Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6554
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾顯雄(Shean-Shong Tzean)
dc.contributor.authorJui-Ya Laien
dc.contributor.author賴瑞亞zh_TW
dc.date.accessioned2021-05-17T09:14:38Z-
dc.date.available2017-06-01
dc.date.available2021-05-17T09:14:38Z-
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-14
dc.identifier.citationAbbasi, T. and Abbasi, S. 2010. Biomass energy and the environmental impacts associated with its production and utilization. Renewable and Sustainable Energy Reviews 14:919-937.
Alic, M., Akileswaran, L., and Gold, M.H. 1997. Characterization of the gene encoding manganese peroxidase isozyme 3 from Phanerochaete chrysosporium 1. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1338:1-7.
Andrawis, A., Pease, E.A., Kuan, I., Holzbaur, E., and Tien, M. 1989. Characterization of two lignin peroxidase clones from Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 162:673-680.
Asada, Y., Watanabe, A., Irie, T., Nakayama, T., and Kuwahara, M. 1995. Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1251:205-209.
Baunsgaard, L., DALBOGE, H., Houen, G., RASMUSSEN, E.M., and Welinder, K.G. 1993. Amino acid sequence of Coprinus macrorhizus peroxidase and cDNA sequence encoding Coprinus cinereus peroxidase. Eur. J. Biochem. 213:605-611.
Black, A.K. and Reddy, C. 1991. Cloning and characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochem. Biophys. Res. Commun. 179:428-435.
Blodig, W., Smith, A.T., Winterhalter, K., and Piontek, K. 1999. Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Arch. Biochem. Biophys. 370:86-92.
Bonnarme, P. and Jeffries, T.W. 1990. Mn (II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl. Environ. Microbiol. 56:210.
Bridge, P., Spooner, B., and Roberts, P. 2005. The impact of molecular data in fungal systematics. Adv. Bot. Res. 42:33-67.
Brown, J., Glenn, J., and Gold, M. 1990. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J. Bacteriol. 172:3125.
Brown, J.A., Alic, M., and Gold, M.H. 1991. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J. Bacteriol. 173:4101.
Camarero, S., Sarkar, S., Ruiz-Duenas, F.J., Martı́nez, M.J., and Martı́nez, A.T. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274:10324-10330.
Cancel, A.M., Orth, A., and Tien, M. 1993. Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59:2909-2913.
Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., and Werner, T. 2005. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933-2942.
Choinowski, T., Blodig, W., Winterhalter, K.H., and Piontek, K. 1999. The crystal structure of lignin peroxidase at 1.70 resolution reveals a hydroxy group on the Cβ of tryptophan 171: A novel radical site formed during the redox cycle1. J. Mol. Biol. 286:809-827.
Chung, N. and Aust, S.D. 1995. Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Arch. Biochem. Biophys. 316:733-737.
Conesa, A., Punt, P.J., and Van Den Hondel, C.A. 2002. Fungal peroxidases: molecular aspects and applications. J. Biotechnol. 93:143-158.
Cullen, D. and Kersten, P.J. 2004. Enzymology and molecular biology of lignin degradation. Biochemistry and molecular biology, 2nd Edition, ed. Esser, K.: Springer-Verlag New York LLC; Springer-Verlag GmbH & Co. KG. 249-273.
Dean, R., Talbot, N., Ebbole, D., Farman, M., Mitchell, T., Orbach, M., Thon, M., Kulkarni, R., Xu, J., and Pan, H. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986.
DeLano, W.L. 2002. The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific.
Dey, S., Maiti, T.K., and Bhattacharyya, B.C. 1994. Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorization. Appl. Environ. Microbiol. 60:4216-4218.
Dunford, H.B. and Stillman, J.S. 1976. On the function and mechanism of action of peroxidases. Coordination Chemistry Reviews 19:187-251.
Eaton, R.A. and Hale, M.D.C. 1993. Wood: decay, pests and protection: Chapman and Hall Ltd.
Enoki, A., Tanaka, H., and Fuse, G. 1988. Degradation of lignin-related compounds, pure cellulose, and wood components by white-rot and brown-rot fungi. Holzforschung 42:85-93.
Eriksson, K.E.L., Blanchette, R.A., and Ander, P. 1990. Microbial and enzymatic degradation of wood and wood components: Springer-verlag.
Faison, B. and Kirk, T. 1985. Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Appl. Environ. Microbiol. 49:299-304.
Fenn, P. and Kent Kirk, T. 1981. Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Arch. Microbiol. 130:59-65.
Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martinez, A.T., Otillar, R., Spatafora, J.W., and Yadav, J.S. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715-1719.
Gettemy, J.M., Ma, B., Alic, M., and Gold, M.H. 1998. Reverse transcription-PCR analysis of the regulation of the manganese peroxidase gene family. Appl. Environ. Microbiol. 64:569.
Giardina, P., Palmieri, G., Fontanella, B., Rivieccio, V., and Sannia, G. 2000. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch. Biochem. Biophys. 376:171-179.
Gilbertson, R.L. 1980. Wood-rotting fungi of North America. Mycologia 72:1-49.
Godfrey, B.J., Mayfield, M.B., Brown, J.A., and Gold, M.H. 1990. Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93:119-124.
Goodell, B. 2003. Brown-rot fungal degradation of wood: our evolving view. ACS Publications.
Goodell, B., Jellison, J., Liu, J., Daniel, G., Paszczynski, A., Fekete, F., Krishnamurthy, S., Jun, L., and Xu, G. 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 53:133-162.
Goodell, B., Nicholas, D.D., Schultz, T.P., and Meeting, A.C.S. 2003. Wood deterioration and preservation: advances in our changing world: American Chemical Society.
Hakala, T.K., Hilden, K., Maijala, P., Olsson, C., and Hatakka, A. 2006. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl. Microbiol. Biotechnol. 73:839-849.
Hall, B.G. 2007. Phylogenetic trees made easy: a how-to manual: Sinauer Associates, Inc.
Hammel, K.E., Tardone, P.J., Moen, M.A., and Price, L.A. 1989. Biomimetic oxidation of nonphenolic lignin models by Mn (III): new observations on the oxidizability of guaiacyl and syringyl substructures. Arch. Biochem. Biophys. 270:404-409.
Harvey, P.J., Palmer, J.M., Schoemaker, H.E., Dekker, H.L., and Wever, R. 1989. Pre-steady-state kinetic study on the formation of compound I and II of ligninase. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 994:59-63.
Heinfling, A., Ruiz-Duenas, F.J., Martinez, M.J., Bergbauer, M., Szewzyk, U., and Martinez, A.T. 1998. A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett. 428:141-146.
Hibbett, D.S. 2006. A phylogenetic overview of the Agaricomycotina. Mycologia 98:917-925.
Hibbett, D.S. and Donoghue, M.J. 2001. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst. Biol. 50:215.
Hilden, K., Martinez, A.T., Hatakka, A., and Lundell, T. 2005. The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet. Biol. 42:403-419.
Hilden, K.S., Makela, M.R., Hakala, T.K., Hatakka, A., and Lundell, T. 2006. Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiata. Curr. Genet. 49:97-105.
Hon, D.N.S. and Shiraishi, N. 2001. Wood and cellulosic chemistry. New York: Marcel Dekker.
Houborg, K., Harris, P., Poulsen, J.C.N., Schneider, P., Svendsen, A., and Larsen, S. 2003. The structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability. Acta Crystallogr. Sect. D. Biol. Crystallogr. 59:997-1003.
Huang, S., Tzean, S., Tsai, B., and Hsieh, H. 2009. Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea. Microbiology 155:424.
Huang, S.T. 2008. Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea and a versatile peroxidase gene from poroid white-rot fungus Ganoderma lucidum, in Department of Plant Pathology and Microbiology College of Bioresources and Agriculture. National Taiwan University.
Huelsenbeck, J.P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755.
Irie, T., Honda, Y., Ha, H.C., Watanabe, T., and Kuwahara, M. 2000. Isolation of cDNA and genomic fragments encoding the major manganese peroxidase isozyme from the white rot basidiomycete Pleurotus ostreatus. J. Wood Sci. 46:230-233.
Jonsson, L. and Nyman, P.O. 1994. Tandem lignin peroxidase genes of the fungus Trametes versicolor. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1218:408-412.
James, T.Y., Srivilai, P., Kues, U., and Vilgalys, R. 2006. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172:1877-1891.
Jeffries, T.W., Choi, S., and Kirk, T.K. 1981. Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 42:290-296.
Johansson, T. and Nyman, P.O. 1995. The gene from the white-rot fungus Trametes versicolor encoding the lignin peroxidase isozyme LP7. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1263:71-74.
Johansson, T., Nyman, P.O., and Cullen, D. 2002. Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl. Environ. Microbiol. 68:2077-2080.
Jonsson, L. and Nyman, P. 1992. Characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochimie 74:177-182.
Keyser, P., Kirk, T., and Zeikus, J. 1978. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J. Bacteriol. 135:790-797.
Kim, Y., Yeo, S., Kum, J., Song, H., and Choi, H.T. 2005. Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J. Micorbio. 43:569.
Kimura, Y., Asada, Y., Oka, T., and Kuwahara, M. 1991. Molecular analysis of a Bjerkandera adusta lignin peroxidase gene. Appl. Microbiol. Biotechnol. 35:510-514.
Kirk, T.K., Schultz, E., Connors, W., Lorenz, L., and Zeikus, J. 1978. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch. Microbiol. 117:277-285.
Kishi, K., Kusters-van Someren, M., Mayfield, M.B., Sun, J., Loehr, T.M., and Gold, M.H. 1996. Characterization of manganese (II) binding site mutants of manganese peroxidase. Biochemistry (Mosc). 35:8986-8994.
Kjalke, M., Andersen, M.B., Schneider, P., Christensen, B., Schulein, M., and Welinder, K.G. 1992. Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1120:248-256.
Koduri, R.S. and Tien, M. 1994. Kinetic analysis of lignin peroxidase: explanation for the mediation phenomenon by veratryl alcohol. Biochemistry (Mosc). 33:4225-4230.
Kuila, D., Tien, M., Fee, J.A., and Ondrias, M.R. 1985. Resonance Raman spectra of extracellular ligninase: evidence for a heme active site similar to those of peroxidases. Biochemistry (Mosc). 24:3394-3397.
Kuwahara, M., Glenn, J.K., Morgan, M.A., and Gold, M.H. 1984. Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169:247-250.
Lankinen, P., Hilden, K., Aro, N., Salkinoja-Salonen, M., and Hatakka, A. 2005. Manganese peroxidase of Agaricus bisporus: grain bran-promoted production and gene characterization. Appl. Microbiol. Biotechnol. 66:401-407.
Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam, H., Valentin, F., Wallace, I., Wilm, A., and Lopez, R. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
Levasseur, A., Piumi, F., Coutinho, P., Rancurel, C., Asther, M., Delattre, M., Henrissat, B., Pontarotti, P., and Record, E. 2008. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet. Biol. 45:638-645.
Li, D., Alic, M., and Gold, M.H. 1994. Nitrogen regulation of lignin peroxidase gene transcription. Appl. Environ. Microbiol. 60:3447-3449.
Li, D., Li, N., Ma, B., Mayfield, M.B., and Gold, M.H. 1999. Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens1. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1434:356-364.
Lobos, S., Larrondo, L., Salas, L., Karahanian, E., and Vicuna, R. 1998. Cloning and molecular analysis of a cDNA and the Cs-mnp1 gene encoding a manganese peroxidase isoenzyme from the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Gene 206:185-193.
Ma, B., Mayfield, M.B., Godfrey, B.J., and Gold, M.H. 2004. Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium. Eukaryot. Cell 3:579-588.
Martin, F., Aerts, A., Ahren, D., Brun, A., Danchin, E., Duchaussoy, F., Gibon, J., Kohler, A., Lindquist, E., and Pereda, V. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88-92.
Martinez, D., Challacombe, J., Morgenstern, I., Hibbett, D., Schmoll, M., Kubicek, C.P., Ferreira, P., Ruiz-Duenas, F.J., Martinez, A.T., and Kersten, P. 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl. Acad. Sci. 106:1954.
Martinez, D., Larrondo, L.F., Putnam, N., Gelpke, M.D.S., Huang, K., Chapman, J., Helfenbein, K.G., Ramaiya, P., Detter, J.C., and Larimer, F. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol. 22:695-700.
Martinez, M.J., Ruiz‐Duenas, F.J., Guillen, F., and Martinez, A.T. 1996. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem. 237:424-432.
Mayfield, M.B., Godfrey, B.J., and Gold, M.H. 1994. Characterization of the mnp2 gene encoding manganese peroxidase isozyme 2 from the basidiomycete Phanerochaete chrysosporium. Gene 142:231-235.
Mester, T., De Jong, E., and Field, J.A. 1995. Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Appl. Environ. Microbiol. 61:1881.
Mester, T. and Field, J.A. 1998. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J. Biol. Chem. 273:15412-15417.
Moreira, P.R., Duez, C., Dehareng, D., Antunes, A., Almeida-Vara, E., Frere, J.M., Malcata, F.X., and Duarte, J. 2005. Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J. Biotechnol. 118:339-352.
Morgenstern, I., Klopman, S., and Hibbett, D.S. 2008. Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J. Mol. Evol. 66:243-257.
Morgenstern, I., Robertson, D.L., and Hibbett, D.S. 2010. Characterization of Three mnp Genes of Fomitiporia mediterranea and Report of Additional Class II Peroxidases in the Order Hymenochaetales. Appl. Environ. Microbiol. 76:6431-6440.
Nagai, M., Sakamoto, Y., Nakade, K., and Sato, T. 2007. Isolation and characterization of the gene encoding a manganese peroxidase from Lentinula edodes. Mycoscience 48:125-130.
Naidu, P.S., Zhang, Y.Z., and Reddy, C.A. 1990. Characterization of a new lignin peroxidase gene (GLG6) from Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 173:994-1000.
Niemenmaa, O., Uusi-Rauva, A., and Hatakka, A. 2008. Demethoxylation of [O 14 CH 3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19:555-565.
Paterson, A., McCarthy, A., and Broda, P. 1984. The application of molecular biology to lignin degradation. Soc. Appl. Bacteriol. Tech. Ser. 19:33-68.
Pease, E.A. and Tien, M. 1992. Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J. Bacteriol. 174:3532-3540.
Pointing, S.B., Pelling, A.L., Smith, G.J.D., Hyde, K.D., and Reddy, C.A. 2005. Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol. Res. 109:115-124.
Poulos, T., Edwards, S., Wariishi, H., and Gold, M. 1993. Crystallographic refinement of lignin peroxidase at 2 A. J. Biol. Chem. 268:4429-4440.
Poulos, T.L. and Kraut, J. 1980. The stereochemistry of peroxidase catalysis. J. Biol. Chem. 255:8199-8205.
Pribnow, D., Mayfield, M.B., Nipper, V.J., Brown, J.A., and Gold, M.H. 1989. Characterization of a cDNA encoding a manganese peroxidase, from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 264:5036.
Rubin, E.M. 2008. Genomics of cellulosic biofuels. Nature 454:841-845.
Ruiz-Duenas, F., Camarero, S., Perez-Boada, M., Martinez, M., and Martinez, A. 2001. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans. 29:116.
Ruiz‐Duenas, F.J., Martinez, M.J., and Martinez, A.T. 1999. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 31:223-235.
Sachs, I.B., Clark, I.T., and Pew, J.C. Investigation of lignin distribution in the cell wall of certain woods. 1963: Wiley Online Library.
Sakakibara, A. 1980. A structural model of softwood lignin. Wood Science and Technology 14:89-100.
Sakamoto, Y., Nakade, K., Nagai, M., Uchimiya, H., and Sato, T. 2009. Cloning of Lentinula edodes lemnp2, a manganese peroxidase that is secreted abundantly in sawdust medium. Mycoscience 50:116-122.
Saloheimo, M., Barajas, V., Niku-Paavola, M.L., and Knowles, J.K.C. 1989. A lignin peroxidase-encoding cDNA from the white-rot fungus Phlebia radiata: characterization and expression in Trichoderma reesei. Gene 85:343-351.
Sawai-Hatanaka, H., Ashikari, T., Tanaka, Y., Asada, Y., Nakayama, T., Minakata, H., Kunishima, N., Fukuyama, K., Yamada, H., and Shibano, Y. 1995. Cloning, sequencing, and heterologous expression of a gene coding for Arthromyces ramosus peroxidase. Biosci., Biotechnol., Biochem. 59:1221-1228.
Schwarze, F.W.M.R., Engels, J., and Mattheck, C. 2000. Fungal strategies of wood decay in trees: Springer Verlag.
Sjostrom, E. 1993. Wood chemistry: fundamentals and applications. New York: Academic Press.
Stajich, J.E., Wilke, S.K., Ahren, D., Au, C.H., Birren, B.W., Borodovsky, M., Burns, C., Canback, B., Casselton, L.A., and Cheng, C. 2010. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc. Natl. Acad. Sci. 107:11889.
Stamatakis, A., Hoover, P., and Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57:758-771.
Sue Yaver, D., Weber, B., and Murrell, J. 2003. Global expression profiling of the lignin degrading fungus Ceriporiopsis subvermispora for the discovery of novel enzymes. Applied Mycology and Biotechnology 3:261-269.
Sugiura, T., Yamagishi, K., Kimura, T., Nishida, T., Kawagishi, H., and Hirai, H. 2009. Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. Biosci., Biotechnol., Biochem. 73:1793-1798.
Sundaramoorthy, M., Kishi, K., Gold, M.H., and Poulos, T.L. 1994. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J. Biol. Chem. 269:32759-32767.
Sutherland, G.R.J. and Aust, S.D. 1996. The effects of calcium on the thermal stability and activity of manganese peroxidase. Arch. Biochem. Biophys. 332:128-134.
Szklarz, G.D., Antibus, R.K., Sinsabaugh, R.L., and Linkins, A.E. 1989. Production of phenol oxidases and peroxidases by wood-rotting fungi. Mycologia:234-240.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.
Tello, M., Corsini, G., Larrondo, L.F., Salas, L., Lobos, S., and Vicuna, R. 2000. Characterization of three new manganese peroxidase genes from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1490:137-144.
Terashima, N., Atalla, R.H., and Vanderhart, D.L. 1997. Solid state NMR spectroscopy of specifically 13C-enriched lignin in wheat straw from coniferin. Phytochemistry 46:863-870.
Terauchi, R. and Kahl, G. 2000. Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol. Gen. Genet. 263:554-560.
Tien, M., Kirk, T.K., Bull, C., and Fee, J.A. 1986. Steady-state and transient-state kinetic studies on the oxidation of 3, 4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J. Biol. Chem. 261:1687-1693.
Tien, M. and Tu, C.P.D. 1987. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326:520-523.
Tonon, F. and Odier, E. 1988. Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54:466-472.
Valli, K., Wariishi, H., and Gold, M.H. 1990. Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry (Mosc). 29:8535-8539.
Wariishi, H., Akileswaran, L., and Gold, M.H. 1988. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry (Mosc). 27:5365-5370.
Welinder, K.G. 1992. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2:388-393.
Whitwam, R.E., Brown, K.R., Musick, M., Natan, M.J., and Tien, M. 1997. Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry (Mosc). 36:9766-9773.
Worrall, J.J., Anagnost, S.E., and Zabel, R.A. 1997. Comparison of wood decay among diverse lignicolous fungi. Mycologia:199-219.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6554-
dc.description.abstract木材腐朽菌依其具有降解木質素之能力與否可分為白腐菌與褐腐菌。前人研究指出在白腐菌之外,屬於褐腐菌之牛樟芝 (Antrodia cinnamomea) 亦具有木質過氧化酶之部份活性。而木質過氧化酶之有無為白腐菌及褐腐菌分類依據之一,牛樟芝具有木質過氧化酶此一事實強烈挑戰此論點。本研究以此為出發點,嘗試選殖出它種褐腐菌之木質素過氧化酶。藉由簡併式引子對自數種木材腐朽菌中增幅出具相當保守性之木質素過氧化酶基因片段。此外以末端選殖技術 (Rapid amplification of cDNA Ends, RACE) 選殖出 Laetiporus sulphureus 及香衫芝 Antrodia salmonea 之 cDNA 全長,分別為 1,278 及 1,378 個鹼基對。選定 L. sulphureus 做進一步之分析發現,其基因長度為 1,920 個鹼基對並帶有十個內插子 (intron),拷貝數 (copy number) 為一。並以熱不對稱交錯 PCR (tail-PCR) 獲取其啟動子 (promoter) 區域並進行分析,發現有兩個非成對之金屬調節元件 (metal regulatory elements, MREs) 之轉錄因子結合位點於此木質素過氧化酶基因上游,此為錳依賴型過氧化酶 (Mn-dependent peroxidase, MnP) 之特徵,此外也其具有與 MnP 較高之序列相似性。為探討其與基因表現之關聯,進行即時定量 PCR (quatitative real-time PCR) 發現於高濃度錳離子 (180 μM ) 處理下基因之表現量較控制組高 3.5 倍,但此結果與 MnP 基因受錳離子催化結果相較較不明顯。為進一步探討此基因之屬性,從譜系分析上切入,將自褐腐菌與白腐菌以及子囊菌上選殖之過氧化酶基因進行分析,採用最大似然法 (Maximum likelihood),鄰近相接法 (neighbor-joining) 及貝葉氏導出式分析 (Bayesian inference) 建構第二類過氧化酶 (class II peroxidase) 之親緣樹。結果指出基礎過氧化酶 ( basal peroxidase, BaP) 成在第二類過氧化酶中成一單系群 (monophyletic group),此類過氧化酶是否參與木質素降解功能尚未知。三種方法建構之演化樹樹型並不完全相同但分群近似,皆支持 BaP 相較於其餘類型之第二類過氧化酶較為原始,可能為現有木質分解過氧化酶之起緣酶。由於 BaP 不僅存在於擔子菌 (Basidiomycetes),也在子囊菌 (Ascomycetes) 中被發現,說明木質素過氧化酶之特化應在擔子菌自子囊菌中演化之後發生。zh_TW
dc.description.abstractIn light of our previous discovery indicating the existence of a novel lignolytic peroxidase in several wood brown rot fungi (Huang et al. 2009, Huang and Tzean, data unpublished), study on the novel basal peroxidases (BaPs) of additional brown rot and white rot Basidiomycetes was initiated. By degenerate primers, gene encoding the putative novel peroxidase was cloned from Antrodia salmonea and Laetiporus sulphureus. The coding sequences harbored 1,363 and 1,278-bp in length, respectively, and both were interrupted by 10 introns. Further analysis of the BaP amino acid sequence of L. sulphureus showed the high similarity to manganese peroxidase (MnP), and also the presence of unpaired metal regulatory elements (MREs) on the promoter region. The result of quantitative RT-PCR (qRT-PCR) revealed 3.5 times more BaP transcripts while augmented with 180 μM Mn2+ in the initial 24 hr compared with the control. One copy of BaP was shown by Southern blot. Further phylogenetic analysis of the class II fungal peroxidases of 153 taxa represent in Agaricomycetes or Ascomycete by maximum-likelihood (ML), Neighbor-joining (NJ) and Bayesian inference (BI), indicated that BaP, which clearly separated from MnP, lignin peroxidase (LiP) and versatile peroxidase (VP) clades, not only present in the tested brown rot- (A. cinnamomea, A. salmonea, L. sulphureus, Gloeophyllum trabeum and Fomitopsis pinicola), but in a small group of white rot (Ganoderma lucidum, G. australe, Phellinus noxius, Trametes versicolor, Agaricus bisporus and Pycnoporus sanguineus) Agaricomycetes and even Ascomycete (Ophiostoma quercus). The phylogenetic tree topology implicated the possible evolutionary route of BaP diverged toward MnP, LiP and VP.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:14:38Z (GMT). No. of bitstreams: 1
ntu-101-R98633006-1.pdf: 2367557 bytes, checksum: 57311c4ead9b7976364d23f723517e1c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAcknowledgment 壹
Abstract I
摘要 III
Introduction 1
Structure of wood 1
Wood rot fungi 2
Brown rot fungi 3
Lignin and lignin degrading oxidative enzymes 5
Class II peroxidase, ligninase, PODs 7
Phylogenetic studies of class II peroxidase, PODs 11
Materials and Methods 14
Fungal isolates, culture conditions and cultures preservation 14
Cloning of wood decay fungi partial putative BaP gene 14
Genomic DNA extractions 15
L. sulphureus BaP cDNA: full-length cloning and analysis 16
RNA extraction and rapid amplification of cDNA ends 16
Primer design 17
Rapid amplification of cDNA ends (RACE) 18
Promoter region of MnP gene cloning and analysis 18
Gene copy number determination: Southern blot analysis 19
Induction for MnP gene expression and analysis 21
Culture conditions of L. sulphureus 21
Extraction of RNA under different incubation conditions and time course 22
Reverse transcriptase-polymerase chain reaction (RT-PCR) 23
Real-time quantitative PCR (qPCR) analysis 23
Modeling the 3-D molecular structure of basal peroxidase 24
BaP sequences alignment and phylogenetic tree construction 25
Sequences collection and alignment 25
Phylogenetic tree construction by Maximum likelihood (ML) method 26
Phylogenetic tree construction by Neighbor-joining (NJ) method 26
Phylogenetic tree construction by Bayesian inference method 26
Results 29
Discussion 36
Reference 46
Tables and Figures 61
Appendix 84
dc.language.isoen
dc.title木材腐朽菌新型基礎過氧化酶基因特性及親緣分析zh_TW
dc.titleDemonstrating of novel basal peroxidases (BaPs) in wood brown and white rot fungi based on gene characterization and phylogenetic analysisen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉瑞芬(Ruey-Fen Liou),安寶貞(Pao-Jen Ann),袁國芳(Gwo-Fang Yuan),胡哲明(Jer-Ming Hu)
dc.subject.keyword木材腐朽菌,第二類過氧化&#37238,基礎過氧化&#37238,同源模擬,最大似然法,鄰近相接法,貝葉氏導出法,zh_TW
dc.subject.keywordwood rot fungi,class II peroxidase,basal peroxidase,homologous modeling,Maximum-likelihood,Neighbor-joining,Bayesian inference,en
dc.relation.page92
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved