Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65570
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正剛
dc.contributor.authorShao-Huan Yangen
dc.contributor.author楊邵桓zh_TW
dc.date.accessioned2021-06-16T23:51:07Z-
dc.date.available2015-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-20
dc.identifier.citation1. Breast Cancer Progress Report. 2004, National Cancer Institute. p. 12.
2. 2010 Statistics of Causes of Death. 2011, Department of Health, Executive Yua: R.O.C(Taiwan).
3. Altman, D.G. and J.M. Bland, Diagnostic tests. 1: Sensitivity and Specificity. BMJ: British Medical Journal, 1994. 308(6943): p. 1552.
4. Amadasun, M. and R. King, Textural features corresponding to textural properties. Systems, Man and Cybernetics, IEEE Transactions on, 1989. 19(5): p. 1264-1274.
5. Bartlett, M.S., J.R. Movellan, and T.J. Sejnowski, Face recognition by independent component analysis. Neural Networks, IEEE Transactions on, 2002. 13(6): p. 1450-1464.
6. Bewick, V., L. Cheek, and J. Ball, Statistics review 13: receiver operating characteristic curves. Crit Care, 2004. 8(6): p. 508-12.
7. Blue, J. and A. Chen, Spatial Variance Spectrum Analysis and Its Application to Unsupervised Detection of Systematic Wafer Spatial Variations. Automation Science and Engineering, IEEE Transactions on, 2011. 8(1): p. 56-66.
8. Freer, T.W. and M.J. Ulissey, Screening mammography with computer-aided detection: Prospective study of 12,860 patients in a community breast center1. Radiology, 2001. 220(3): p. 781-786.
9. Garra, B.S., et al., Elastography of breast lesions: initial clinical results. Radiology, 1997. 202(1): p. 79-86.
10. Giger, M.L., et al., Computerized analysis of lesions in US images of the breast. Academic Radiology, 1999. 6(11): p. 665-674.
11. Hanley, J.A., Characteristic (ROC) Curvel. Radiology, 1982. 743: p. 29-36.
12. Horsch, K., et al., Computerized diagnosis of breast lesions on ultrasound. Medical Physics, 2002. 29(2): p. 157-164.
13. Itoh, A., et al., Breast disease: clinical application of US elastography for diagnosis. Radiology, 2006. 239(2): p. 341-50.
14. Kim, K., J. Kim, and B. Min, Classification of Malignant and Benign Tumors Using Boundary Characteristics in Breast Ultrasonograms. Journal of Digital Imaging, 2002. 15(0): p. 224-227.
15. Kong, H., et al., Generalized 2D principal component analysis for face image representation and recognition. Neural Networks, 2005. 18(5-6): p. 585-594.
16. Madabhushi, A. and D.N. Metaxas, Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. Medical Imaging, IEEE Transactions on, 2003. 22(2): p. 155-169.
17. Obuchowski, N.A., Receiver Operating Characteristic Curves and Their Use in Radiology1. Radiology, 2003. 229(1): p. 3-8.
18. Ophir, J., et al., Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging, 1991. 13(2): p. 111-134.
19. Pearson, K., LIII. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 6, 1901. 2(11): p. 559-572.
20. R. Entrekin, P.J., J.R. Jago and B.A. Porter, Real time spatial compound imaging in breast ultrasound technology and early clinical experience. MedicaMundi, 1999.
21. Segyeong, J., et al., Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. Medical Imaging, IEEE Transactions on, 2004. 23(10): p. 1292-1300.
22. Stavros, A.T., et al., Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology, 1995. 196(1): p. 123-34.
23. Venta, L.A., et al., Sonographic evaluation of the breast. Radiographics : a review publication of the Radiological Society of North America, Inc, 1994. 14(1): p. 29-50.
24. Yang, J., D. Zhang, and A.F. Frangi, Two-dimensional PCA: a new approach to appearance-based face representation and recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004. 26(1): p. 131-137.
25. Zhao, W., R. Chellappa, and A. Krishnaswamy. Discriminant analysis of principal components for face recognition. 1998: IEEE.
26. Zhi, H., et al., Comparison of Ultrasound Elastography, Mammography, and Sonography in the Diagnosis of Solid Breast Lesions. Journal of Ultrasound in Medicine, 2007. 26(6): p. 807-815.
27. Zweig, M.H. and G. Campbell, Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical chemistry, 1993. 39(4): p. 561-577.
28. 林璟宏, 急速增加的台灣年輕女性乳癌:臨床病理及腫瘤生物學研究, in 臺灣大學臨床醫學研究所學位論文. 2011, 臺灣大學.
29. 劉中維, 甲狀腺腫瘤超音波特徵之量化與效力分析, in 臺灣大學工業工程學研究所學位論文. 2009, 臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65570-
dc.description.abstract超音波檢查為早期乳房腫瘤最有效的非侵入性篩檢方法之一,專業醫師根據所觀察之影像特徵提出持續追蹤或進一步檢查之建議。由於目前超音波影像皆為經由醫師主觀擷取並判斷,不同觀察者對於相同影像常有不同解讀且差異明顯的檢查結果,影像特性之客觀量化因此成為重要課題。
本研究以超音波於乳房腫瘤影像特性之量化指標為主要研究焦點,根據乳房腫瘤於超音波影像上的臨床特性,分別提出與建立其於超音波影像之量化指標,其中於灰階超音波影像上包含異質性指標、輪廓特色指標及後方回音陰影指標,而於彈性超音波影像上則提出探究腫瘤內、腫瘤邊緣以及其周圍組織的硬度特性指標,並透過醫學研究中常用於診斷腫瘤良惡性靈敏度的方法─接收者操作特徵曲線(Receiver Operative Characteristic Curve, ROC),針對每一指標對於乳房腫瘤良惡性之判斷績效做靈敏度的驗證。
本研究利用臺大醫院所提供的264筆乳房腫瘤的樣本資料來進行特徵之量化。最後,本研究將表現顯著的量化指標透過費雪判別分析尋找一最佳線性組合,期望所提出的顯著量化指標能使乳房腫瘤的良惡性判別最佳化,並以臺大醫院所提供的病歷良惡性診斷資料作為判別準確性的評斷,最佳結果可得AUC達0.8957。
zh_TW
dc.description.abstractUltrasound (US) imaging is one of the most effective non-invasive screening tools for tumors of early stage. Based on observation impressions of US images, clinicians make suggestions for patients to be subject to periodic follow-up or further cytologic tests. Because acquisition and observation of ultrasound images are mostly subjective and highly dependent on the medical staff’s experience and judgment, the observer variation often results in significantly different decisions. Objective quantification of sonographic tumor features has become a pressing issue facing the medical staff.Hence, this research focus on the quantitative indices of sonographic breast tumor features.
Base on the clinical research, we are developed including texture heterogeneity indices, morphologic indices and posterior acoustic shadow indices in gray-scale image. In elastography image, we are developed elastographic indices within the tumor, its margin and its adjacent tissues. The newly quantitative indices are further validated through their performance of the receiver operating characteristic (ROC) curves in screening and prognosis of the breast cancer. To validate the performance, we use a database of 264 cases (65 malignant lesions and 199 benign solid lesions) provided by National Taiwan University Hospital (NTUH) to retrieve these quantitative indices. Furthermore, the Fisher Linear Discriminant is employed on the significant quantitative indices to obtain a linear combination for a better classification power. The clinical report is then used to evaluate the diagnosis Accuracy. The best combination of significant quantitative indices can get the result of AUC achieve 0.8957.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:51:07Z (GMT). No. of bitstreams: 1
ntu-101-R99546008-1.pdf: 5828388 bytes, checksum: 1b1808150597d9439e5dbbd5317f2440 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 X
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 文獻探討 6
1.3.1 乳房腫瘤特徵於超音波灰階影像的成像特性 6
1.3.2 乳房腫瘤特徵於超音波彈性影像的成像特性 14
1.4 章節概要 16
第2章 乳房腫瘤於超音波影像特性 17
2.1 研究資料與方法 17
2.2 乳房腫瘤影像特性量化─超音波灰階影像 20
2.2.1 腫瘤組織內異質性指標 Interior Heterogeneous Index 20
2.2.2 輪廓指標 Margin Index 32
2.2.3 後方回音指標 Posterior Acoustic Shadow Index 48
2.3 乳房腫瘤影像特性量化─彈性影像 53
2.3.1 腫瘤內硬度指標 Interior Elasticity Index 54
2.3.2 腫瘤邊緣硬度指標 Margin and Surrounding-tissue Elasticity Index 57
2.4 乳房腫瘤影像特性量化─灰階影像結合彈性影像 61
2.4.1 灰階影像與彈性影像相對色差 62
2.4.2 主成分分析影像融合法 64
第3章 個案研究 68
3.1 臺大醫院(NTUH) 乳房腫瘤資料 69
3.2 灰階影像量化指標的效度分析 69
3.2.1 腫瘤組織內異質性指標 Interior Heterogeneous Index 70
3.2.2 輪廓指標 Margin Index 76
3.2.3 後方回音指標 Posterior Acoustic Shadow Index 92
3.3 彈性影像量化指標的效度分析 97
3.3.1 腫瘤內硬度指標 Interior Elasticity Index 97
3.3.2 腫瘤邊緣硬度指標 Margin and Surrounding-tissue Elasticity Index 99
3.4 灰階影像結合彈性影像之量化指標的效度分析 109
3.5 量化指標最佳組合 119
3.5.1 超音波灰階影像之指標的最佳組合 120
3.5.2 超音波灰階影像與彈性影像之指標的最佳組合 121
第4章 結論與未來研究建議 122
參考文獻 123
dc.language.isozh-TW
dc.title乳房腫瘤超音波特徵之量化與效力分析zh_TW
dc.titleQuantification and Performance Analysis of Breast Tumor Sonographic Featuresen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳炯年,何明志,郭文宏
dc.subject.keyword超音波影像,乳房腫瘤臨床特性,特性量化,ROC績效,zh_TW
dc.subject.keywordUltrasound Image,Clinical Breast Features,Feature Quantification,ROC Performance,en
dc.relation.page124
dc.rights.note有償授權
dc.date.accepted2012-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
5.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved