Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65666
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳學禮(Hsuen-Li Chen)
dc.contributor.authorChen-Yi Fangen
dc.contributor.author方程毅zh_TW
dc.date.accessioned2021-06-16T23:57:16Z-
dc.date.available2014-07-20
dc.date.copyright2012-07-20
dc.date.issued2012
dc.date.submitted2012-07-17
dc.identifier.citation[1] E. Hetch, Optics, 4th ed, Addison Wesley, 2001
[2] Z. Z. Chen, P. Sana, J. Salami, and A. Rohatgi, A novel and effective antireflection coating PECVD SiO2/Sin for si solar cells IEEE Trans. Electron Devices 1993, 40
[3] J. Q. Xi, J. K. Kim, and E. F. Schubert, Silica nanorod-array films with very low refractive indices Nano Lett. 2005, 5 (7), 1385-1387.
[4] S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics. Appl. Phys. Lett. 2008, 93 (25), 251108.
[5] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 2007, 1 (3), 176-179.
[6] J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, Nanodome solar cells with efficient light management and self-cleaning Nano Lett. 2010, 10 (6), 1979-1984.
[7] K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, High-performance silicon nanohole solar cells J. Am. Chem. Soc. 2010, 132 (20), 6872.
[8] K. Q. Peng and S. T. Lee, Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 2011, 23 (2), 198-215.
[9] Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S., Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications. Appl. Phys. B-Lasers Opt. 2010, 100 (4), 891-896.
[10] D. H. Wan, H. L. Chen, S. Y. Chuang, C. C. Yu, and Y. C. Lee, Using self-assembled nanoparticles to fabricate and optimize subwavelength textured structures in solar cells. J. Phys. Chem. C 2008, 112 (51), 20567-20573.
[11] S. C. Tseng, H. L. Chen, C. C. Yu, Y. S. Lai, and H. W. Liu, Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties. Energy Environ. Sci. 2011, 4 (12), 5020-5027.
[12] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107 (3), 668-677.
[13] D. M. Schaadt, B. Feng, and E. T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005, 86 (6), 063106.
[14] D. H. Wan, H. L. Chen, T. C. Tseng, C. Y. Fang, Y. S. Lai, and F. Y. Yeh, Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells. Adv. Funct. Mater. 2010, 20 (18), 3064-3075.
[15] T. H. Chang, P. H. Wu, S. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, and Y. K. Su, Efficiency enhancement in GaAs solar cells using self-assembled microspheres. Opt. Express 2009, 17 (8), 6519-6524.
[16] Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles? Appl. Phys. Lett. 2010, 96 (7), 073111.
[17] J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres Adv. Mater. 2011, 23 (10), 1272
[18] 李仰淳,利用奈米壓印技術與表面微透鏡結構增進白光固態照明元件之研究,國立台灣大學材料科學與工程學系研究所碩士論文,2010
[19] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 2004, 84 (6), 855-857
[20] S. L. Qi, Z. Z. Chen, H. Fang, Y. J. Sun, L. W. Sang, X. L. Yang, L. B. Zhao, P. F. Tian, J. J. Deng, Y. B. Tao, T. J. Yu, Z. X. Qin, and G. Y. Zhang, Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4 Appl. Phys. Lett. 2009, 95 (7), 071114.
[21] E. J. Hong, K. J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi, and H. S. Kim, Effect of nano-patterning of p-GaN cladding layer on photon extraction efficiency. Solid-State Electron. 2009, 53 (10), 1099-1102.
[22] J. J. Wierer, A. David, and M. M. Megens, III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics 2009, 3 (3), 163-169.
[23] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns. Appl. Phys. Lett. 2005, 87 (20), 203508.
[24] D. Kim, H. Lee, N. Cho, Y. Sung, and G. Yeom, Effect of GaN Microlens Array on Efficiency of GaN-Based Blue-Light-Emitting Diodes. Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett. 2005, 44 (1-7), L18-L20.
[25] P. Uthirakumar, B. D. Ryu, J. H. Kang, H. G. Kim, J. H. Ryu, and C. H. Hong, Impact of layer thickness and light transmission of ZnO nanomaterials on GaN-based light emitting diodes. Vacuum 2010, 85 (2), 198-202.
[26] M. Park, G. Yu, and K. Shin, Study on photoluminescence of GaN-based UV-LEDs with refractive index gradient polymeric nanopatterns. J. Cryst. Growth 2011, 326 (1), 28-32.
[27] T. K. Kim, S. H. Kim, S. S. Yang, J. K. Son, K. H. Lee, Y. G. Hong, K. H. Shim, J. W. Yang, K. Y. Lim, S. J. Bae, and G. M. Yang, GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al2O3 powder. Appl. Phys. Lett. 2009, 94 (16), 161107.
[28] B. D. Ryu, P. Uthirakumar, J. H. Kang, B. J. Kwon, S. Chandramohan, H. K. Kim, H. Y. Kim, J. H. Ryu, H. G. Kim, and C. H. Hong, Enhanced light output power of GaN-based light-emitting diodes by nano-rough indium tin oxide film using ZnO nanoparticles. J. Appl. Phys. 2011, 109 (9), 093116.
[29] O. Muller, R. E. Newnham, and R. Roy, Preliminary study of new crystalline gold oxides. Journal of Inorganic & Nuclear Chemistry 1969, 31 (9), 2966
[30] H. Q. Shi, R. Asahi, and C. Stampfl, Properties of the gold oxides Au2O3 and Au2O: First-principles investigation. Phys. Rev. B 2007, 75 (20), 205125.
[31] A. M. Klumb, C. R. Aita, and N. C. Tran, Sputter deposition of gold in rare-gas (Ar, Ne )-O2 discharges. J. Vac. Sci. Technol. A-Vac. Surf. Films 1989, 7 (3), 1697-1701.
[32] http://matsci.uah.edu/courseware/mts501/reports/sschwitalla.html
[33] E. Irissou, M. C. Denis, M. Chaker, and D. Guay, Gold oxide thin film grown by pulsed laser deposition in an O2 atmosphere. Thin Solid Films 2005, 472 (1-2), 49-57.
[34] H. C. Tsai, E. Hu, K. Perng, M. K. Chen, J. C. Wu, and Y. S. Chang, Instability of gold oxide Au2O3. Surf. Sci. 2003, 537 (1-3), L447-L450.
[35] J. J. Pireaux, M. Liehr, P. A. Thiry, J. P. Delrue, and R. Caudano, Electron spectroscopic characterization of oxygen adsorption on gold surfaces production of gold oxide in oxygen DC reactive spittering. Surf. Sci. 1984, 141 (1), 221-232.
[36] M. G. Helander, Z. B. Wang, M. T. Greiner, Z. W. Liu, J. Qiu, and Z. H. Lu, Oxidized gold thin films: an effective material for high-performance flexible organic optoelectronics. Adv. Mater. 2010, 22 (18), 2037
[37] I. Tascioglu, U. Aydemir, S. Altindal, B. Kinaci, and S. Ozcelik, Analysis of the forward and reverse bias I-V characteristics on Au/PVA:Zn/n-Si Schottky barrier diodes in the wide temperature range. J. Appl. Phys. 2011, 109 (5), 054502
[38] A. Keffous, A. Siad, A. Cheriet, N. Benrekaa, Y. Belkacem, H. Menari, W. Chergui, and A. Dahmani, Comparison of electrical and optical parameters of Au/n-Si and Ag/n-Si Schottky barrier photodiodes. Appl. Surf. Sci. 2004, 236 (1-4), 42-49.
[39] B. W. Mullins, S. F. Soares, K. A. McArdle, C. M. Wilson, and S. R. J. Brueck, A simple high-speed si schottky photodiode. IEEE Photonics Technol. Lett. 1991, 3 (4), 360-362.
[40] J. Michel, J. F. Liu, and L. C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4 (8), 527-534.
[41] X. Gong, M. H. Tong, Y. J. Xia, W. Z. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, High-Detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325 (5948), 1665-1667.
[42] D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 2012, 5 (3), 5874-5883.
[43] B. D. Park, J. W. Leem, and J. S. Yu, Bioinspired Si subwavelength gratings by closely-packed silica nanospheres as etch masks for efficient antireflective surface. Appl. Phys. B-Lasers Opt. 2011, 105 (2), 335-342.
[44] J. W. Leem and J. S. Yu, Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks. Thin Solid Films 2011, 519 (11), 3792-3797.
[45] Y. P. Chen, H. C. Chiu, G. Y. Chen, C. H. Chiang, C. T. Tseng, C. H. Lee, and L. A. Wang, Fabrication and measurement of large-area sub-wavelength structures with broadband and wide-angle antireflection effect. Microelectron. Eng. 2010, 87 (5-8), 1323-1327.
[46] Y. Kane, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation 1996, 14 (3): 302–307.
[47] 曾德宸,應用先進微奈米製程技術於薄膜太陽能電池封裝層以增加元件效率之研究,國立台灣大學材料科學與工程學系研究所碩士論文,2011
[48] M. Y. Koledintseva, R. E. DuBroff, R. W. Schwartz, A maxwell garnett model for dielectric mixtures containing conducting particles at optical frequencies. PIER 2006 63, 223–242.
[49] K. C. Sahoo, M. K. Lin, E. Y. Chang, Y. Y. Lu, C. C. Chen, J. H. Huang, and C. W. Chang, Fabrication of antireflective sub-wavelength structures on silicon nitride using nano cluster mask for solar cell application. Nanoscale Res. Lett. 2009, 4 (7), 680-683.
[50] http://www.cleanroom.byu.edu/wet_etch.phtml
[51] K. Juodkazis, J. Juodkazyte, V. Jasulaitiene, A. Lukinskas, and B. Sebeka, XPS studies on the gold oxide surface layer formation. Electrochem. Commun. 2000, 2 (7), 503-507.
[52] K. M. Cook and G. S. Ferguson, Determination of the wavelength-dependent refractive index of a gold-oxide thin film. J. Phys. Chem. C 2011, 115 (46), 22976-22980.
[53] http://refractiveindex.info/?group=METALS&material=Gold
[54] K. Sekar, G. Kuri, P. V. Satyam, B. Sundaravel, D. P. Mahapatra, and B. N. Dev, Shape transition in the epitaxial-growth of gold silicide in au thin-films on si(111). Phys. Rev. B 1995, 51 (20), 14330-14336.
[55] http://www.infoplease.com/periodictable.php?id=79
[56] S. Rentenberger, A. Vollmer, E. Zojer, R. Schennach, N. Koch, UV/ozone treated Au for air-stable, low hole injection barrier electrodes inorganic electronics. J. Appl. Phys. 2006, 100 (5), 053701.
[57] T. F. Buehrer and W. E. Roseveare, The free energy of auric oxide as determined from measurements of the gold-auric oxide electrode. J. Am. Chem. Soc. 1927, 49, 1989-1994.
[58] S. M. Sze , K. K. Ng , Physics of semiconductor devices (3rd edition) ,Wiley , Hoboken 2007
[59] A. Subrahmanyam and N. Balasubramanian, Studies of the photovoltaic behavior of indium tin oxide (ito) silicon junctions prepared by the reactive thermal evaporation technique. Semicond. Sci. Technol. 1992, 7 (3), 324-327
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65666-
dc.description.abstract近來有越來越多研究指向利用不同尺度的傳統材料或是研發新穎材料來增進或改善光電元件的表現及效率。各類光電元件如:太陽能電池、發光二極體以及光偵測器都已經廣泛運用在不同地方。因此如何能更進一步增進這些元件的效能便是一重要課題。
本論文中首先將不同材料的介電質奈米粒子建構成漸變折射率抗反射層以增加矽基太陽能電池的效率。我們發現將二氧化鈦、二氧化鋯、三氧化二鋁以及二氧化矽奈米粒子依序旋轉塗佈於矽基太陽能電池上可以建構一寬波段及廣角度的抗反射層。使光電流分別在垂直入射以及以60o入射時在全波段增益超過30%及45%。
接著我們延續這樣的概念,建構漸變折射率的薄膜於發光二極體上,並再利用尺寸與光波長相近的二氧化矽散射粒子破壞發光二極體的主要材料氮化鎵以及空氣全反射面,使超過臨界角的光可以離開晶片。我們利用二氧化鋯、三氧化二釔、三氧化二鋁以及二氧化矽構成漸變折射率奈米粒子薄膜以及460奈米的二氧化矽散射粒子使藍光發光二極體的光激螢光光譜在波長為460奈米時增強6倍。
此外,本論文也對氧化金這個材料進行研究。金一般來說被認為活性最低的元素,不易與其它元素化合。我們利用離子濺鍍的方式鍍出三氧化二金的薄膜。並對其光學常數、還原機制做深入的探討。我們證實氧化金為一介電質材料,有著低導電度以及高折射率的特性。本論文也利用光譜分析發現氧化金在還原成金的過程會在波長為670奈米到700奈米左右有侷部表面電漿波共振的訊號。我們也將氧化金與n型矽形成接面製造光偵測器,在紅光及近紅外光波段有將近50%的外部量子效率以及超過1012 的偵測力。
zh_TW
dc.description.abstractRecently, there have been various studies focusing on producing materials with different scales or developing new materials to pursue better performance of optoelectronic devices. Several optoelectronic devices like solar cells, light emitting diodes (LEDs) and photo detectors have been applied in different fields. Therefore, how to improve their efficiencies has become an essential issue.
In this study, we first arranged nanoparticles (NPs) of various types and sizes to enhance the omnidirectional light harvesting of solar cells. The nanoparticles we used include titanium dioxide (TiO2), zirconium dioxide (ZrO2), aluminum oxide (Al2O3), and silicon dioxide (SiO2). In contrast to previous reports, here we focused on choosing and arranging suitable materials and varying their sizes, rather than narrowly concentrating on optimization of a single type of particle. A graded-refractive-index NP stack could minimize reflectance, not only over a broad range of wavelengths but also at different incident angles; the photocurrents of silicon-based solar cells could also be significantly improved omnidirectionally.
In addition, the optical gradient of an NP stack could also enhance the light extraction efficiency of LEDs, due to both the graded refractive index and the moderate surface roughness. Large particles having sizes on the same order of the wavelength of incident light roughened the LED surfaces further and extracted light from beyond the critical angle, as supported by three-dimensional finite-difference time domain simulations. Using this approach, we could increase the photoluminescence intensity by up to six fold.
Moreover, we also investigated the basic properties of gold oxide (Au2O3). Gold has been widely thought of the most inert metal. We deposited gold oxide films by sputtering process through the help of O2/Ar plasma. We discussed the optical properties and the mechanism of reduction of this special material. We conclude that gold oxide is a dielectric material with poor conductivity and high refractive index. We also discovered that when reducing, gold nanoparticles would form and can be analyzed by spectroscopy due to the LSPR (Localized surface plasmon resonance) peak around 670nm-700nm. Furthermore we also fabricated photodetectors by forming Au2O3/n-Si contact showing EQE(external quantum efficiency) near 50% in the red light and near infrared wavelength regimes with detectivity over 1012.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:57:16Z (GMT). No. of bitstreams: 1
ntu-101-R99527032-1.pdf: 10250607 bytes, checksum: 2879179585fb4c8aa4543351548b52e9 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 論文架構 1
第二章 文獻回顧 3
2.1 太陽能電池抗反射層 3
2.1.1 工作原理 3
2.1.2 建構光學薄膜作為抗反射層 4
2.1.3 建構漸變折射率薄膜作為抗反射層 5
2.1.4 利用表面粗化增加入光量 8
2.1.5 利用奈米粒子作為抗反射層 10
2.2 發光二極體出光增益 12
2.2.1 工作原理 12
2.2.2 表面粗化破壞全反射面 13
2.2.3 製作粗糙的電極或其它薄膜破壞全反射面 18
2.3 氧化金於光偵測器之應用 20
2.3.1 氧化金基本介紹 20
2.3.2 光偵測器簡介 24
第三章 介電奈米粒子於太陽能電池抗反射層之應用 26
3.1 研究動機與目的 26
3.2 研究方法 27
3.2.1 光學模擬架構 27
3.2.2 橢偏儀計算光學常數 30
3.2.3 實驗用材料與設備 31
3.3 實驗方法、模擬與實驗結果討論 33
3.3.1 介電粒子層為光學薄膜假設 33
3.3.2 光學模擬之結果探討 37
3.3.3 實驗方法與光譜結果 40
3.3.4 介電奈米粒子於元件上之效果 49
3.4 結論 57
第四章 介電奈米粒子於發光二極體之光萃取效率增益的應用 58
4.1 研究動機與目的 58
4.2 研究方法 59
4.2.1 光學模擬架構 59
4.2.2 實驗用材料與設備 60
4.3 模擬與實驗結果討論 61
4.3.1 出光增益結構設計 61
4.3.2 奈米粒子於出光之增益模擬結果 65
4.3.3 元件效果 69
4.4 結論 72
第五章 氧化金之基本性質及於光偵測器上之應用 73
5.1 研究動機與目的 73
5.2 研究方法 76
5.2.1 實驗用材料與設備 76
5.2.2 實驗方法 77
5.3 結果討論 78
5.3.1 氧化金鍵結與結晶性 78
5.3.2 光學常數計算 81
5.3.3 熱還原性質 87
5.3.4 光偵測器上之應用 109
5.4 結論 118
第六章 結論 119
6.1 研究總結 119
6.2 未來展望 120
參考文獻 121
dc.language.isozh-TW
dc.title介電奈米粒子與氧化金之光學性質探討及其在光電元件上之應用zh_TW
dc.titleInvestigations on the optical properties of dielectric nanoparticles and gold oxide and their applications on optoelectronic devicesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee賴宇紳(Yu-Sheng Lai),王子建(Tzyy-Jiann Wang),謝建文(Chien-Wen Hsieh),陳俊維(Chun-Wei Chen)
dc.subject.keyword介電質奈米粒子,漸變折射率,矽太陽能電池,發光二極體,氧化金,光偵測器,zh_TW
dc.subject.keyworddielectric nanoparticle,graded refractive indices,solar cells,light-emitting diodes (LEDs),gold oxide,photodetectors,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2012-07-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
10.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved