請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6565
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳蕙芬 | |
dc.contributor.author | Chia-Wei Chien | en |
dc.contributor.author | 簡嘉葳 | zh_TW |
dc.date.accessioned | 2021-05-17T09:14:44Z | - |
dc.date.available | 2021-05-17T09:14:44Z | - |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-14 | |
dc.identifier.citation | 湛玉鳳, 2010. 沙門氏菌metE基因之表現調控. 國立台灣大學農業化學研究所.
Augustus, A.M., and Spicer, L.D. (2011). The MetJ regulon in gammaproteobacteria determined by comparative genomics methods. BMC Genomics 12, 558. Berlett, B.S., and Stadtman, E.R. (1997). Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272, 20313-20316. Boysen, A., Moller-Jensen, J., Kallipolitis, B., Valentin-Hansen, P., and Overgaard, M. (2010). Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli. J Biol Chem 285, 10690-10702. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. (2000). Guest commentary. J Clinical Microb 38 (7):2465-2467. Carter, P.B., and Collins, F.M. (1974). The route of enteric infection in normal mice. J Exp Med 139, 1189-1203. Constantinidou, C., Hobman, J.L., Griffiths, L., Patel, M.D., Penn, C.W., Cole, J.A., and Overton, T.W. (2006). A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281, 4802-4815. Dev, I.K., and Harvey, R.J. (1984). Regulation of synthesis of serine hydroxymethyltransferase in chemostat cultures of Escherichia coli. J Biol Chem 259, 8394-8401. Durand, S., and Storz, G. (2010). Reprogramming of anaerobic metabolism by the FnrS small RNA. Mol Microbiol 75, 1215-1231. Flatley, J., Barrett, J., Pullan, S.T., Hughes, M.N., Green, J., and Poole, R.K. (2005). Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 280, 10065-10072. Georgellis, D., Kwon, O., and Lin, E.C. (2001). Quinones as the redox signal for the arc two-component system of bacteria. Science 292, 2314-2316. Green, J., Crack, J.C., Thomson, A.J., and LeBrun, N.E. (2009). Bacterial sensors of oxygen. Curr Opin Microbiol 12, 145-151. Gyaneshwar, P., Paliy, O., McAuliffe, J., Jones, A., Jordan, M.I., and Kustu, S. (2005). Lessons from Escherichia coli genes similarly regulated in response to nitrogen and sulfur limitation. Proc Natl Acad Sci U S A 102, 3453-3458. Hondorp, E.R., and Matthews, R.G. (2004). Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol 2, e336. Hondorp, E.R., and Matthews, R.G. (2009). Oxidation of cysteine 645 of cobalamin-independent methionine synthase causes a methionine limitation in Escherichia coli. J Bacteriol 191, 3407-3410. Hoshi, T., and Heinemann, S. (2001). Regulation of cell function by methionine oxidation and reduction. J Physiol 531, 1-11. Jervis, A.J., Crack, J.C., White, G., Artymiuk, P.J., Cheesman, M.R., Thomson, A.J., Le Brun, N.E., and Green, J. (2009). The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion. Proc Natl Acad Sci U S A 106, 4659-4664. Kang, Y., Weber, K.D., Qiu, Y., Kiley, P.J., and Blattner, F.R. (2005). Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187, 1135-1160. Khoroshilova, N., Popescu, C., Munck, E., Beinert, H., and Kiley, P.J. (1997). Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci U S A 94, 6087-6092. Lambden, P.R., and Guest, J.R. (1976). Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. J Gen Microbiol 97, 145-160. McClelland, M., Sanderson, K.E., Spieth, J., Clifton, S.W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M., Du, F., et al. (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852-856. Partridge, J.D., Sanguinetti, G., Dibden, D.P., Roberts, R.E., Poole, R.K., and Green, J. (2007). Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J Biol Chem 282, 11230-11237. Partridge, J.D., Scott, C., Tang, Y., Poole, R.K., and Green, J. (2006). Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J Biol Chem 281, 27806-27815. Pullan, S.T., Gidley, M.D., Jones, R.A., Barrett, J., Stevanin, T.M., Read, R.C., Green, J., and Poole, R.K. (2007). Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J Bacteriol 189, 1845-1855. Roy, M.F., and Malo, D. (2002). Genetic regulation of host responses to Salmonella infection in mice. Genes Immun 3, 381-393. Saint-Girons, I., Parsot, C., Zakin, M.M., Barzu, O., and Cohen, G.N. (1988). Methionine biosynthesis in Enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. CRC Crit Rev Biochem 23 Suppl 1, S1-42. Salmon, K., Hung, S.P., Mekjian, K., Baldi, P., Hatfield, G.W., and Gunsalus, R.P. (2003). Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem 278, 29837-29855. Smith, M.W., and Neidhardt, F.C. (1983). Proteins induced by aerobiosis in Escherichia coli. J Bacteriol 154, 344-350. Stadtman, E.R., and Berlett, B.S. (1998). Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30, 225-243. Symeonidis, A., Kouraklis-Symeonidis, A., Constantinidou, I., Solomou, E., Kougelou, S., Vassilakos, P., and Zoumbos, N. (2006). Increased CA-15.3 levels in the serum of patients with homozygous beta-thalassaemia and sickle cell/beta-thalassaemia. Br J Haematol 133, 692-694. Tjaden, B., Goodwin, S.S., Opdyke, J.A., Guillier, M., Fu, D.X., Gottesman, S., and Storz, G. (2006). Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34, 2791-2802. Trotter, E.W., Rolfe, M.D., Hounslow, A.M., Craven, C.J., Williamson, M.P., Sanguinetti, G., Poole, R.K., and Green, J. (2011). Reprogramming of Escherichia coli K-12 metabolism during the initial phase of transition from an anaerobic to a micro-aerobic environment. PLoS One 6, e25501. Urbanowski, M.L., Stauffer, L.T., Plamann, L.S., and Stauffer, G.V. (1987). A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium. J Bacteriol 169, 1391-1397. Valentin-Hansen, P., Eriksen, M., and Udesen, C. (2004). The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51, 1525-1533. Vogel, J. (2009). A rough guide to the non-coding RNA world of Salmonella. Mol Microbiol 71, 1-11. Wang, J.X., Lee, E.R., Morales, D.R., Lim, J., and Breaker, R.R. (2008). Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29, 691-702. Waters, L.S., and Storz, G. (2009). Regulatory RNAs in bacteria. Cell 136, 615-628. Weissbach, H., and Brot, N. (1991). Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5, 1593-1597. Wray C, Wary A. (2000). Methods for the rapid detection of Salmonella. In: Salmonella in domestic animals. CABI publishing, UK, pp. 373-392. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6565 | - |
dc.description.abstract | 甲硫胺酸在生物體中作為多種生長代謝過程中不可或缺的前驅物及中間產物,於人體中是需額外攝取的必需胺基酸之一,對微生物來說,則是可以透過複雜的生合成及利用調控機制自行生合成。其中,metE基因所編碼的蛋白質為催化其生合成最終步驟的關鍵酵素。本研究以Salmonella Typhimurium LT2為研究背景,探討一受到厭氧調控蛋白FNR影響,並於厭氧下誘導表現的非編碼小片段核糖核酸-FnrS與metE在微生物適應厭氧環境下所進行的調控作用。本研究藉由metE::lacZ之融合菌株的建立,以及metE與fnrS基因及其突變基因之選殖質體的建構,透過於fnrS及其相關調控因子缺失株在氧氣轉換時的表現差異,探討metE基因與FnrS之間的關係。在豐富培養基或限制培養基添加甲硫胺酸,透過β-galactosidase及西方轉漬法試驗,證實FnrS於厭氧狀態下,與metE基因間具有負向調控的關係。藉由其相關的調節蛋白FNR及Hfq,促使metE基因間接負向調節的表現結果,輔助理解FnrS於厭氧狀態下對metE基因的調控。接著,觀察到FnrS自身結構完整是必要的,且發現metE-5’mRNA之Shine-Dalgarno (SD) 序列的位置對FnrS結合是重要的;而RT-PCR的試驗亦呈現與β-galactosidase相符的結果;最後,觀察到metE基因本身於豐富或限制培養基添加甲硫胺酸之表現差異,顯示metE基因於豐富培養基中,應存在其他因子進行調控作用。透過本研究對metE基因之調控有更進一步的探討,幫助對鼠傷寒沙門氏菌之metE調控機制的瞭解,並期許能在未來作為類似基因研究之輔助,使之成為類似病原菌之對應的模式菌株。 | zh_TW |
dc.description.abstract | Methionine is critical for the variety of metabolic processes in the organism, such as a precursor or intermediate for the final products. As an essential amino acid, methionine is not synthesized de novo in humans, and it must be ingested through food. In microorganisms, methionine is synthesized via a complicated biosynthetic pathway. The last step for the synthesis of methionine is the methylation of homocysteine, which is catalyzed by the MetE. We use the Salmonella Typhimurium LT2 as a model, to test the regulation of the metE gene by an anaerobically induced small non-coding RNA-fnrS, whose expression is strictly dependent on the anaerobic regulator-FNR. In this study, we constructed the metE::lacZ fusion gene, and established various plasmids which carry the complete metE or fnrS gene or their derivatives. We investigate the relations between metE and fnrS, through the wild-type, fnrS and/or fnr as well as hfq deficient strains under the oxygen-limited state. The results of the β-galactosidase assays and Western blotting analyses showed that FnrS down-regulate metE gene expression in an anaerobic condition. Accordingly, the fnr and hfq genes were down regulating the metE gene indirectly; we proved the fnrS-mediated metE expression. Furthermore, we observed that the secondary structure of fnrS is necessary for the regulation, and we also noted that the SD sequence of metE is important for the base-pairing with fnrS. Through the results of RT-PCR, we also found out the mRNA expressions were coincided with the results fromβ-galactosidase analyses. Additionally, the negative regulation of metE by fnrS was obviously observed under the unlimited-methionine condition. Through this study, it would be helpful for understanding of the regulation of other gene expressions, which have a similar regulatory mechanism. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T09:14:44Z (GMT). No. of bitstreams: 1 ntu-101-R99623025-1.pdf: 2157733 bytes, checksum: 4496073e792e993ff8c08ac03b4ef8f8 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 ..i 謝誌.. ii 摘要.. iii Abstract iv 目錄.. v 表目錄 viii 圖目錄 ix 附圖目錄 x 一、 前言 1 (一) 沙門氏桿菌屬之簡介 1 (二) 甲硫胺酸之簡介 2 1. 甲硫胺酸之重要性 2 2. 甲硫胺酸之生合成及其相關代謝路徑 3 (三) MetE之簡介 4 1. MetE之調控作用 5 2. MetE於氧氣轉換之間 5 (四) FNR之簡介 6 1. FNR之氧氣偵測 7 2. FNR於微氧 (micro-aerobic condition) 代謝之意義 7 (五) 小分子RNA之簡介 8 (六) FnrS之簡介 9 (七) 研究動機與目的 10 二、 材料與方法 12 (一) 試驗材料 12 1. 菌株及質體 12 2. 培養基 12 3. 藥品及試劑 13 4. 器材設備 14 (二) 一般性試驗方法 14 1. 微生物之培養 14 2. DNA之萃取 (DNA extraction) 15 3. 表現質體之建立 (construction of expression plasmid) 17 4. 質體之轉形作用 (transformation) 19 5. 噬菌體一般試驗方法 21 (三) 選殖基因表現系統之建構 23 1. 載體及選殖基因片段之製備 24 2. 選殖片段之處理 25 3. 接合反應 (ligation reaction) 26 (四) 基因剔除突變株之建構 26 1. 溶胞產物之製備 27 2. P1轉導作用 27 3. FLP重組反應 (FLP recombination) 28 (五) PmetE::lacZ融合菌株之建構與分析 29 1. λ溶胞產物 ( lysate ) 的製備 29 2. λ轉導作用 30 3. Beta-galactosidase 活性分析 31 (六) 蛋白質誘導表現分析 32 1. 蛋白質粗萃取 32 2. 蛋白質膠體電泳分析 (SDS-PAGE) 33 3. 蛋白質轉印 (transfer) 34 4. 雜交反應 (hybridization) 35 5. 雜交訊號的偵測 (detection) 36 (七) RNA表現分析 37 1. RNA之萃取 37 2. RT-PCR (Taigene) 38 3. One-Step RT-PCR (Yeastern biotech) 38 4. Quantitative RT-PCR (ABI) 39 三、 結果 40 (一) metE::lacZ融合基因於λRS45中之表現 40 (二) FnrS對metE::lacZ表現之影響 41 (三) FnrS相關調控因子對metE::lacZ表現之影響 43 (四) FnrS及相關因子FNR、Hfq缺失株之生長曲線測試 45 (五) MetE基因蛋白質分析之表現 45 (六) metE::lacZ基因之RNA於野生株及突變株之測試 46 (七) FnrS之不同區域對metE表現之影響 46 (八) FnrS鹼基配對至metE基因5’端未轉譯區域 47 四、 討論 49 五、 結論 53 六、 參考文獻 54 表目錄 表一、本論文所使用之菌株 59 表二、本論文所使用之質體及嗜菌體 61 表三、本論文所使用之引子對 62 圖目錄 圖一、Salmonella Typhimurium LT2 metE基因上游序列圖譜 64 圖二、Salmonella Typhimurium LT2 FnrS基因結構圖 65 圖三、MetE於氧氣轉換間受到fnrS調控表現之影響 66 圖四、FnrS及其相關因子缺失對metE之表現影響 67 圖五、FnrS及其相關因子缺失株之生長曲線測試 68 圖六、FnrS及其相關因子缺失對MetE表現影響之西方轉漬法試驗 69 圖七、FnrS及其相關因子缺失對metE表現影響之RT-PCR試驗 70 圖八、FnrS不同區域對metE基因之表現影響 71 圖九、 沙門氏菌metE mRNA與FnrS之序列比對結果及FnrS點突變基因選殖質體對metE之表現影響 72 圖十、MetE相對應fnrS點突變之互補株 73 附圖目錄 附圖一、甲硫胺酸之生合成路徑 74 | |
dc.language.iso | zh-TW | |
dc.title | 沙門氏菌metE基因表現受到FnrS之調控 | zh_TW |
dc.title | Regulation of Salmonella Typhimurium metE gene expression
by FnrS | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林淑端,鍾仁賜,李佳音,陳佩貞 | |
dc.subject.keyword | 鼠傷寒沙門氏菌,甲硫胺酸,metE基因,非編碼小片段核糖核酸,FNR,fnrS, | zh_TW |
dc.subject.keyword | Salmonella Typhimurium,Methionine,metE,small non-coding RNA,FNR,fnrS, | en |
dc.relation.page | 74 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-08-14 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 2.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。