請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65617完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 田維誠(Wei-Cheng Tian) | |
| dc.contributor.author | Yen-Cheng Chen | en |
| dc.contributor.author | 陳彥呈 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:54:11Z | - |
| dc.date.available | 2013-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-18 | |
| dc.identifier.citation | [1] M. Phillips et al. 'Volatile biomarkers of pulmonary tuberculosis in the breath,' Tuberculosis 87, 44-52 (2007)(al. 2007)
[2] Diana Poli et al. 'Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study,' Respiratory Research 6, 1-10 (2005) [3] Hiang Ping Chan et al. 'Exhaled breath analysis: Novel approach for early detection of lung cancer,' Lung Cancer 63, 164–168 (2009) [4] Hiroyuki Kataoka. 'Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis, ' Journal of Chromatography A, 733 (1996) 19-34 [5] Chris SJ Probert et al. 'Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases,' J Gastrointestin Liver Dis, September 2009 Vol.18 No 3, 337-343 [6] Michael Phillips et al. 'Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study,' The Lancet, Vol 353, June 5, 1999 [7] Michael Phillips et al. 'Volatile Markers of Breast Cancer in the Breath,' The Breast Journal, Volume 9, Number 3, 2003 184–191 [8] A. Murugan, C. Prys-Picard; W. J. Calhoun, 'Biomarkers in Asthma, ' Curr Opin Pulm Med. 15(1), 12(2009) [9] Wenqing Cao, Yixiang Duan. 'Breath Analysis Potential for Clinical Diagnosis and Exposure Assessment,' Clinical Chemistry 2006; 52:800-11. [10] Rodger L. Foltz. 'GC/MS Assays for Abused Drugs in Body Fluids,' NIDA Research Monograph 32, August 1980 [11] Duk-Dong Lee, Dae-Sik Lee. 'Environmental Gas Sensors,' IEEE SENSORS JOURNAL, VOL. 1, NO. 3, OCTOBER 2001 [12] David James et al. 'Chemical sensors for electronic nose systems, ' Microchimica Acta 149, 1–17 (2005) [13] A.W. Wang et al. 'A silicon-based ultrasonic immunoassay for detection of breast cancer antigens,' Solid State Sensors and Actuators Conference, Chicago, USA (1997) [14] Corrado Di Natale et al. 'Porphyrins-based opto-electronic nose for volatile compounds detection, ' Sensors and Actuators B 65, 220-226 (2000) [15] Todd A. Dickinson et al. 'A chemical-detecting system based on a cross-reactive optical sensor array, ' Nature 382, 697-700 (1996) [16] Chengxiang Wang et al. 'Metal oxide gas sensors: Sensitivity and influencing factors, ' Sensors 10, 2088–2106 (2010). [17] N. Barsan et al. 'Metal oxide-based gas sensor research: How to?' Sensors and Actuators B 121, 18-35 (2007) [18] M. De Wit et al. 'Chemiresistive sensors of electrically conducting poly(2,5-thienylene vinylene) and copolymers: their responses to nine organic vapours, ' Sensors and Actuators B 50, 164-172 (1998) [19] C. L. Dai et al. 'Nanoparticle SnO2 gas sensor with circuit and micro heater on chip fabricated using CMOS-MEMS technique, ' IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2007) [20] M. C. Liu et al. 'Manufacture of a polyaniline nanofiber ammonia sensor integrated with a readout circuit using the CMOS-MEMS technique, ' Sensors 9, 869-880 (2009) [21] Y. J. Pon et al. 'A low cost high sensitivity CMOS MEMS gas sensor, ' Instrumentation and Measurement Technology Conference (I2MTC), IEEE (2010) [22] H. P. Chen et al. 'A new stack electrode type CMOS compatible gas sensor, ' Sensors, IEEE (2011) [23] Young Jun Kim et al, 'Response Properties of the Gold Nanoparticle Sensors toward Benzene and Toluene Vapors,' IEEE SENSORS 2006, EXCO, Daegu, Korea / October 22-25, 2006 [24] Yvonne Joseph et al. 'Vapor sensitivity of networked gold nanoparticle chemiresistors: importance of flexibility and resistivity of the interlinkage,' J. Phys. Chem. C 111, 12855-12859 (2007) [25] C. A. Neugebauer, M. B. Webb, J. App. Phys. 1962, 33, 74. [26] T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Muellen, A. Yasuda, Adv. Mater. 2002, 14, 238. [27] S. D. Evans, S. R. Johnson, Y. L. Cheng, T. Shen, J. Mater. Chem. 2000, 10, 183. [28] N. Krasteva, B. Guse, I. Besnard, A. Yasuda, T. Vossmeyer, Sens. Actuators B 2003, 92, 137. [29] H-L Zhang et al. 'Vapour sensing using surface functionalized gold nanoparticles,' Nanotechnology 13 (2002) 439–444. [30] C. L. Bailey et al. 'Adsorption of HF and HCl on the b-AlF3 (100) surface,' Phys. Chem. Chem. Phys., 2008, 10, 2918–2924 [31] Yvonne Joseph et al. 'Gold-nanoparticle/organic linker films: self-assembly, electronic and structural characterisation, composition and vapour sensitivity,' Faraday Discuss., 2004, 125, 77–97 [32] 簡日昇,奈米金-阻抗式氣體感測器應用於微機電氣相層析偵測器之研製,天主教輔仁大學化學研究所碩士論文,2007 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65617 | - |
| dc.description.abstract | 本研究嘗試開發一種可應用於微氣相層析系統的氣體感測器,該感測器為阻抗式感測器。主要利用立體指叉狀電極的結構及單層有機分子膜包覆奈米金屬簇(Monolayer Protected nano-Au Cluster, MPCs)的感應物質作結合,其量測機制是透過感應物質對於不同氣體濃度會有相對應的阻抗變化。感測器使用CMOS-MEMS製程製作,以TSMC 0.35μm 2P4M製程為基礎加上MEMS後製程,並塗佈感應物質(MPC)後完成。其中電極是將1,3金屬層及2,4金屬層分別經由via相連形成立體指叉狀電極,此結構不但增加了單位感應面積,同時也透過金屬層的距離縮短電極間距至1μm,可降低量測阻值並增加靈敏度。在本研究中分別量測甲苯、丁醇、辛烷三種氣體,其濃度感測範圍為30ppm至5000ppm,並且成功證明其良好的量測靈敏度及線性度。 | zh_TW |
| dc.description.abstract | In this research, we developed a chemiresistive gas sensor for micro gas chromatography system. The sensing material, monolayer protected gold nano-cluster (MPC), was coated onto the three dimensional interdigitated electrodes (3D IDEs) of the sensor. The measuring principle of this sensitive material is based on the impedance variation corresponding to different gas concentrations. This chemiresistive sensor was realized by using CMOS-MEMS fabrication process is based on TSMC 0.35μm 2P4M (2 polysilicon 4 metal) process and post process. The device was completed after spreading the sensitive material MPC on its surface. The 3D IDEs are composed by the first and third layer of the metal on one side and the second and forth layer of the metal on the other side. Our 3D IDEs not only increased the sensing surface area at a given chip area but also decreased the gap distance between electrodes to 1μm. This reduced gap distance increased the sensitivity of the sensor as well as lowered the resistance of the deposited sensing material. In this research, the great linearity and sensitivity of the sensor were demonstrated with three compounds (Octane, Butanol, and Toluene) at different concentrations in the range of 30ppm to 5000ppm and manifested the good linearity and sensitivity. Our sensor with exceptional reliability was also demonstrated by a prolonged testing over three months with minimal drift. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:54:11Z (GMT). No. of bitstreams: 1 ntu-101-R99945009-1.pdf: 8001682 bytes, checksum: 76923450d05a2041d631209dc5c0cfe0 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 ............................................................................................................i
誌謝 ................................................................................................................................. ii 中文摘要 ......................................................................................................................... iii ABSTRACT .....................................................................................................................iv CONTENTS ...................................................................................................................... v LIST OF FIGURES ....................................................................................................... viii LIST OF TABLES .......................................................................................................... xii Chapter 1 Introduction .............................................................................................. 1 1.1 研究動機 ........................................................................................................ 1 1.2 微型化氣相層析儀介紹 ................................................................................ 3 1.3 氣體感測器偵測方式介紹及文獻回顧 ........................................................ 4 1.3.1 偵測方式介紹 ....................................................................................... 4 1.3.2 文獻回顧 ............................................................................................... 5 1.4 互補式金氧半導體微機電製程介紹 ............................................................ 9 1.5 論文架構 ...................................................................................................... 11 Chapter 2 氣體感測器感測原理及設計介紹 ......................................................... 12 2.1 MPC 作為氣體感測器的原理 ..................................................................... 12 2.2 CMOS MEMS 量測平台設計 ..................................................................... 15 2.2.1 立體指叉狀電極設計概念及背景 ..................................................... 15 2.2.2 設計說明 ............................................................................................. 20 2.2.3 佈局設計 ............................................................................................. 22 vi 2.3 實驗設備架設及實驗流程 .......................................................................... 26 2.3.1 實驗設備 ............................................................................................. 26 2.3.2 實驗流程圖 ......................................................................................... 28 Chapter 3 感測器後製程 ......................................................................................... 29 3.1 後製程流程及步驟 ...................................................................................... 29 3.1.1 蝕刻 ..................................................................................................... 31 3.1.2 超音波震洗 ......................................................................................... 34 3.1.3 蝕刻混合超音波震洗 ......................................................................... 35 3.2 奈米金塗佈 .................................................................................................. 39 3.2.1 塗佈與濃度關係 ................................................................................. 39 3.2.2 電性與濃度關係 ................................................................................. 45 Chapter 4 感測器量測特性及結果討論 ................................................................. 46 4.1 量測系統及量測說明 .................................................................................. 46 4.1.1 量測系統介紹 ..................................................................................... 46 4.1.2 數據量測及處理 ................................................................................. 48 4.2 立體指叉微結構對訊號所造成的影響 ...................................................... 51 4.3 不同濃度下的暫態反應 .............................................................................. 53 4.3.1 濃度變化的反應及比較 ..................................................................... 53 4.3.2 不同有機揮發性氣體於高濃度區間量測結果 ................................. 55 4.3.3 不同有機揮發氣體於低濃度區間量測結果 ..................................... 58 4.4 感測器靈敏度 .............................................................................................. 61 4.4.1 回歸曲線與相關係數 ......................................................................... 61 vii 4.4.2 數據分析與結果討論 ......................................................................... 63 4.5 訊雜比討論 .................................................................................................. 67 4.6 良好的生命週期 .......................................................................................... 68 4.7 初步GC 平台量測 ....................................................................................... 70 Chapter 5 結論和未來展望 ..................................................................................... 71 REFERENCE .................................................................................................................. 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微機電系統 | zh_TW |
| dc.subject | 立體指叉電極 | zh_TW |
| dc.subject | 單層有機分子膜包覆奈米金屬簇 | zh_TW |
| dc.subject | 氣體感測器 | zh_TW |
| dc.subject | 互補式金氧半導體製程 | zh_TW |
| dc.subject | CMOS MEMS | en |
| dc.subject | Monolayer Protected nano-Au Cluster | en |
| dc.subject | Gas sensor | en |
| dc.subject | three-dimensional interdigitated electrodes | en |
| dc.subject | MEMS System | en |
| dc.title | 奈米金塗佈於立體指叉狀電極之CMOS MEMS 氣體感測器 | zh_TW |
| dc.title | A CMOS MEMS Gas Sensor Using Monolayer Protected Gold nanoClusters Coating On Three-Dimensional interdigitated Electrodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂家榮,徐振哲 | |
| dc.subject.keyword | 微機電系統,互補式金氧半導體製程,氣體感測器,單層有機分子膜包覆奈米金屬簇,立體指叉電極, | zh_TW |
| dc.subject.keyword | MEMS System,CMOS MEMS,Gas sensor,Monolayer Protected nano-Au Cluster,three-dimensional interdigitated electrodes, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 7.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
