請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65571完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曲芳華(Fang-Hua Chu) | |
| dc.contributor.author | Chun-Wei Chuang | en |
| dc.contributor.author | 莊竣崴 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:51:11Z | - |
| dc.date.available | 2022-02-19 | |
| dc.date.copyright | 2020-02-19 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-17 | |
| dc.identifier.citation | 沈百奎、歐錫坤、林俊義 (2004) 新興蔬菜之栽培及烹調 (III)。行政院農業委員會農業試驗所編印。農業試驗所特刊第108號。pp.20-27。
謝瑞忠 (1993) 食茱萸精油含量及化學成分研究。林業試驗所研究報告季刊 8(4): 307-320。 歐辰雄、何東輯 (1997) 臺灣產芸香科植物介紹 (IX) – 花椒屬2。自然保育季刊第 17 期。pp.17。 Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (Vol. 456). Carol Stream, IL: Allured publishing corporation. Ahsan, M. U., Hayward, A., Irihimovitch, V., Fletcher, S. J., Tanurdzic, M., Pocock, A., Beveridge, C. N. and Mitter, N. (2019). Juvenility and Vegetative Phase Transition in Tropical/Subtropical Tree Crops. Frontiers in Plant Science, 10, 729. Alquézar, B., Rodríguez, A., de la Peña, M., and Peña, L. (2017). Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. Frontiers in Plant Science, 8, 1481. Benabdelkader, T., Guitton, Y., Pasquier, B., Magnard, J. L., Jullien, F., Kameli, A., and Legendre, L. (2015). Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas. Physiologia Plantarum, 153(1), 43-57. Block, A. K., Vaughan, M. M., Schmelz, E. A., and Christensen, S. A. (2019). Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta, 249(1), 21-30. Bohlmann, J., Meyer-Gauen, G., and Croteau, R. (1998). Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences, 95(8), 4126-4133. Bülow, N., and König, W. A. (2000). The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry, 55(2), 141-168. Chen, C. R., and Makhatadze, G. I. (2015). ProteinVolume: calculating molecular van der Waals and void volumes in proteins. BMC Bioinformatics, 16(1), 101. Chen, F., Tholl, D., Bohlmann, J., and Pichersky, E. (2011). The family of terpene synthases in plants: a mid‐size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66(1), 212-229. Cheng, A. X., Lou, Y. G., Mao, Y. B., Lu, S., Wang, L. J., and Chen, X. Y. (2007). Plant terpenoids: biosynthesis and ecological functions. Journal of Integrative Plant Biology, 49(2), 179-186. Cheng, M. J., Lee, K. H., Tsai, I. L., and Chen, I. S. (2005). Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorganic and Medicinal Chemistry, 13(21), 5915-5920. Chou, S. T., Chan, H. H., Peng, H. Y., Liou, M. J., and Wu, T. S. (2011). Isolation of substances with antiproliferative and apoptosis-inducing activities against leukemia cells from the leaves of Zanthoxylum ailanthoides Sieb. and Zucc. Phytomedicine, 18(5), 344-348. Christianson, D. W. (2006). Structural biology and chemistry of the terpenoid cyclases. Chemical Reviews, 106(8), 3412-3442. Christianson, D. W. (2017). Structural and chemical biology of terpenoid cyclases. Chemical Reviews, 117(17), 11570-11648. Chu, C. Y., Lee, H. J., Chu, C. Y., Yin, Y. F., and Tseng, T. H. (2009). Protective effects of leaf extract of Zanthoxylum ailanthoides on oxidation of low-density lipoprotein and accumulation of lipid in differentiated THP-1 cells. Food and Chemical Toxicology, 47(6), 1265-1271. Dudareva, N., Pichersky, E., and Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiology, 135(4), 1893-1902. Dueholm, B., Drew, D. P., Sweetman, C., and Simonsen, H. T. (2019). In planta and in silico characterization of five sesquiterpene synthases from Vitis vinifera (cv. Shiraz) berries. Planta, 249(1), 59-70. Fang, X., Li, C. Y., Yang, Y., Cui, M. Y., Chen, X. Y., and Yang, L. (2017). Identification of a novel (-)-5-epieremophilene synthase from Salvia miltiorrhiza via transcriptome mining. Frontiers in Plant Science, 8, 627. Fujita, Y., Koeduka, T., Aida, M., Suzuki, H., Iijima, Y., and Matsui, K. (2017). Biosynthesis of volatile terpenes that accumulate in the secretory cavities of young leaves of Japanese pepper (Zanthoxylum piperitum): Isolation and functional characterization of monoterpene and sesquiterpene synthase genes. Plant Biotechnology, 16-1231. Gershenzon, J., and Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology, 3(7), 408. Gonzalez, V., Touchet, S., Grundy, D. J., Faraldos, J. A., and Allemann, R. K. (2014). Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase. Journal of the American Chemical Society, 136(41), 14505-14512. Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. and Regev, A. (2011). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29(7), 644. Greenhagen, B. T., O’Maille, P. E., Noel, J. P., and Chappell, J. (2006). Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proceedings of the National Academy of Sciences, 103(26), 9826-9831. Group, C. P. W., Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., ... and Fazekas, A. J. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794-12797. Grundy, D. J., Chen, M., González, V., Leoni, S., Miller, D. J., Christianson, D. W., and Allemann, R. K. (2016). Mechanism of germacradien-4-ol synthase-controlled water capture. Biochemistry, 55(14), 2112-2121. Holopainen, J. K. (2004). Multiple functions of inducible plant volatiles. Trends in Plant Science, 9(11), 529-533. Iijima, Y., Gang, D. R., Fridman, E., Lewinsohn, E., and Pichersky, E. (2004). Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiology, 134(1), 370-379. Ilc, T., Parage, C., Boachon, B., Navrot, N., and Werck-Reichhart, D. (2016). Monoterpenol oxidative metabolism: role in plant adaptation and potential applications. Frontiers in Plant Science, 7, 509. Jin, Z., Kwon, M., Lee, A. R., Ro, D. K., Wungsintaweekul, J., and Kim, S. U. (2018). Molecular cloning and functional characterization of three terpene synthases from unripe fruit of black pepper (Piper nigrum). Archives of Biochemistry and Biophysics, 638, 35-40. Keeling, C. I., and Bohlmann, J. (2006). Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist, 170(4), 657-675. Köllner, T. G., Schnee, C., Gershenzon, J., and Degenhardt, J. (2004). The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Phytochemistry, 65(13), 1895-1902. Köllner, T. G., Gershenzon, J., and Degenhardt, J. (2009). Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry,70(9), 1139-1145. Kress, W. J. and D. L. Erickson, 2007, A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnHpsbA Spacer Region. PLoS ONE. 2(6): e508. Kurteva, V., Trendafilova, A., and Simova, S. (2017). Chemical profile of Artemisia annua from the region of Sliven, Bulgaria. A preliminary NMR study. Bulgarian Chemical Communications, 49, 209-214. Leichty, A. R., and Poethig, R. S. (2019). Development and evolution of age-dependent defenses in ant-acacias. Proceedings of the National Academy of Sciences, 116(31), 15596-15601. Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., and Chen, S. (2015). Plant DNA barcoding: from gene to genome. Biological Reviews, 90(1), 157-166. Loizzi, M., González, V., Miller, D. J., and Allemann, R. K. (2018). Nucleophilic water capture or proton loss: single amino acid switch converts δ‐cadinene synthase into germacradien‐4‐ol synthase. ChemBioChem, 19(1), 100-105. Martin, D. M., Aubourg, S., Schouwey, M. B., Daviet, L., Schalk, M., Toub, O., Lund, S. T. and Bohlmann, J. (2010). Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 10(1), 226. Montanari, R. M., Barbosa, L. C., Demuner, A. J., Silva, C. J., Carvalho, L. S., and Andrade, N. J. (2011). Chemical composition and antibacterial activity of essential oils from Verbenaceae species: Alternative sources of (E)-caryophyllene and germacrene-D. Química Nova, 34(9), 1550-1555. Morrone, D., Lowry, L., Determan, M. K., Hershey, D. M., Xu, M., and Peters, R. J. (2010). Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Applied Microbiology and Biotechnology, 85(6), 1893-1906. Mozuraitis, R., Stranden, M., Ramirez, M. I., Borg-Karlson, A. K., and Mustaparta, H. (2002). (-)-Germacrene D increases attraction and oviposition by the tobacco budworm moth Heliothis virescens. Chemical Senses, 27(6), 505-509. Mukesh, J., Nijhawan, A., Tyagi, A. K., and Khurana, J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345(2), 646-651. Nooreen, Z., Tandon, S., Yadav, N. P., Kumar, P., Xuan, T. D., and Ahmad, A. (2019). Zanthoxylum: A Review of its Traditional Uses, Naturally Occurring Constituents and Pharmacological Properties. Current Organic Chemistry, 23(12), 1307-1341. Ormeno, E., Goldstein, A., and Niinemets, Ü. (2011). Extracting and trapping biogenic volatile organic compounds stored in plant species. TrAC Trends in Analytical Chemistry, 30(7), 978-989. Pazouki, L., and Niinemets, Ü. (2016). Multi-substrate terpene synthases: their occurrence and physiological significance. Frontiers in Plant Science, 7, 1019. Penjor, T., Anai, T., Nagano, Y., Matsumoto, R., and Yamamoto, M. (2010). Phylogenetic relationships of Citrus and its relatives based on rbcL gene sequences. Tree Genetics and Genomes, 6(6), 931-939. Penjor, T., Yamamoto, M., Uehara, M., Ide, M., Matsumoto, N., Matsumoto, R., and Nagano, Y. (2013). Phylogenetic relationships of Citrus and its relatives based on matK gene sequences. PloS ONE, 8(4), e62574. Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J. and Quackenbush, J. (2003). TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19(5), 651-652. Pichersky, E., and Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5(3), 237-243. Ratnasingham, S. and Hebert, P. D. N. (2007). BOLD: The barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes 7, 355-364. Schnee, C., Köllner, T. G., Held, M., Turlings, T. C., Gershenzon, J., and Degenhardt, J. (2006). The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences, 103(4), 1129-1134. Sitarek, P., Rijo, P., Garcia, C., Skała, E., Kalemba, D., Białas, A. J., Szemraj, J., Pytel, D., Torna, M., Wysokińska, H. and Śliwiński, T. (2017). Antibacterial, anti-Inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxidative Medicine and Cellular Longevity, 2017 Article ID 7384061. Srivastava, P. L., Daramwar, P. P., Krithika, R., Pandreka, A., Shankar, S. S., and Thulasiram, H. V. (2015). Functional characterization of novel sesquiterpene synthases from Indian sandalwood, Santalum album. Scientific Reports, 5, 10095. Stranden, M., Borg-Karlson, A. K., and Mustaparta, H. (2002). Receptor neuron discrimination of the germacrene D enantiomers in the moth Helicoverpa armigera. Chemical Senses, 27(2), 143-152. Tatusov, R. L., Galperin, M. Y., Natale D. A. and Koonin, E. V. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research. 28(1): 33-36. Techen, N., L. Parveen, Z. Pan and I. A. Khan. (2014). DNA barcoding of medicinal plant material for identification. Current Opinion in Biotechnology. 25, 103-110. Tholl, D. (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, 9(3), 297-304. Tholl, D. (2015). Biosynthesis and biological functions of terpenoids in plants. In Biotechnology of Isoprenoids, 63-106. Tian, W., Chen, C., Lei, X., Zhao, J., and Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363-W367. Trapp, S. C., and Croteau, R. B. (2001). Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics, 158(2), 811-832. Wang, J. W., Park, M. Y., Wang, L. J., Koo, Y., Chen, X. Y., Weigel, D., and Poethig, R. S. (2011). miRNA control of vegetative phase change in trees. PLoS Genetics, 7(2), e1002012. Watanabe, M. (1979). Population dynamics of a pioneer tree, Zanthoxylum ailanthoides, a host plant of the swallowtail butterfly, Papilio xuthus. Researches on Population Ecology, 20, 265-277. Wattoo, J. I., Saleem, M. Z., Shahzad, M. S., Arif, A., Hameed, A., and Saleem, M. A. (2016). DNA barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species. Advancements in Life Sciences, 4(1), 03-07. Yoshikuni, Y., Martin, V. J., Ferrin, T. E., and Keasling, J. D. (2006). Engineering cotton (+)-δ-cadinene synthase to an altered function: germacrene D-4-ol synthase. Chemistry and Biology, 13(1), 91-98. Yermakov, A. I., Khlaifat, A. L., Qutob, H., Abramovich, R. A., and Khomyakov, Y. Y. (2010). Characteristics of the GC-MS mass spectra of terpenoids (C10H16). Chemical Sciences Journal, 7, 1-10. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65571 | - |
| dc.description.abstract | 食茱萸 (Zanthoxylum ailanthoides) 為臺灣中低海拔常見之花椒屬植物,具有食用與藥用價值。本研究分別選取具有刺小葉與無刺小葉之植株樣本,先以 DNA 條碼序列證實不同型態確實為同種植物,推斷為生長發育產生型態轉變。此外,經氣相層析質譜儀分析了解其揮發性成分的差異,並選定倍半萜類作為研究目標。本研究係以次世代定序 (next generation sequencing, NGS) 獲得轉錄體資料庫,並搭配生物資訊軟體進行註解與功能性分群,以及已發表的芸香科揮發性萜類合成酶基因作為參考序列進行比對,結果共獲得了18 個可能的萜類合成酶序列資料。以此為基礎進行全長基因的選殖,所採用策略包括聚合酶連鎖反應 (polymerase chain reaction, PCR) 以及 cDNA 末端增幅技術 (rapid amplification of cDNA ends, RACE),共獲得了 5 個倍半萜合成酶基因之全長序列。進一步進行酵素功能鑑定的結果顯示,ZaTPS1、ZaTPS2 與 ZaTPS3 之酵素反應主產物為 Germacrene D,ZaTPS4 則以 trans-α-Bergamotene 與 β-Farnesene 為主要產物,ZaTPS5 則為多產物的倍半萜類合成酶基因。配合表現量分析與葉組織揮發性成分分析,只有 ZaTPS1 的表現量與葉部揮發成分一致,其餘基因表達趨勢未能與植物揮發成分相符合,因此在植物體中各基因的實際產物可能需進一步的酵素作用才可達到終產物。 | zh_TW |
| dc.description.abstract | Zanthoxylum ailanthoides grows in the middle and low attitude of Taiwan. It has edible and medicinal value. In this research, plant samples including prickly leaves and non-prickled leaves respectively. The DNA barcode sequence was used to confirm whether the different types are the same plant species, and it was inferred that the growth and development associated with type change.The differences in volatile components were analyzed by gas chromatography mass spectrometry, and those of sesquiterpenes were selected as research targets. The transcriptome data were obtained by next generation sequencing (NGS), and the bioinformatics software was used for annotation and functional clustering. Combined with the published volatile terpene synthase genes belonging to Rutaceae family as a reference database, 18 possible terpene synthetase sequences were selected. the full length of five sesquiterpene synthase genes were obtained by polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE). Further characterization of enzyme function showed that the main product of ZaTPS1, ZaTPS2 and ZaTPS3 was Germacrene D. ZaTPS4 generated trans-α-Bergamotene and β-Farnesene as the main products, and ZaTPS5 was a terpene synthase gene forming multiple products. Combined with the gene expression level and the analysis of leaf volatile components, only the expression of ZaTPS1 was consistent with the volatile components of the leaves, and the expression trend of the other genes did not correspond to the volatile components of the plants. Therefore, the actual functions of the genes in the plant still need to be further confirm. But the actual function in plants needs more evidence to explain how they works in plant. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:51:11Z (GMT). No. of bitstreams: 1 ntu-109-R05625030-1.pdf: 6416834 bytes, checksum: 29bf2fdf3451a95f04a7188798331a23 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄
誌謝 ii 摘要 iv Abstract v 目錄 vi 圖目錄 ix 表目錄 xi 一、前言 1 二、文獻探討 3 2.1 食茱萸基本資訊與活性成分 3 2.2 萜類基本介紹 4 2.3 植物萜類生合成路徑研究 5 2.4 萜類合成酶特性 7 2.5 芸香科萜類研究 11 2.6 植物分子條碼應用 12 三、試驗材料與方法 13 3.1 試驗材料 13 3.2 食茱萸揮發性成分分析 17 3.3 RNA 抽取方法 17 3.4次世代定序與序列組裝分析 18 3.5 目標基因選殖 19 3.6 Genomic DNA 選殖 20 3.7 親緣關係樹狀圖分析 (Phylogenetic tree) 21 3.8 蛋白質表現載體建構與蛋白質特性預測 22 3.8.1 蛋白質表現載體 22 3.8.2 蛋白質特性預測 23 3.9 蛋白質誘導表現與西方墨點法 (western blot) 24 3.10 重組蛋白質大量表現與純化 25 3.11 酵素體外活性反應試驗 (in vitro assay) 28 3.12 大腸桿菌共表現系統 (co-expression) 試驗 (in vivo assay) 28 3.13 氣相層析質譜儀分析 30 3.14 基因表達量分析試驗 31 3.15 核磁共振分析 32 3.16 蛋白質結構預測 32 四、結果 33 4.1 DNA barcode 分析結果 33 4.2 不同型態及地區樣本之揮發性成分分析結果 36 4.3 轉錄體資料庫建立 45 4.4 目標基因選殖與分析 49 4.5 目標基因 Genomic DNA 分析結果 55 4.6 重組蛋白質之表現與純化 56 4.7 體外活性反應試驗結果 58 4.8 大腸桿菌共表達系統分析 65 4.9 NMR 鑑定結果 69 4.10 蛋白質結構模擬結果 70 4.11 表達量分析結果 73 五、討論 74 5.1 DNA 條碼的應用 74 5.2 食茱萸外觀與揮發性成分解析 75 5.3 倍半萜類合成酶基因序列分析 76 5.4 各產物之生合成途徑 77 5.5 Germacrene D 生合成相關基因特性 80 5.6 表達量分析與產物特性 82 5.7 相關生物活性與應用 83 六、結論 84 參考文獻 86 附錄一、本研究使用之核苷酸引子序列 95 附錄二、芸香科萜類參考序列於 NCBI 資料庫之登記序號 (accession number) 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 食茱萸 | zh_TW |
| dc.subject | 轉錄體 | zh_TW |
| dc.subject | 生物資訊 | zh_TW |
| dc.subject | 倍半?類合成? | zh_TW |
| dc.subject | Germacrene D | zh_TW |
| dc.subject | Germacrene D | en |
| dc.subject | Zanthoxylum ailanthoides | en |
| dc.subject | transcriptome | en |
| dc.subject | bioinformatics | en |
| dc.subject | sesquiterpene synthase | en |
| dc.title | 食茱萸之倍半萜類合成酶基因選殖與功能鑑定 | zh_TW |
| dc.title | Cloning and Characterization of Sesquiterpene Synthase
Genes from Zanthoxylum ailanthoides | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾彥學(Yen-Hsueh Tseng),孫英玄(Ying-Hsuan Sun),王升陽(Sheng-Yang Wang),林盈仲(Ying-Chung Llin) | |
| dc.subject.keyword | 食茱萸,轉錄體,生物資訊,倍半?類合成?,Germacrene D, | zh_TW |
| dc.subject.keyword | Zanthoxylum ailanthoides,transcriptome,bioinformatics,sesquiterpene synthase,Germacrene D, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU202000487 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 6.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
