請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65670完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳錫侃 | |
| dc.contributor.author | Chih-Hsuan Chen | en |
| dc.contributor.author | 陳志軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:57:48Z | - |
| dc.date.available | 2016-07-19 | |
| dc.date.copyright | 2012-07-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-17 | |
| dc.identifier.citation | [1] R.J. Wasilews, S.R. Butler, J.E. Hanlon, D. Worden, Metall. Trans., 2 (1971) 229.
[2] K. Otsuka, X. Ren, Prog. Mater. Sci., 50 (2005) 511. [3] M. Nishida, C.M. Wayman, T. Honma, Metall. Trans. A, 17 (1986) 1505. [4] K. Otsuka, T. Sawamura, K. Shimizu, C.M. Wayman, Metall. Trans., 2 (1971) 2583. [5] K. Otsuka, T. Sawamura, K. Shimizu, Phys. Stat. Sol. A, 5 (1971) 457. [6] R.F. Hehemann, G.D. Sandrock, Scripta Metall. Mater., 5 (1971) 801. [7] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Metall. Trans., 2 (1971) 2769. [8] G.M. Michal, R. Sinclair, Acta Crystallogr. B, 37 (1981) 1803. [9] W. Buhrer, R. Gotthardt, A. Kulik, O. Mercier, F. Staub, J. Phys. F : Met. Phys., 13 (1983) L77. [10] Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Acta Metall., 33 (1985) 2049. [11] S. Miyazaki, K. Otsuka, C.M. Wayman, Acta Metall., 37 (1989) 1873. [12] S. Miyazaki, K. Otsuka, C.M. Wayman, Acta Metall., 37 (1989) 1885. [13] S. Miyazaki, K. Otsuka, C.M. Wayman, ISIJ Int., 29 (1989) 423. [14] P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, J .Microelectromech. Sys., 5 (1996) 270. [15] A. Ishida, K. Ogawa, M. Sato, S. Miyazaki, Metall. Mater. Trans. A, 28 (1997) 1985. [16] A. Ishida, M. Sate, A. Takei, S. Miyazaki, Mater. Trans. JIM, 36 (1995) 1349. [17] S. Kajiwara, T. Kikuchi, K. Ogawa, T. Matsunaga, S. Miyazaki, Phil. Mag. Lett., 74 (1996) 137. [18] S. Kajiwara, K. Ogawa, T. Kikuchi, T. Matsunaga, S. Miyazaki, Phil. Mag. Lett., 74 (1996) 395. [19] J.X. Zhang, M. Sato, A. Ishida, Acta Mater., 49 (2001) 3001. [20] J.X. Zhang, M. Sato, A. Ishida, Phil. Mag. Lett., 82 (2002) 257. [21] J.X. Zhang, M. Sato, A. Ishida, Acta Mater., 51 (2003) 3121. [22] S. Miyazaki, A. Ishida, Mater. Sci. Eng. A, 273 (1999) 106. [23] K.H. Chang, S.K. Wu, S.H. Chang, Thin Solid Films, 519 (2011) 5302. [24] S.H. Chang, T.H. Chen, S.K. Wu, K.N. Lin, Phys. Scripta, T139 (2010 )014012. [25] S.H. Chang, S.K. Wu, G.H. Chang, Scripta Mater., 52 (2005) 1341. [26] S.H. Chang, S.K. Wu, L.M. Wu, Intermetallics, 18 (2010) 965. [27] L.M. Wu, S.H. Chang, S.K. Wu, J. Alloy. Compd., 505 (2010) 76. [28] L.M. Wu, S.K. Wu, Phil. Mag. Lett., 90 (2010) 261. [29] K. Otsuka, T. Kakeshita, MRS Bull., 27 (2002) 91. [30] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Editors. Binary Alloy Phase Diagrams 2nd ed., Vol. 3, ASM International, Ohio, 1990, p. 2874. [31] S. Miyazaki, S. Kimura, K. Otsuka, Phil. Mag. A, 57 (1988) 467. [32] Hara T., PhD thesis, University of Tsukuba, Japan, 1997, p. 31. [33] F. Laves, Naturwissenschaften, 27 (1939) 65. [34] P. Duwez, J.L. Taylor, Trnas. AIME., 188 (1950) 1173. [35] G.A. Yurko, J.W. Barton, J.G. Parr, Acta Crystallogr., 12 (1959) 909. [36] 陳志軒, 國科會大專學生參與研究專題計畫, 2009, p. 61, 台北. [37] D.Q. Xue, Y.M. Zhou, X.B. Ren, Intermetallics, 19 (2011) 1752. [38] L. Bataillard, J.E. Bidaux, R. Gotthard, Philos. Mag. A, 78 (1998) 327. [39] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Acta Mater., 50 (2002) 4255. [40] A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Philos. Mag., 83 (2003) 339. [41] G.L. Fan, W. Chen, S. Yang, J.H. Zhu, X.B. Ren, K. Otsuka, Acta Mater., 52 (2004) 4351. [42] G. Fan, Y. Zhou, W. Chen, S. Yang, X. Ren, K. Otsuka, Mater. Sci. Eng. A, 438 (2006) 622. [43] D. Chrobak, D. Stroz, H. Morawiec, Scripta Mater., 48 (2003) 571. [44] P.C. Su, S.K. Wu, Acta Mater., 52 (2004) 1117. [45] Y.N. Liu, X. Chen, P.G. McCormick, J. Mater. Sci., 32 (1997) 5979. [46] L. Bataillard, R. Gotthardt, J. Phys. IV, 5 (1995) 647. [47] M.C. Carroll, C. Somsen, G. Eggeler, Scripta Mater., 50 (2004) 187. [48] J.K. Allafi, X. Ren, G. Eggeler, Acta Mater., 50 (2002) 793. [49] J. Michutta, C. Somsen, A. Yawny, A. Dlouhy, G. Eggeler, Acta Mater., 54 (2006) 3525. [50] K.H. Eckelmeyer, Scripta Metall. Mater., 10 (1976) 667. [51] J.E. Hanlon, S.R. Butler, R.J. Wasilews, Trans. AIME, 239 (1967) 1323. [52] K.S. Otsuka, K., Int. Metal. Rev., 31 (1986) 93. [53] T. Saburi, T. Tatsumi, S. Nenno, J. Phys.-Paris, 43 (1982) 261. [54] M. Nishida, C.M. Wayman, Metallography, 21 (1988) 255. [55] M. Nishida, C.M. Wayman, A. Chiba, Metallography, 21 (1988) 275. [56] T. Tadaki, Y. Nakata, K. Shimizu, Trans. JIM., 28 (1987) 883. [57] S. Miyazaki, Y. Igo, K. Otsuka, Acta Metall., 34 (1986) 2045. [58] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Philos. Mag. A, 47 (1983) 31. [59] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Philos. Mag. A, 47 (1983) 9. [60] C.M. Hwang, C.M. Wayman, Scripta Metall. Mater., 17 (1983) 381. [61] H.C. Lin, S.K. Wu, T.S. Chou, H.P. Kao, Acta Metall. Mater., 39 (1991) 2069. [62] R.A. Robert E. Reed-Hill, Physical Metallurgy Principles 3rd ed, 1994, p. 583-584. [63] C.M. Wayman, Met. Forum, 4 (1981) 135. [64] T.A. Schroeder, C.M. Wayman, Acta Metall., 27 (1979) 405. [65] S.E. P. Donner, Mater. Sci. Forum, 56-58 (1991) 723. [66] A.G. Gillen, B. Cantor, Acta Metall., 33 (1985) 1813. [67] Y.W. Kim, T.H. Nam, Scripta Mater., 51 (2004) 653. [68] G. C. S. Anselmo, W. B. de Castro, C. J. de Araujo, Mater. Sci. Appl., 2 (2011) 1256. [69] R. Nagarajan, K. Chattopadhyay, Acta Metall. Mater., 42 (1994) 947. [70] H. Y. Xing, H. Y. Kim, S. Miyazaki, Mater. Sci. Forum, 561-565 (2007) 1481. [71] Y. Tong, Y. Liu, J. Alloy. Compd., 449 (2008) 152. [72] G.P. Cheng, Z.L. Xie, Y. Liu, J. Alloy. Compd., 415 (2006) 182. [73] J.R. Williams, H. Gong, N. Hoff, O.I. Olubodun, P.J. Carroll, Org. Lett., 6 (2004) 269. [74] M. Sato, A. Ishida, S. Miyazaki, Thin Solid Films, 315 (1998) 305. [75] Y. Nakata, T. Tadaki, H. Sakamoto, A. Tanaka, K. Shimizu, J. Phys. IV, 5 (1995) 671. [76] A. Ishida, J.X. Zhang, J. Phys. IV, 112 (2003) 849. [77] K.N. Lin, S.K. Wu, J. Alloy. Comp., 424 (2006) 171. [78] T.H. Nam, J.H. Kim, M.S. Choi, Y.W. Kim, H.J. Im, J.S. Ahn, T. Mitani, J. Mater. Sci. Lett., 21 (2002) 685. [79] M. F. Doerner, W.D. Nix, J. Mater. Res., 1 (1986) 601. [80] W.D. Nix, Metall. Trans. A, 20 (1989) 2217. [81] J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, J. Tribol.-T. ASME, 106 (1984) 43. [82] I. Sneddon, Int. J. Eng. Sci., 3 (1965) 47. [83] R.B. King, T.C. Osullivan, Int. J. Solids Struct., 23 (1987) 581. [84] A. J. J. Franken, P.E. Wierenga, Philips Tech. Rev., 42 (1985) 85. [85] W.C. Oliver, G.M. Pharr, J. Mater. Res., 7 (1992) 1564. [86] J.W. Harding, I.N. Sneddon, Proc. Camb. Philos. Soc., 41 (1945) 16. [87] C. Liu, Y.P. Zhao, Q.P. Sun, T.X. Yu, Z.X. Cao, J. Mater. Sci., 40 (2005) 1501. [88] H.S. Zhang, K. Komvopoulos, J. Mater. Sci., 41 (2006) 5021. [89] K. Sekido, T. Ohmura, T. Sawaguchi, M. Koyama, H.W. Park, K. Tsuzaki, Scripta Mater., 65 (2011) 942. [90] A.J. Clarke, R.D. Field, P.O. Dickerson, R.J. McCabe, J.G. Swadener, R.E. Hackenberg, D.J. Thoma, Scripta Mater., 60 (2009) 890. [91] X.G. Ma, K. Komvopoulos, Appl. Phys. Lett., 83 (2003) 3773. [92] K. Komvopoulos, X.G. Ma, Appl. Phys. Lett., 87 (2005) 263108. [93] X.G. Ma, K. Komvopoulos, Appl. Phys. Lett., 84 (2004) 4274. [94] X.G. Ma, K. Komvopoulos, J. Mater. Res., 20 (2005) 1808. [95] A.J. M Wood, J.H. You, T.W. Clyne, Proc. SPIE, 5648 (2004) 216. [96] A.J.M. Wood, T.W. Clyne, Acta Mater., 54 (2006) 5607. [97] A.J.M. Wood, S. Sanjabi, Y.Q. Fu, Z.H. Barber, T.W. Clyne, Surf. Coat. Tech., 202 (2008) 3115. [98] J. Pfetzing, A. Schaefer, C. Somsen, M.F.X. Wagner, Int. J. Mater. Res., 100 (2009) 936. [99] H.X. Zheng, J. Pfetzing, J. Frenzel, G. Eggeler, Int. J. Mater. Res., 100 (2009) 594. [100] H. Zheng, J.C. Rao, J. Pfetzing, J. Frenzel, C. Somsen, G. Eggeler, Scripta Mater., 58 (2008) 743. [101] TA DMA 2980 User Manual, 2002. [102] Hysitron, TI950 TridoIndenter User Manual. [103] J.S. Zhang, W. Cai, X.B. Ren, K. Otsuka, M. Asai, Mater. Trans., 40 (1999) 1367. [104] G. Riva, M. Vanelli, G. Airoldi, Phys. Stat. Sol. A, 148 (1995) 363. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65670 | - |
| dc.description.abstract | 本研究利用快速凝固製程(RSP)製備富鈦鈦鎳形狀記憶合金箔帶(ribbon),並針對其麻田散體相變態、顯微結構、析出硬化以及形狀記憶效應進行探討。本研究所使用之試片包含2000/4000rpm Ti51Ni49以及4000rpm Ti52Ni48合金箔片。在此三種合金箔片經過400/500℃時效後皆產生未曾於塊材(bulk)富鈦鈦鎳形狀記憶合金中發現之R相相變態。透過XRD以及TEM之分析結果顯示此R相相變態是由於奈米級Ti2Ni析出物與TiNi基地間之整合型介面所誘發產生的。奈米壓痕硬度試驗顯示此奈米級Ti2Ni具有析出硬化之效果,其強化程度估計可高於1GPa(約100Hv)。此析出硬化現象提供富鈦鈦鎳形狀記憶合金之強化,並可有效提升形狀記憶合金之效能。由形狀記憶效應之研究可歸納出兩個主要影響可回復應變量之因素:一為析出硬化之效果,即試片硬度;另一為變態潛熱,即ΔH值。高的析出硬化效果可降低塑性變形量,使得可回復之變形量增加;高的變態潛熱提供較多可變態之材料體積,使相變態所產生之變形量較高。本研究中之箔帶試片其可回復應變量可高於5.2%,顯示經過時效處理之富鈦鈦鎳形狀記憶合金具有相當良好之形狀記憶效能。 | zh_TW |
| dc.description.abstract | 2000/4000rpm Ti51Ni49 and 4000rpm Ti52Ni48 Ti-rich TiNi ribbons prepared by rapid solidification process were studied to investigate the transformation behavior, microstructure, precipitation hardening effect and mechanical properties. Premartensitic R phase transformation, which has not been occurred in bulk Ti-rich TiNi SMAs, is observed in all of these ribbons after aging at 400℃/500℃using DSC and XRD tests. TEM observations show the R phase transformation is induced by the coherent strain between TiNi matrix and nano-scale Ti2Ni precipitates. Nanoindentation tests indicates that precipitation hardening by nano-scale Ti2Ni precipitates in Ti-rich TiNi SMAs does occur, and an increase of hardness of 1GPa is observed. This feature provides a new way to improve the properties of Ti-rich TiNi SMAs. The shape memory property of these aged ribbons is concluded to be related to two factors: the degree of precipitation hardening effect and the value of transformation latent heat. The reversible strains of SME tests can reach > 5.2% in these ribbons, indicating good shape memory property exhibited in ribbons of aged Ti-rich TiNi SMAs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:57:48Z (GMT). No. of bitstreams: 1 ntu-101-R99527005-1.pdf: 16889880 bytes, checksum: eaedb5fe351ccd71fba1a46709b7b4d8 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Abstract i
摘要 ii Content iii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2-1 TiNi Shape Memory Alloys 3 2-2 Phase Transformation in TiNi binary SMAs 4 2-2-1 One-stage Phase Transformation 4 2-2-2 Two-stage Phase Transformation 5 2-2-3 Multi-stage Phase Transformation 5 2-2-4 Adjustment of Transformation Temperatures 9 2-3 Shape Memory Effect 9 2-4 Pseudoelasticity 10 2-5 Rapid Solidification Process 11 2-6 Ti-rich Precipitates in Ti-Ni SMAs 14 2-6-1 Bulk Ti-rich TiNi SMAs Prepared by VAR 14 2-6-2 Ti-rich TiNi SMAs Thin Films Prepared by Sputtering 15 2-6-3 Ti-rich TiNi SMAs Ribbons Prepared by RSP 18 2-7 Nanoindentation Test 19 2-7-1 Origin of Nanoindentation 19 2-7-2 Nanoindenter 20 2-7-3 Analytical Model of Nanoindentation 21 2-7-4 Application of Nanoindention in SMAs 25 Chapter 3 Experimental Procedure 53 3-1 Preparation of TiNi Ingot 53 3-2 The Melt-spun Ribbons Prepared by RSP 54 3-3 Aging Treatment of Ribbon Specimens 54 3-4 DSC Test 55 3-5 SEM Observation 55 3-6 TEM Observation 56 3-7 X-ray Diffractometer 56 3-8 SME Test 56 3-9 Nanoindentation Test 57 Chapter 4 Results and Discussions 65 4-1 The DSC Results 65 4-1-1 Specimens Aged for One hour at Various Temperatures 65 4-1-2 Ti51Ni49 Ribbon Specimens Aged at 500℃ 66 4-1-3 Ti52Ni48 Ribbon Specimens Aged at 400℃and 500℃ 69 4-1-4 Summary of DSC Results 73 4-2 XRD Results 74 4-3 Electron Microscope Observations 76 4-3-1 SEM Observations 76 4-3-2 TEM Observations 81 4-4 Nanoindenter Hardness of Aged Ribbons 84 4-5 Shape Memory Effect Properties 87 4-5-1 Results of Shape Memory Effect (SME) Tests 87 4-5-2 Discussions on Shape Memory Effect 91 Chapter 5 Conclusions 145 References 149 | |
| dc.language.iso | en | |
| dc.subject | 箔帶 | zh_TW |
| dc.subject | 析出硬化 | zh_TW |
| dc.subject | 奈米壓痕 | zh_TW |
| dc.subject | 奈米Ti2Ni析出 | zh_TW |
| dc.subject | 富鈦鈦鎳形狀記憶合金 | zh_TW |
| dc.subject | Ti-rich TiNi SMAs | en |
| dc.subject | Ti2Ni precipitate | en |
| dc.subject | Ribbon | en |
| dc.subject | Precipitation hardening | en |
| dc.subject | Nanoindentation | en |
| dc.title | 富鈦鈦鎳形狀記憶合金箔帶麻田散體變態及其性能之研究 | zh_TW |
| dc.title | Characteristics of Martensitic Transformation and Shape Memory Properties of Ti-rich TiNi Ribbons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林新智,胡塵滌,周棟勝,張世航 | |
| dc.subject.keyword | 富鈦鈦鎳形狀記憶合金,奈米Ti2Ni析出,箔帶,析出硬化,奈米壓痕, | zh_TW |
| dc.subject.keyword | Ti-rich TiNi SMAs,Ti2Ni precipitate,Ribbon,Precipitation hardening,Nanoindentation, | en |
| dc.relation.page | 155 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 16.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
