Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊吉水(Jye-Shane Yang)
dc.contributor.authorI-Tsun Leeen
dc.contributor.author李依純zh_TW
dc.date.accessioned2021-06-16T23:55:44Z-
dc.date.available2017-07-20
dc.date.copyright2012-07-20
dc.date.issued2012
dc.date.submitted2012-07-18
dc.identifier.citation(1) Balzani, V.; Credi, A.; Venturi, M. Molecular devices and machines: concepts and
perspectives for the nano world., 2008.
(2) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M. Acc. Chem. Res.
2001, 34, 445.
(3) Khuong, T.-A. V.; Nunez, J. E.; Godinez, C. E.; Garcia-Garibay, M. A. Acc. Chem.
Res. 2006, 39, 413.
(4) Raymo, F. M.; Stoddart, J. F. Chem. Rev. 1999, 99, 1643.
(5) Elizarov, A. M.; Chiu, S.-H.; Stoddart, J. F. J. Org. Chem. 2002, 67, 9175.
(6) Badjić, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845.
(7) Jimenez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Chem. Commun. 2003,
1613.
(8) Jimenez, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Angew. Chem. Int. Ed. 2000,
39, 3284.
(9) Dawson, R. E.; Lincoln, S. F.; Easton, C. J. Chem. Commun. 2008, 3980.
(10) Kinbara, K.; Aida, T. Chem. Rev. 2005, 105, 1377.
(11) Nawara, A. J.; Shima, T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006, 128,
4962.
(12) Shima, T.; Hampel, F.; Gladysz, J. A. Angew. Chem. Int. Ed. 2004, 43, 5537.
(13) Stenkamp, R. E.; Teller, D. C.; Palczewski, K. Chembiochem 2002, 3, 963.
(14) Cozzi, F.; Guenzi, A.; Johnson, C. A.; Mislow, K.; Hounshell, W. D.; Blount, J. F. J.
Am. Chem. Soc. 1981, 103, 957.
(15) Koga, N.; Kawada, Y.; Iwamura, H. J. Am. Chem. Soc. 1983, 105, 5498.
(16) Setaka, W.; Nirengi, T.; Kabuto, C.; Kira, M. J. Am. Chem. Soc. 2008, 130, 15762.
(17) Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.; Garcia, A.; Lang, F.;
Kim, M. H.; Jette, M. P. J. Am. Chem. Soc. 1994, 116, 3657.
(18) Basheer, M. C.; Oka, Y.; Mathews, M.; Tamaoki, N. Chem. Eur. J. 2010, 16, 3489.
(19) Hashim, P. K.; Thomas, R.; Tamaoki, N. Chem. Eur. J. 2011, 17, 7304.
(20) Shinkai, S.; Nakaji, T.; Ogawa, T.; Shigematsu, K.; Manabe, O. J. Am. Chem. Soc.
1981, 103, 111.
(21) Yamashita, K.-i.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850.
(22) Fyles, T. M. Chem. Soc. Rev. 2007, 36, 335.
(23) Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475.
(24) Feringa, B. L. J. Org. Chem. 2007, 72, 6635.
(25) Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C.
W. M.; Broer, D. J.; Feringa, B. L. Nature 2006, 440, 163.
(26) Dickinson, R. G.; Lotzkar, H. J. Am. Chem. Soc. 1937, 59, 472.
(27) Hepperle, S. S.; Li, Q. B.; East, A. L. L. J. Phys. Chem. A 2005, 109, 10975.
(28) Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. J.
Org. Chem. 2001, 66, 8135.
(29) Lewis, F. D.; Petisce, J. R.; Oxman, J. D.; Nepras, M. J. J. Am. Chem. Soc. 1985, 107,
203.
(30) Browne, W. R.; Pollard, M. M.; de Lange, B.; Meetsma, A.; Feringa, B. L. J. Am.
Chem. Soc. 2006, 128, 12412.
(31) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G. J. Am. Chem. Soc. 1942, 64, 2649.
(32) Yang, J.-S.; Yan, J.-L. Chem. Commun. 2008, 1501.
(33) Shahlai, K.; Hart, H. J. Org. Chem. 1991, 56, 6905.
(34) Skvarche.Vr; Shalaev, V. K. Dokl Akad Nauk Sssr+ 1974, 216, 110.
(35) Hart, H.; Shamouilian, S.; Takehira, Y. J. Org. Chem. 1981, 46, 4427.
(36) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864.
(37) Nesterov, E. E.; Zhu, Z.; Swager, T. M. J. Am. Chem. Soc. 2005, 127, 10083.
(38) Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Gavin Tsai, H.-H.;
Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2006, 128, 14109.
(39) Yang, J.-S.; Yan, J.-L.; Lin, C.-K.; Chen, C.-Y.; Xie, Z.-Y.; Chen, C.-H. Angew.
Chem. Int. Ed. 2009, 48, 9936.
(40) Yang, J. S.; Ko, C. W. J. Org. Chem. 2006, 71, 844.
(41) Kundu, S. K.; Tan, W. S.; Yan, J. L.; Yang, J. S. J. Org. Chem. 2010, 75, 4640.
(42) Annunziata, R.; Benaglia, M.; Cinquini, M.; Raimondi, L.; Cozzi, F. J. Phys. Org.
Chem. 2004, 17, 749.
(43) Yang, C.-H.; Prabhakar, C.; Huang, S.-L.; Lin, Y.-C.; Tan, W. S.; Misra, N. C.; Sun,
W.-T.; Yang, J.-S. Org. Lett. 2011, 13, 5632.
(44) Credi, A. Aust. J. Chem. 2006, 59, 157.
(45) Yang, J.-S.; Huang, Y.-T.; Ho, J.-H.; Sun, W.-T.; Huang, H.-H.; Lin, Y.-C.; Huang,
S.-J.; Huang, S.-L.; Lu, H.-F.; Chao, I. Org. Lett. 2008, 10, 2279.
(46) Sun, W.-T.; Huang, Y.-T.; Huang, G.-J.; Lu, H.-F.; Chao, I.; Huang, S.-L.; Huang, S.-
J.; Lin, Y.-C.; Ho, J.-H.; Yang, J.-S. Chem. Eur. J. 2010, 16, 11594.
(47) Chen, Y.-C.; Sun, W.-T.; Lu, H.-F.; Chao, I.; Huang, G.-J.; Lin, Y.-C.; Huang, S.-L.;
Huang, H.-H.; Lin, Y.-D.; Yang, J.-S. Chem. Eur. J. 2011, 17, 1193.
(48) Goyal, R. N.; Kumar, N.; Singhal, N. K. Bioelectroch Bioener 1998, 45, 47.
(49) Goyal, R. N.; Kumar, A.; Gupta, P. J. Chem. So.c Perk. T. 2 2001, 618.
(50) Berlin, A.; Canavesi, A.; Schiavon, G.; Zecchin, S.; Zotti, G. Tetrahedron 1996, 52,
7947.
(51) Liu, R. Y.; Zhang, P. W.; Gan, T.; Cook, J. M. J Org Chem 1997, 62, 7447.
(52) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew Chem Int Edit 2003, 42, 5749.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65642-
dc.description.abstract本論文主要是合成與探討分子煞車系統IMe 與IAn,以五苯荑為轉子,吲哚
衍生物為分子煞車器,煞車器與轉子間以可進行順反式異構化之雙鍵連結,以期
應用於光電控制之分子機械元件設計。利用變溫1H 和13C NMR 圖譜、DFT 理論
計算,探討轉子於煞車前與煞車後之轉動動能與動力學參數。當化合物於順式結
構時(cis-IMe ,cis-IAn),煞車器與轉子間由於立體障礙因素,使轉子之單鍵
旋轉速率較慢(煞車開啓),而當化合物於反式結構時(trans-IMe,trans-IAn)
煞車器與轉子間則因無明顯立體障礙,使轉子有較快的旋轉速率(煞車關閉),
轉子於煞車開啓與關閉狀態間旋轉速率差可達108 倍。
此分子煞車系統之控制,則是利用煞車器與轉子間連接之雙鍵,在二氯甲烷
溶劑中之順反異構化進行煞車轉換。以反式化合物(trans-IMe,trans-IAn)為起
始物,利用大於370 奈米波長為激發光源,當達到光反應穩定狀態時,反式異構
物轉換為順式異構物之效率可達90%以上,此乃由於化合物於反式結構時於370
奈米波長之吸收度較大,因此可有效率被激發至激發態,進而進行異構化反應。
同樣,順式異構物可經由激發290 奈米波長,轉換回反式異構物,當達到光反應
穩定狀態時,兩者比例約為55:45 (順式:反式),由於吸收光譜之重疊性,使
得順式異構物利用光為能源時,轉換為反式異構物之效率較差。另一方面,若使
用電化學氧化方式,將順式異構物經由陽離子自由基中間體,轉換為反式異構物
之單次轉換效率則可達72%,但由於化合物對於電化學實驗之低穩定性, 使其無
法成為一理想光電轉換之分子煞車系統。
zh_TW
dc.description.abstractWe designed pentiptycene-indole-derived molecular brakes IMe and IAn for the
purpose of achieving both high switching efficiency and efficient brake performance.
Rotational rate and kinetic parameters were deduced form variable-temperature 1H and
13C NMR simulation and DFT calculation. The rotational rate could reach 108 -folded
difference between brake on and brake off states. We compared 2 different energy input,
light and electric energy, for isomerization switch of the compounds. For
photoisomerization switch, the efficiency could reach > 90% from trans isomers to
corresponding cis isomers when the compound was irradiated with > 370 nm light. The
high switching efficiency was because of the larger absorbance for trans isomers at the
wavelength. However, the photoisomerization switching efficiency was only 45% for
cis isomers to corresponding trans isomers for their overlapping absorption spectra. On
the other hand, the electrochemical isomerization switch could reach 72% efficiency
from cis-IMe to thermodynamically stable trans-IMe through a cation radical
intermediate. However, because of the instability of indole moiety upon electric pulse,
the pentiptycene-indole-derived molecular brakes are not ideal systems with electric
energy input.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:55:44Z (GMT). No. of bitstreams: 1
ntu-101-R99223126-1.pdf: 29028811 bytes, checksum: 24b371bff06e72ce7fcb311883a2984f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝誌 .......................................................................................................................................... I
摘要 ........................................................................................................................................ II
Abstract ................................................................................................................................. III
Table of Contents .................................................................................................................. IV
List of Figures ........................................................................................................................ VI
List of Tables ........................................................................................................................... X
List of appendix ..................................................................................................................... XI
Chapter 1 Introduction ............................................................................................................ 1
1-1 Molecular machine ........................................................................................................ 1
1-1-1 Characteristics of molecular machines ..................................................................... 1
1-1-2 Examples of molecular machine with linear movement ........................................... 3
1-1-3 Examples of molecular machine with rotary motion ................................................ 7
1-1-4 Examples of molecular machine with other motions .............................................. 10
1-2 Isomerization of alkene ................................................................................................ 11
1-2-1 Photoisomerization of alkene .................................................................................. 11
1-2-2 Chemicals-catalyzed isomerization of alkene ......................................................... 12
1-2-3 Electron-catalyzed isomerization of alkene ............................................................ 13
1-3 Iptycene .......................................................................................................................... 14
1-3-1 Structure and nomenclature of iptycene .................................................................. 14
1-3-2 Pentiptycene ............................................................................................................ 15
1-3-3 Functionalization of pentiptycene ........................................................................... 15
1-3-4 Molecular rotors with pentiptycene ......................................................................... 17
1-4 Electrochemistry of indoles .......................................................................................... 21
1-5 Motivation ..................................................................................................................... 23
Chapter 2 Results and discussion ......................................................................................... 24
2-1 Synthesis ........................................................................................................................ 24
2-1-1 The target compounds and retrosynthesis ............................................................... 24
2-1-2 Synthesis of target compounds ................................................................................ 25
2-2 The Structure and characterization ............................................................................ 29
2-2-1 Theoretical calculation for IMe ............................................................................... 29
2-2-2 Structure of cis-IMe, cis-IAn and NMR spectra ..................................................... 32
2-2-3 The variable-temperature NMR spectra and 13C-NMR spectra simulation of cis-
IMe and cis-IAn ................................................................................................................ 35
2-3 Photoisomerization properties ..................................................................................... 41
2-3-1 UV-Vis. absorption spectra of IMe and IAn ........................................................... 41
2-3-2 Photoisomerization switch of IMe and IAn ............................................................ 42
2-4 Electrochemical Properties .......................................................................................... 44
2-4-1 CV and DPV spectra of IMe and IAn ..................................................................... 44
2-4-2 Electrochemical isomerization switch of IMe and IAn ........................................... 50
Chapter 3 Conclusion ............................................................................................................ 56
Chapter 4 Experimental section ........................................................................................... 57
4-1 Materials ........................................................................................................................ 57
4-2 Methods and Instruments ............................................................................................ 59
4-3 Synthesis and Structural characterization data ........................................................ 65
dc.language.isoen
dc.title以五苯荑-吲哚衍生物為主體之分子煞車合成與性質研究zh_TW
dc.titleSynthesis and Characterization of Pentiptycene-Indole-Derived Molecular Brakesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林英智(Ying-Chih Lin),鄭原忠(Yuan-Chung Cheng)
dc.subject.keyword五苯荑,分子機械,分子煞車,吲,&#21722,核磁共振,zh_TW
dc.subject.keywordpentiptycene,molecular machine,molecular brake,indole,NMR simulation,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2012-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
28.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved