processed Indomethacin, Powder Technology 201 (2010) 64-69 Visentin A., Rodriguez-Rojo S., Navarrete A., Maestri D., Cocero M.J., Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process, Journal of Food Engineering 109 (2012) 9-15 Yanez F., Martikainen L., Braga M.E.M., Alvarez-Lorenzo C., Concheiro A., Duarte C.M.M., Gil M.H., de Sousa H.C., Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery, Acta Biomaterialia 7 (2011) 1019-1030 Yang L., Huang J.M., Zu Y.G., Ma C.H., Wang H., Sun X.W., Sun Z., Preparation and radical scavenging activities of polymeric procyanidins nanoparticles by a supercritical antisolvent (SAS) process, Food Chemistry 128 (2011) 1152-1159 Yasuji T., Takeuchi H., Kawashima Y., Particle design of poorly water-soluble drug substances using supercritical fluid technologies, Advanced Drug Delivery Reviews 60 (2008) 388-398 Zhao C.J., Wang L., Zu Y.G., Li C.Y., Liu S.H., Yang L., Zhao X.H., Zu B.S., Micronization of Ginkgo biloba extract using supercritical antisolvent process, Powder Technology 209 (2011a) 73-80 Zhao X.H., Zu Y.G., Jiang R., Wang Y., Li Y., Li Q.Y., Zhao D.M., Zu B.S., Zhang B.Y., Sun Z.Q., Zhang X.N., Preparation and Physicochemical Properties of 10-Hydroxycamptothecin (HCPT) Nanoparticles by Supercritical Antisolvent (SAS) Process, International Journal of Molecular Sciences 12 (2011b) 2678-2691 Zhao X.H., Zu Y.G., Zu S.C., Wang D., Zhang Y., Zu B.S., Insulin nanoparticles for transdermal delivery: preparation and physicochemical characterization and in vitro evaluation, Drug Development and Industrial Pharmacy 36 (2010) 1177-1185 張瓊云, 利用超臨界反溶劑法進行異抗壞血酸、沒食子酸丙酯及薑黃素微粒化,國立台灣大學化學工程學研究所 碩士論文, (2010) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65692 | - |
| dc.description.abstract | 本研究利用超臨界反溶劑法對兩種低水溶性的藥物進行微粒化之研究,目的為增加其溶離速率,增加藥物在人體的生體可用率。選用的目標藥物為控制尿酸的痛風藥物安樂普利諾(Allopurinol)及用來大量用來治療痲瘋病的抗生素藥物氨苯碸(Dapsone),此兩種藥物水溶性皆非常的低,幾乎不溶於水。因此,本研究使用超臨界反溶劑法對此兩種藥物進行微粒化,以超臨界二氧化碳當作反溶劑,探討不同參數,如溶劑種類、溫度、壓力、溶液流速、噴嘴內徑及溶液濃度等,對於微粒化結果的影響,以得到最佳化操作條件,進而提升其溶離速率。此外,本研究也將微粒化前後之藥物加入模擬人體腸液後進行溶離速率測試,以觀察藥物經過微粒化後,是否有較高的溶離速率。
在安樂普利諾的微粒化研究中,最佳化操作條件下可將原始藥物的平均粒徑8.9微米降至操作後的0.8微米。且由分析儀器XRD、DSC及FTIR可知,藥物並沒有晶型的轉變也沒有發生變質或是溶劑殘留的情況發生。溶離速率實驗方面,經過SAS處理過後的藥物溶離速率較未處理的藥物快,且經過Weibull model回歸後,原始藥物溶離速率係數kw為0.47 min-1,微粒化後藥物之溶離速率係數kw為0.64 min-1,溶離速率提升約1.35倍。 在氨苯碸的微粒化研究中,最佳化操作條件下可將原始藥物的平均粒徑由40.8微米降至操作後的2.2微米。且由分析儀器XRD、DSC及FTIR可知,藥物經過操作後,部分藥物晶型發生轉變,由單晶型轉變成兩種晶型的混合,但是沒有變質或是溶劑殘留的情況發生。溶離速率實驗方面,結果顯示經過SAS處理過後的藥物溶離速率比未處理的還要快,且經過Weibull model回歸後原始藥物溶離速率係數kw為0.00461 min-1,微粒化後藥物之溶離速率係數kw為0.01876 min-1,較原始藥物提升約4.07倍。 | zh_TW |
| dc.description.abstract | In order to enhance the dissolution rate and bioavailability in human beings, this study focused on the micronization of poor water soluble pharmaceuticals by using supercritical antisolvent method (SAS). The target pharmaceuticals used in this research are Allopurinol and Dapsone. Allopurinol is an oral drug for gout treatment and Dapsone is an oral durg for leprosy. Both two drugs have poor water solubility and low dissolution rate. Therefore, the purpose of this study is trying to make these two drugs micronized and enhance their dissolution rate.
In this study, supercritical carbon dioxide was used as antisolvent. Different experimental results were obtained by different effect parameters, including solvent, operation temperature, pressure, solution flow rate, nozzle diameter and solution concentration. About the micronization of Allopurinol, it could be successfully micronized from 8.9 μm to 0.8 μm at the optimal operating conditions. About the micronization of Dapsone, it could also be successfully micronized from 40.9 μm to 2.2 μm at the optimal operating conditions. From the DSC result we can find another crystalline form after SAS processed. After the micronization process, the processed and unprocessed pharmaceuticals were tested by using a dissolution tester. The results of dissolution rate test, both the processed drugs have higher dissolution rate than the original drugs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:59:26Z (GMT). No. of bitstreams: 1 ntu-101-R99524066-1.pdf: 9230685 bytes, checksum: 33a1c5fd243f94a66c0e83133ca5c549 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstruct II 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1 超臨界流體簡介 1 1-2 超臨界流體技術與應用 1 1-3 微粒化之目的 4 1-4 超臨界流體微粒化技術 5 1-4-1超臨界溶液快速膨脹法 5 1-4-2 氣體飽和溶液沉積法 6 1-4-3 超臨界流體輔助霧化法 7 1-4-4 超臨界反溶劑法 7 1-5 研究動機 9 第二章 實驗方法 14 2-1 實驗藥品 14 2-1-1 目標藥品 14 2-1-2 其他藥品 14 2-2 實驗裝置 15 2-3 操作步驟 17 2-4 實驗分析方法 19 第三章 結果與討論 33 3-1 Allopurinol 33 3-1-1 溶劑效應 33 3-1-2溫度及壓力效應 34 3-1-3 溶液流速及噴嘴內徑效應 35 3-1-4 濃度效應 36 3-1-5 定性分析 37 3-1-6 溶離速率測試 38 3-2 Dapsone 38 3-2-1 溶劑效應 38 3-2-2溫度及壓力效應 40 3-2-3 溶液流速及噴嘴內徑效應 41 3-2-4 濃度效應 42 3-2-5 定性分析 43 3-2-6 溶離速率測試 43 第四章 結論 80 第五章 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超臨界反溶劑 | zh_TW |
| dc.subject | 微粒化 | zh_TW |
| dc.subject | 溶離速率 | zh_TW |
| dc.subject | 安樂普利諾 | zh_TW |
| dc.subject | 氨苯碸 | zh_TW |
| dc.subject | supercritical anti-solvent | en |
| dc.subject | Dapsone | en |
| dc.subject | micronization | en |
| dc.subject | Allopurinol | en |
| dc.title | 利用超臨界反溶劑法進行安樂普利諾及氨苯碸之微粒化研究 | zh_TW |
| dc.title | Micronization of Allopurinol and Dapsone by Using Supercritical Anti-solvent Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李度(Tu-Lee),蘇至善(Chih-Shan Su) | |
| dc.subject.keyword | 超臨界反溶劑,微粒化,溶離速率,安樂普利諾,氨苯碸, | zh_TW |
| dc.subject.keyword | supercritical anti-solvent,micronization,Allopurinol,Dapsone, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 9.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
