請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65642
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊吉水(Jye-Shane Yang) | |
dc.contributor.author | I-Tsun Lee | en |
dc.contributor.author | 李依純 | zh_TW |
dc.date.accessioned | 2021-06-16T23:55:44Z | - |
dc.date.available | 2017-07-20 | |
dc.date.copyright | 2012-07-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-18 | |
dc.identifier.citation | (1) Balzani, V.; Credi, A.; Venturi, M. Molecular devices and machines: concepts and
perspectives for the nano world., 2008. (2) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M. Acc. Chem. Res. 2001, 34, 445. (3) Khuong, T.-A. V.; Nunez, J. E.; Godinez, C. E.; Garcia-Garibay, M. A. Acc. Chem. Res. 2006, 39, 413. (4) Raymo, F. M.; Stoddart, J. F. Chem. Rev. 1999, 99, 1643. (5) Elizarov, A. M.; Chiu, S.-H.; Stoddart, J. F. J. Org. Chem. 2002, 67, 9175. (6) Badjić, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845. (7) Jimenez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Chem. Commun. 2003, 1613. (8) Jimenez, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Angew. Chem. Int. Ed. 2000, 39, 3284. (9) Dawson, R. E.; Lincoln, S. F.; Easton, C. J. Chem. Commun. 2008, 3980. (10) Kinbara, K.; Aida, T. Chem. Rev. 2005, 105, 1377. (11) Nawara, A. J.; Shima, T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006, 128, 4962. (12) Shima, T.; Hampel, F.; Gladysz, J. A. Angew. Chem. Int. Ed. 2004, 43, 5537. (13) Stenkamp, R. E.; Teller, D. C.; Palczewski, K. Chembiochem 2002, 3, 963. (14) Cozzi, F.; Guenzi, A.; Johnson, C. A.; Mislow, K.; Hounshell, W. D.; Blount, J. F. J. Am. Chem. Soc. 1981, 103, 957. (15) Koga, N.; Kawada, Y.; Iwamura, H. J. Am. Chem. Soc. 1983, 105, 5498. (16) Setaka, W.; Nirengi, T.; Kabuto, C.; Kira, M. J. Am. Chem. Soc. 2008, 130, 15762. (17) Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.; Garcia, A.; Lang, F.; Kim, M. H.; Jette, M. P. J. Am. Chem. Soc. 1994, 116, 3657. (18) Basheer, M. C.; Oka, Y.; Mathews, M.; Tamaoki, N. Chem. Eur. J. 2010, 16, 3489. (19) Hashim, P. K.; Thomas, R.; Tamaoki, N. Chem. Eur. J. 2011, 17, 7304. (20) Shinkai, S.; Nakaji, T.; Ogawa, T.; Shigematsu, K.; Manabe, O. J. Am. Chem. Soc. 1981, 103, 111. (21) Yamashita, K.-i.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850. (22) Fyles, T. M. Chem. Soc. Rev. 2007, 36, 335. (23) Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475. (24) Feringa, B. L. J. Org. Chem. 2007, 72, 6635. (25) Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J.; Feringa, B. L. Nature 2006, 440, 163. (26) Dickinson, R. G.; Lotzkar, H. J. Am. Chem. Soc. 1937, 59, 472. (27) Hepperle, S. S.; Li, Q. B.; East, A. L. L. J. Phys. Chem. A 2005, 109, 10975. (28) Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. J. Org. Chem. 2001, 66, 8135. (29) Lewis, F. D.; Petisce, J. R.; Oxman, J. D.; Nepras, M. J. J. Am. Chem. Soc. 1985, 107, 203. (30) Browne, W. R.; Pollard, M. M.; de Lange, B.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 12412. (31) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G. J. Am. Chem. Soc. 1942, 64, 2649. (32) Yang, J.-S.; Yan, J.-L. Chem. Commun. 2008, 1501. (33) Shahlai, K.; Hart, H. J. Org. Chem. 1991, 56, 6905. (34) Skvarche.Vr; Shalaev, V. K. Dokl Akad Nauk Sssr+ 1974, 216, 110. (35) Hart, H.; Shamouilian, S.; Takehira, Y. J. Org. Chem. 1981, 46, 4427. (36) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864. (37) Nesterov, E. E.; Zhu, Z.; Swager, T. M. J. Am. Chem. Soc. 2005, 127, 10083. (38) Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Gavin Tsai, H.-H.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2006, 128, 14109. (39) Yang, J.-S.; Yan, J.-L.; Lin, C.-K.; Chen, C.-Y.; Xie, Z.-Y.; Chen, C.-H. Angew. Chem. Int. Ed. 2009, 48, 9936. (40) Yang, J. S.; Ko, C. W. J. Org. Chem. 2006, 71, 844. (41) Kundu, S. K.; Tan, W. S.; Yan, J. L.; Yang, J. S. J. Org. Chem. 2010, 75, 4640. (42) Annunziata, R.; Benaglia, M.; Cinquini, M.; Raimondi, L.; Cozzi, F. J. Phys. Org. Chem. 2004, 17, 749. (43) Yang, C.-H.; Prabhakar, C.; Huang, S.-L.; Lin, Y.-C.; Tan, W. S.; Misra, N. C.; Sun, W.-T.; Yang, J.-S. Org. Lett. 2011, 13, 5632. (44) Credi, A. Aust. J. Chem. 2006, 59, 157. (45) Yang, J.-S.; Huang, Y.-T.; Ho, J.-H.; Sun, W.-T.; Huang, H.-H.; Lin, Y.-C.; Huang, S.-J.; Huang, S.-L.; Lu, H.-F.; Chao, I. Org. Lett. 2008, 10, 2279. (46) Sun, W.-T.; Huang, Y.-T.; Huang, G.-J.; Lu, H.-F.; Chao, I.; Huang, S.-L.; Huang, S.- J.; Lin, Y.-C.; Ho, J.-H.; Yang, J.-S. Chem. Eur. J. 2010, 16, 11594. (47) Chen, Y.-C.; Sun, W.-T.; Lu, H.-F.; Chao, I.; Huang, G.-J.; Lin, Y.-C.; Huang, S.-L.; Huang, H.-H.; Lin, Y.-D.; Yang, J.-S. Chem. Eur. J. 2011, 17, 1193. (48) Goyal, R. N.; Kumar, N.; Singhal, N. K. Bioelectroch Bioener 1998, 45, 47. (49) Goyal, R. N.; Kumar, A.; Gupta, P. J. Chem. So.c Perk. T. 2 2001, 618. (50) Berlin, A.; Canavesi, A.; Schiavon, G.; Zecchin, S.; Zotti, G. Tetrahedron 1996, 52, 7947. (51) Liu, R. Y.; Zhang, P. W.; Gan, T.; Cook, J. M. J Org Chem 1997, 62, 7447. (52) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew Chem Int Edit 2003, 42, 5749. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65642 | - |
dc.description.abstract | 本論文主要是合成與探討分子煞車系統IMe 與IAn,以五苯荑為轉子,吲哚
衍生物為分子煞車器,煞車器與轉子間以可進行順反式異構化之雙鍵連結,以期 應用於光電控制之分子機械元件設計。利用變溫1H 和13C NMR 圖譜、DFT 理論 計算,探討轉子於煞車前與煞車後之轉動動能與動力學參數。當化合物於順式結 構時(cis-IMe ,cis-IAn),煞車器與轉子間由於立體障礙因素,使轉子之單鍵 旋轉速率較慢(煞車開啓),而當化合物於反式結構時(trans-IMe,trans-IAn) 煞車器與轉子間則因無明顯立體障礙,使轉子有較快的旋轉速率(煞車關閉), 轉子於煞車開啓與關閉狀態間旋轉速率差可達108 倍。 此分子煞車系統之控制,則是利用煞車器與轉子間連接之雙鍵,在二氯甲烷 溶劑中之順反異構化進行煞車轉換。以反式化合物(trans-IMe,trans-IAn)為起 始物,利用大於370 奈米波長為激發光源,當達到光反應穩定狀態時,反式異構 物轉換為順式異構物之效率可達90%以上,此乃由於化合物於反式結構時於370 奈米波長之吸收度較大,因此可有效率被激發至激發態,進而進行異構化反應。 同樣,順式異構物可經由激發290 奈米波長,轉換回反式異構物,當達到光反應 穩定狀態時,兩者比例約為55:45 (順式:反式),由於吸收光譜之重疊性,使 得順式異構物利用光為能源時,轉換為反式異構物之效率較差。另一方面,若使 用電化學氧化方式,將順式異構物經由陽離子自由基中間體,轉換為反式異構物 之單次轉換效率則可達72%,但由於化合物對於電化學實驗之低穩定性, 使其無 法成為一理想光電轉換之分子煞車系統。 | zh_TW |
dc.description.abstract | We designed pentiptycene-indole-derived molecular brakes IMe and IAn for the
purpose of achieving both high switching efficiency and efficient brake performance. Rotational rate and kinetic parameters were deduced form variable-temperature 1H and 13C NMR simulation and DFT calculation. The rotational rate could reach 108 -folded difference between brake on and brake off states. We compared 2 different energy input, light and electric energy, for isomerization switch of the compounds. For photoisomerization switch, the efficiency could reach > 90% from trans isomers to corresponding cis isomers when the compound was irradiated with > 370 nm light. The high switching efficiency was because of the larger absorbance for trans isomers at the wavelength. However, the photoisomerization switching efficiency was only 45% for cis isomers to corresponding trans isomers for their overlapping absorption spectra. On the other hand, the electrochemical isomerization switch could reach 72% efficiency from cis-IMe to thermodynamically stable trans-IMe through a cation radical intermediate. However, because of the instability of indole moiety upon electric pulse, the pentiptycene-indole-derived molecular brakes are not ideal systems with electric energy input. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:55:44Z (GMT). No. of bitstreams: 1 ntu-101-R99223126-1.pdf: 29028811 bytes, checksum: 24b371bff06e72ce7fcb311883a2984f (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 謝誌 .......................................................................................................................................... I
摘要 ........................................................................................................................................ II Abstract ................................................................................................................................. III Table of Contents .................................................................................................................. IV List of Figures ........................................................................................................................ VI List of Tables ........................................................................................................................... X List of appendix ..................................................................................................................... XI Chapter 1 Introduction ............................................................................................................ 1 1-1 Molecular machine ........................................................................................................ 1 1-1-1 Characteristics of molecular machines ..................................................................... 1 1-1-2 Examples of molecular machine with linear movement ........................................... 3 1-1-3 Examples of molecular machine with rotary motion ................................................ 7 1-1-4 Examples of molecular machine with other motions .............................................. 10 1-2 Isomerization of alkene ................................................................................................ 11 1-2-1 Photoisomerization of alkene .................................................................................. 11 1-2-2 Chemicals-catalyzed isomerization of alkene ......................................................... 12 1-2-3 Electron-catalyzed isomerization of alkene ............................................................ 13 1-3 Iptycene .......................................................................................................................... 14 1-3-1 Structure and nomenclature of iptycene .................................................................. 14 1-3-2 Pentiptycene ............................................................................................................ 15 1-3-3 Functionalization of pentiptycene ........................................................................... 15 1-3-4 Molecular rotors with pentiptycene ......................................................................... 17 1-4 Electrochemistry of indoles .......................................................................................... 21 1-5 Motivation ..................................................................................................................... 23 Chapter 2 Results and discussion ......................................................................................... 24 2-1 Synthesis ........................................................................................................................ 24 2-1-1 The target compounds and retrosynthesis ............................................................... 24 2-1-2 Synthesis of target compounds ................................................................................ 25 2-2 The Structure and characterization ............................................................................ 29 2-2-1 Theoretical calculation for IMe ............................................................................... 29 2-2-2 Structure of cis-IMe, cis-IAn and NMR spectra ..................................................... 32 2-2-3 The variable-temperature NMR spectra and 13C-NMR spectra simulation of cis- IMe and cis-IAn ................................................................................................................ 35 2-3 Photoisomerization properties ..................................................................................... 41 2-3-1 UV-Vis. absorption spectra of IMe and IAn ........................................................... 41 2-3-2 Photoisomerization switch of IMe and IAn ............................................................ 42 2-4 Electrochemical Properties .......................................................................................... 44 2-4-1 CV and DPV spectra of IMe and IAn ..................................................................... 44 2-4-2 Electrochemical isomerization switch of IMe and IAn ........................................... 50 Chapter 3 Conclusion ............................................................................................................ 56 Chapter 4 Experimental section ........................................................................................... 57 4-1 Materials ........................................................................................................................ 57 4-2 Methods and Instruments ............................................................................................ 59 4-3 Synthesis and Structural characterization data ........................................................ 65 | |
dc.language.iso | en | |
dc.title | 以五苯荑-吲哚衍生物為主體之分子煞車合成與性質研究 | zh_TW |
dc.title | Synthesis and Characterization of Pentiptycene-Indole-Derived Molecular Brakes | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林英智(Ying-Chih Lin),鄭原忠(Yuan-Chung Cheng) | |
dc.subject.keyword | 五苯荑,分子機械,分子煞車,吲,哚,核磁共振, | zh_TW |
dc.subject.keyword | pentiptycene,molecular machine,molecular brake,indole,NMR simulation, | en |
dc.relation.page | 129 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 28.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。