請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65549完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱智賢(Chih-Hsien Chiu),吳兩新(Leang-Shin Wu) | |
| dc.contributor.author | Zhang-Min Lin | en |
| dc.contributor.author | 林張珉 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:49:51Z | - |
| dc.date.available | 2020-02-19 | |
| dc.date.copyright | 2020-02-19 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-17 | |
| dc.identifier.citation | Abdou, H. S., F. Bergeron, and J. J. Tremblay. 2014. A cell-autonomous molecular cascade initiated by amp-activated protein kinase represses steroidogenesis. Mol. Cell Biol. 34(23):4257-4271. doi: 10.1128/MCB.00734-14
Ahn, S. W., G. T. Gang, Y. D. Kim, R. S. Ahn, R. A. Harris, C. H. Lee, and H. S. Choi. 2013. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells. J. Biol. Chem. 288(22):15937-15946. doi: 10.1074/jbc.M113.451773 Alemzadeh, R., W. Jacobs, and P. Pitukcheewanont. 1996. Antiobesity effect of diazoxide in obese zucker rats. Metabolis. 45(3):334-341. doi: 10.1016/s0026-0495(96)90287-5 Azhar, S., S. Leers-Sucheta, and E. Reaven. 2003. Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and 'selective' pathway connection. Front. Biosci. 8:s998-1029. doi: 10.2741/1165 Bagatell, C. J., K. D. Dahl, and W. J. Bremner. 1994. The direct pituitary effect of testosterone to inhibit gonadotropin secretion in men is partially mediated by aromatization to estradiol. J. Androl. 15(1):15-21. Bekaert, M., Y. Van Nieuwenhove, P. Calders, C. A. Cuvelier, A. H. Batens, J. M. Kaufman, D. M. Ouwens, and J. B. Ruige. 2015. Determinants of testosterone levels in human male obesity. Endocrine 50(1):202-211. doi:10.1007/s12020-015-0563-4 Caprio, M., A. M. Isidori, A. R. Carta, C. Moretti, M. L. Dufau, and A. Fabbri. 1999. Expression of functional leptin receptors in rodent Leydig cells. Endocrinology 140(11):4939-4947. doi: 10.1210/endo.140.11.7088 Considine, R. V., M. K. Sinha, M. L. Heiman, A. Kriauciunas, T. W. Stephens, M. R. Nyce, J. P. Ohannesian, C. C. Marco, L. J. McKee, T. L. Bauer, and et al. 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Engl. J. Med. 334(5):292-295. doi: 10.1056/nejm199602013340503 Damassa, D. A., D. Kobashigawa, E. R. Smith, and J. M. Davidson. 1976. Negative feedback control of LH by testosterone: a quantitative study in male rats. Endocrinology 99(3):736-742. doi: 10.1210/endo-99-3-736 de Boer, H., L. Verschoor, J. Ruinemans-Koerts, and M. Jansen. 2005. Letrozole normalizes serum testosterone in severely obese men with hypogonadotropic hypogonadism. Diabetes Obes. Metab. 7(3):211-215. doi: 10.1111/j.1463-1326.2004.00397.x Dhindsa, S., M. G. Miller, C. L. McWhirter, D. E. Mager, H. Ghanim, A. Chaudhuri, and P. Dandona. 2010. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes care 33(6):1186-1192. doi: 10.2337/dc09-1649 Ebrahimi, F., and M. Christ-Crain. 2016. Metabolic syndrome and hypogonadism--two peas in a pod. Swiss Med. Wkly. 146:w14283. doi: 10.4414/smw.2016.14283 Evaul, K., and S. R. Hammes. 2008. Cross-talk between G protein-coupled and epidermal growth factor receptors regulates gonadotropin-mediated steroidogenesis in Leydig cells. J. Biol. Chem. 283(41):27525-27533. doi: 10.1074/jbc.M803867200 Fan, Y., Y. Liu, K. Xue, G. Gu, W. Fan, Y. Xu, and Z. Ding. 2015. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood-testis barrier. PLoS One 10(4):e0120775. doi: 10.1371/journal.pone.0120775 Frandson, R. D., W. L. Wilke, and A. D. Fails. 2009. Anatomy of the Male Reproductive System, Anatomy and Physiology of Farm Animals. 7th ed. Wiley-Blackwell, New Jersey, USA. Fushimi, H., T. Inoue, A. Ohtsuka, K. Kanao, S. Ishihara, T. Tsujimura, H. Nunotani, T. Minami, and Y. Okazaki. 1987. Plasma and testicular testosterone in experimental diabetic rats. Diabetes Res. Clin. Pr. 3(2):81-84. doi: 10.1016/S0168-8227(87)80011-6 Giagulli, V. A., J. M. Kaufman, and A. Vermeulen. 1994. Pathogenesis of the decreased androgen levels in obese men. J. Clin. Endocr. Metab. 79(4):997-1000. doi: 10.1210/jcem.79.4.7962311 Gooren, L. J., E. A. van der Veen, H. van Kessel, and W. Harmsen-Louman. 1984. Estrogens in the feedback regulation of gonadotropin secretion in men: effects of administration of estrogen to agonadal subjects and the antiestrogen tamoxifen and the aromatase inhibitor delta'-testolactone to eugonadal subjects. Andrologia 16(6):568-577. doi: 10.1111/j.1439-0272.1984.tb00414.x Guerre-Millo, M. 2002. Adipose tissue hormones. J. Endocrinol. Invest. 25(10):855-861. doi: 10.1007/bf03344048 Heymsfield, S. B., A. S. Greenberg, K. Fujioka, R. M. Dixon, R. Kushner, T. Hunt, J. A. Lubina, J. Patane, B. Self, P. Hunt, and M. McCamish. 1999. Recombinant leptin for weight loss in obese and lean adultsa randomized, controlled, dose-escalation trial. JAMA 282(16):1568-1575. doi: 10.1001/jama.282.16.1568 Hong, C. Y., J. H. Park, R. S. Ahn, S. Y. Im, H. S. Choi, J. Soh, S. H. Mellon, and K. Lee. 2004. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol. Cell Biol. 24(7):2593-2604. doi: 10.1128/mcb.24.7.2593-2604.2004 Hou, J. W., D. C. Collins, and R. L. Schleicher. 1990. Sources of cholesterol for testosterone biosynthesis in murine Leydig cells. Endocrinology 127(5):2047-2055. doi: 10.1210/endo-127-5-2047 Irwig, M. S., G. S. Fraley, J. T. Smith, B. V. Acohido, S. M. Popa, M. J. Cunningham, M. L. Gottsch, D. K. Clifton, and R. A. Steiner. 2004. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80(4):264-272. doi: 10.1159/000083140 Isidori, A. M., M. Caprio, F. Strollo, C. Moretti, G. Frajese, A. Isidori, and A. Fabbri. 1999. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J. Clin Endocr. Metab. 84(10):3673-3680. doi: 10.1210/jcem.84.10.6082 Klop, B., J. W. Elte, and M. C. Cabezas. 2013. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5(4):1218-1240. doi: 10.3390/nu5041218 Kojima, Y., S. Sasaki, Y. Hayashi, Y. Umemoto, K. Morohashi, and K. Kohri. 2006. Role of transcription factors Ad4bp/SF-1 and DAX-1 in steroidogenesis and spermatogenesis in human testicular development and idiopathic azoospermia. Int. J. Urol. 13(6):785-793. doi: 10.1111/j.1442-2042.2006.01403.x Lin, T., D. Wang, and D. M. Stocco. 1998. Interleukin-1 inhibits Leydig cell steroidogenesis without affecting steroidogenic acute regulatory protein messenger ribonucleic acid or protein levels. J. Endocrinol. 156(3):461-467. doi: 10.1677/joe.0.1560461 Liu, C. C., W. J. Wu, Y. C. Lee, C. J. Wang, H. L. Ke, W. M. Li, H. L. Hsiao, H. C. Yeh, C. C. Li, Y. H. Chou, C. H. Huang, and S. P. Huang. 2009a. The prevalence of and risk factors for androgen deficiency in aging Taiwanese men. J. Sex. Med. 6(4):936-946. doi: 10.1111/j.1743-6109.2008.01171.x Liu, H.-Y., S. Y. Cao, T. Hong, J. Han, Z. Liu, and W. Cao. 2009b. Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus (T1DM). J. Biol. Chem. 284(40):27090-27100. doi: 10.1074/jbc.M109.016675 Liu, X., K. Lee, and A. E. Herbison. 2008. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 149(9):4605-4614. doi: 10.1210/en.2008-0321 Manna, P. R., D. M. Stocco, and I. T. Huhtaniemi. 2009. Mechanisms of protein kinase C signaling in the modulation of 3', 5'-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells. Endocrinology 150(7):3308-3317. doi: 10.1210/en.2008-1668 Mawhinney, M., and A. Mariotti. 2013. Physiology, pathology and pharmacology of the male reproductive system. Periodontology 2000 61(1):232-251. doi: 10.1111/j.1600-0757.2011.00408.x Mehran, Arya E., Nicole M. Templeman, G. S. Brigidi, Gareth E. Lim, K.-Y. Chu, X. Hu, Jose D. Botezelli, A. Asadi, Bradford G. Hoffman, Timothy J. Kieffer, Shernaz X. Bamji, Susanne M. Clee, and James D. Johnson. 2012. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab. 16(6):723-737. doi: 10.1016/j.cmet.2012.10.019 Meikle, A. W., S. J. Benson, X. H. Liu, W. D. Boam, and J. D. Stringham. 1989. Nonesterified fatty acids modulate steroidogenesis in mouse Leydig cells. Am. J. Physiol. 257(6 Pt 1):E937-942. doi: 10.1152/ajpendo.1989.257.6.E937 Messager, S., E. E. Chatzidaki, D. Ma, A. G. Hendrick, D. Zahn, J. Dixon, R. R. Thresher, I. Malinge, D. Lomet, M. B. Carlton, W. H. Colledge, A. Caraty, and S. A. Aparicio. 2005. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. P. Natl. Acad. Sci. USA 102(5):1761-1766. doi: 10.1073/pnas.0409330102 Miller, W. L., and H. S. Bose. 2011. Early steps in steroidogenesis: intracellular cholesterol trafficking. J. Lipid Res. 52(12):2111-2135. doi: 10.1194/jlr.R016675 Moon, C., J. S. Kim, H. Jang, H. J. Lee, S. H. Kim, S. S. Kang, C. S. Bae, J. C. Kim, S. Kim, Y. Lee, and T. Shin. 2008. Activation of Akt/protein kinase B and extracellular signal-regulated kinase in rats with acute experimental testicular torsion. J. Vet. Med. Sci. 70(4):337-341. doi: 10.1292/jvms.70.337 Neirijnck, Y., P. Calvel, K. R. Kilcoyne, F. Kuhne, I. Stevant, R. J. Griffeth, J. L. Pitetti, S. A. Andric, M. C. Hu, F. Pralong, L. B. Smith, and S. Nef. 2018. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB J. 32(6):3321-3335. doi: 10.1096/fj.201700769RR Nelson, L. R., and S. E. Bulun. 2001. Estrogen production and action. J. Am. Acad. Dermatol. 45(3 Suppl):S116-124. doi: 10.1067/mjd.2001.117432 Nestler, J. E., C. O. Barlascini, D. W. Matt, K. A. Steingold, S. R. Plymate, J. N. Clore, and W. G. Blackard. 1989. Suppression of serum insulin by diazoxide reduces serum testosterone levels in obese women with polycystic ovary syndrome. J Clin. Endocr. Metab. 68(6):1027-1032. doi: 10.1210/jcem-68-6-1027 Nguyen, R. H., A. J. Wilcox, R. Skjaerven, and D. D. Baird. 2007. Men's body mass index and infertility. Hum. Reprod. (Oxford, England) 22(9):2488-2493. doi: 10.1093/humrep/dem139 O'Connor, A. E., and D. M. De Kretser. 2004. Inhibins in normal male physiology. Semin. Reprod. Med. 22(3):177-185. doi: 10.1055/s-2004-831893 Pasquali, R., F. Casimirri, R. De Iasio, P. Mesini, S. Boschi, R. Chierici, R. Flamia, M. Biscotti, and V. Vicennati. 1995. Insulin regulates testosterone and sex hormone-binding globulin concentrations in adult normal weight and obese men. J. Clin. Endocr. Metab. 80(2):654-658. doi: 10.1210/jcem.80.2.7852532 Pasquali, R., C. Macor, V. Vicennati, F. Novo, R. De lasio, P. Mesini, S. Boschi, F. Casimirri, and R. Vettor. 1997. Effects of acute hyperinsulinemia on testosterone serum concentrations in adult obese and normal-weight men. Metabolis. 46(5):526-529. doi: 10.1016/s0026-0495(97)90189-x Pitteloud, N., M. Hardin, A. A. Dwyer, E. Valassi, M. Yialamas, D. Elahi, and F. J. Hayes. 2005a. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J. Clin. Endocr. Metab. 90(5):2636-2641. doi: 10.1210/jc.2004-2190 Pitteloud, N., V. K. Mootha, A. A. Dwyer, M. Hardin, H. Lee, K.-F. Eriksson, D. Tripathy, M. Yialamas, L. Groop, D. Elahi, and F. J. Hayes. 2005b. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 28(7):1636. doi: 10.2337/diacare.28.7.1636 Rone, M. B., A. S. Midzak, D. B. Martinez-Arguelles, J. Fan, X. Ye, J. Blonder, and V. Papadopoulos. 2014. Steroidogenesis in MA-10 mouse Leydig cells is altered via fatty acid import into the mitochondria. Biol. Reprod. 91(4):96. doi: 10.1095/biolreprod.114.121434 Sallmen, M., D. P. Sandler, J. A. Hoppin, A. Blair, and D. D. Baird. 2006. Reduced fertility among overweight and obese men. Epidemiology (Cambridge, Mass.) 17(5):520-523. doi: 10.1097/01.ede.0000229953.76862.e5 Sambrook, J., and D. W. Russell. 2006. SDS-Polyacrylamide Gel Electrophoresis of Proteins. Cold Spring Harbor Protoc. 2006(4) doi: 10.1101/pdb.prot4540 Sandberg, M., E. Butt, C. Nolte, L. Fischer, M. Halbrugge, J. Beltman, T. Jahnsen, H. G. Genieser, B. Jastorff, and U. Walter. 1991. Characterization of Sp-5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole- 3',5'-monophosphorothioate (Sp-5,6-DCl-cBiMPS) as a potent and specific activator of cyclic-AMP-dependent protein kinase in cell extracts and intact cells. Biochem. J. 279 (Pt 2):521-527. doi: 10.1042/bj2790521 Schneider, G., M. A. Kirschner, R. Berkowitz, and N. H. Ertel. 1979. Increased estrogen production in obese men. J. Clin. Endocr. Metab. 48(4):633-638. doi: 10.1210/jcem-48-4-633 Schoeller, E. L., G. Albanna, A. I. Frolova, and K. H. Moley. 2012. Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary-gonadal axis in Akita diabetic mice and restores male fertility. Diabetes 61(7):1869-1878. doi: 10.2337/db11-1527 Schumacher, M., M. Schwarz, and F. Leidenberger. 1985. Desensitization of mouse Leydig cells in vivo: evidence for the depletion of cellular cholesterol. Biol Reprod. 33(2):335-345. doi: 10.1095/biolreprod33.2.335 Sharma, R., and A. Agarwal. 2011. Spermatogenesis: an overview. in: A. Zini and A. Agarwal, editors, sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. Springer New York, New York, USA. p. 19-44. Shibata, M., R. L. Friedman, S. Ramaswamy, and T. M. Plant. 2007. Evidence that down regulation of hypothalamic KiSS-1 expression is involved in the negative feedback action of testosterone to regulate luteinising hormone secretion in the adult male rhesus monkey (Macaca mulatta). J. Neuroendocrinol. 19(6):432-438. doi: 10.1111/j.1365-2826.2007.01549.x Shimizu-Albergine, M., L.-C. L. Tsai, E. Patrucco, and J. A. Beavo. 2012. cAMP-specific phosphodiesterases 8A and 8B, essential regulators of leydig cell steroidogenesis. Mol. Pharmacol. 81(4):556. doi: 10.1124/mol.111.076125 Smith, J. T., B. V. Acohido, D. K. Clifton, and R. A. Steiner. 2006. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J. Neuroendocrinol. 18(4):298-303. doi: 10.1111/j.1365-2826.2006.01417.x Suzuki, T., M. Kasahara, H. Yoshioka, K.-i. Morohashi, and K. Umesono. 2003. LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol. Cell. Biol. 23(1):238. doi: 10.1128/MCB.23.1.238-249.2003 Tremblay, J. J. 2015. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 103:3-10. doi: 10.1016/j.steroids.2015.08.001 Tsujishita, Y., and J. H. Hurley. 2000. Structure and lipid transport mechanism of a StAR-related domain. Nat. Struct. Biol. 7(5):408-414. doi: 10.1038/75192 Vahouny, G. V., R. Chanderbhan, R. Hinds, V. A. Hodges, and C. R. Treadwell. 1978. ACTH-induced hydrolysis of cholesteryl esters in rat adrenal cells. J. Lipid Res. 19(5):570-577. Vasta, V., M. Shimizu-Albergine, and J. A. Beavo. 2006. Modulation of Leydig cell function by cyclic nucleotide phosphodiesterase 8A. Proc. Natl. Acad. Sci. U.S.A. 103(52):19925-19930. doi: 10.1073/pnas.0609483103 Walker, W. H., and J. Cheng. 2005. FSH and testosterone signaling in Sertoli cells. Reproduction 130(1):15-28. doi: 10.1530/rep.1.00358 Wang, H., Y. Cai, Y. Shao, X. Zhang, N. Li, H. Zhang, and Z. Liu. 2018. Fish oil ameliorates high-fat diet induced male mouse reproductive dysfunction via modifying the rhythmic expression of testosterone synthesis related genes. Int. J. Mol. Sci. 19(5):1325. doi: 10.3390/ijms19051325 Whorton, D., R. M. Krauss, S. Marshall, and T. H. Milby. 1977. Infertility in male pesticide workers. Lancet 2(8051):1259-1261. doi: 10.1016/s0140-6736(77)92665-4 Yang, X., S. Mei, H. Gu, H. Guo, L. Zha, J. Cai, X. Li, Z. Liu, and W. Cao. 2014. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet. J. Endocrinol. 221(3):469-480. doi: 10.1530/JOE-14-0117 Zhao, Y., Y. Tan, J. Dai, B. Wang, B. Li, L. Guo, J. Cui, G. Wang, W. Li, and L. Cai. 2012. Zinc deficiency exacerbates diabetic down-regulation of Akt expression and function in the testis: essential roles of PTEN, PTP1B and TRB3. J. Nutr. Biochem. 23(8):1018-1026. doi: 10.1016/j.jnutbio.2011.05.011 Zumoff, B., L. K. Miller, and G. W. Strain. 2003. Reversal of the hypogonadotropic hypogonadism of obese men by administration of the aromatase inhibitor testolactone. Metabolis. 52(9):1126-1128. doi: 10.1016/s0026-0495(03)00186-0 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65549 | - |
| dc.description.abstract | 睪固酮 (Testosterone) 主要由雄性生殖系統中之睪丸萊迪氏細胞 (Leydig cell) 分泌,並受到下視丘-腦下垂體-性腺軸(Hypothalamic-pituitary-gonadal axis) 調控,當萊迪氏細胞接受排卵素 (Luteinizing hormone, LH) 的訊號時,便會啟動下游訊息傳遞路徑,增加類固醇生成。近年研究發現,有代謝疾病的男性,常發生血中睪固酮濃度較低的性腺功能低下現象,但血中LH濃度卻與健康男性沒有差異,暗示有其他可能因素影響睪固酮分泌。目前已知代謝疾病常伴隨著胰島素上升,然尚未有研究探討長期高胰島素對睪固酮分泌的影響,因此本研究目的在探討長期胰島素是否會影響睪丸萊迪氏細胞的睪固酮分泌。
為探討高胰島素對類固醇生成之影響,以皮下注射給予C57BL/6J小鼠緩釋型胰島素glargine,兩天一次為期八周。結果發現長期注射glargine使空腹血糖及胰島素顯著增加。而LH濃度沒有差異,但睪固酮卻顯著下降。分析睪丸內胰島素訊息傳遞及類固醇生成相關蛋白質表現,發現長期glargine的處理會使睪丸產生胰島素阻抗 (insulin resistance),且類固醇生成相關酵素3β-HSD1則有顯著減少,顯示部分類固醇生成酵素受到抑制。而類固醇生成相關酵素之抑制因子,不論是DAX1的蛋白質表現量或AMPK的磷酸化程度皆沒有差異。為探討其可能機制,我們使用小鼠腫瘤細胞株MA-10以glargine處理48小時後,並以人類絨毛膜激性腺素 (Human chorionic gonadotropin, hCG)、毛喉素 (Forskolin) 及 8-Br-cAMP (Protein kinase A 促進劑) 刺激類固醇生成,結果發現glargine能抑制以毛喉素及hCG刺激下之類固醇生成,並降低StAR的蛋白質表現量,但CYP11A1的蛋白質表現量則沒有差異,然以8-Br-cAMP刺激則未觀察到類固醇生成下降。 綜合以上所述,長期處理glargine會導致萊迪氏細胞之類固醇生成下降,其可能透過降低部分類固醇生成相關蛋白質,如StAR及3β-HSD1的表現量,以及導致胰島素阻抗。然胰島素阻抗與glargine抑制萊迪氏細胞類固醇生成之關聯性,則需更多研究闡明。 | zh_TW |
| dc.description.abstract | Testosterone is mainly secreted by testicular Leydig cells and is regulated by hypothalamic-pituitary-gonadal axis in male. Once Leydig cell receives luteinizing hormone (LH), it will initiate downstream signal transduction and increase steroidogenesis. Recent studies have found that men with metabolic disorder often have low blood testosterone, one of the symptoms of hypogonadism. However, the blood LH level in these men are not different in comparison to healthy individuals. This indicates some other factors may affect testosterone secretion. Researches have shown that elevated insulin is common in men with metabolic diseases. However, no study has investigated whether long-term high blood insulin affects testosterone secretion. Hence, the aim of this study is to evaluate the effects of elevated insulin on testosterone secretion in testicular Leydig cells.
To investigate the effects of high insulin on steroidogenesis, we subcutaneously injected slow-acting insulin, glargine, every 2 days for 8 weeks in C57BL/6J mice. We found that long-term injection of glargine leaded to increased fasting blood glucose and insulin levels. The testosterone concentration in glargine group was lower than control group, while the LH level was not different between two groups. We found that glargine treatment would cause testicular insulin resistance. Steroidogenic enzyme expression, 3β-HSD1, in glargine treated mice was significantly decreased in comparison to control group, implying the expressions of steroidogenic enzymes were partially inhibited. The expressions of steroidogenic suppressors, DAX1 and AMPK, were not different between two groups. To further investigate the possible mechanism, we used MA-10 mouse tumor Leydig cell line as in vitro model. MA-10 cells were treated with glargine for 48 hours and increased the steroid (progesterone) production after human chorionic gonadotropin (hCG), forskolin, and 8-Br-cAMP (Protein kinase A agonist) treatment. Results showed that glargine would inhibit the steroidogenesis of MA-10 cells induced by forskolin or hCG and decrease the expression of StAR, while the expression of CYP11A1 was not different. However, glargine treatment did not inhibit the steroid production of MA-10 cells in 8-Br-cAMP treated group. In conclusion, our results showed that long-term glargine would decrease steroidogenesis in Leydig cells, possibly is by means of decreasing the expressions of some steroidogenic proteins such as StAR and 3β-HSD1 and causing insulin resistance. However, the relationship between insulin resistance and glargine inhibited steroidogenesis on Leydig cells, needs more studies to verify. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:49:51Z (GMT). No. of bitstreams: 1 ntu-109-R06626013-1.pdf: 2653111 bytes, checksum: 351fad451d58daf8da3057db1ef51300 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 中文摘要 iii Abstract v Contents vii Figure Index viii Table Index ix 1. Introduction 1 2. Literature Review 3 2.1 Male reproductive system 3 2.1.1 Structure of testis 4 2.1.2 Hypothalamic-pituitary-gonadal axis 5 2.1.3 Steroidogenesis in testicular Leydig cell 8 2.2 Low gonadal functions: Hypogonadism 13 2.2.1 Primary hypogonadism 13 2.2.2 Secondary hypogonadism 14 2.3 Metabolic disorders-associated hypogonadism 15 2.3.1 Possible mechanisms of metabolic disorder-associated hypogonadism 16 2.3.2 Regulation of insulin in steroidogenesis of Leydig cells 18 2.4 Aim of this study 20 3. Materials and Methods 21 3.1 Animal 21 3.2 Testicular protein extraction 22 3.3 LH and insulin assay 23 3.4 Cell culture 23 3.5 Progesterone and testosterone enzyme-linked immunosorbent assay 24 3.6 Western blot 25 3.7 Statistical analysis 27 4. Results 29 5. Discussion 54 6. Conclusion 60 7. References 61 | |
| dc.language.iso | en | |
| dc.subject | 胰島素 | zh_TW |
| dc.subject | 類固醇生合成 | zh_TW |
| dc.subject | 睪丸 | zh_TW |
| dc.subject | 胰島素阻抗 | zh_TW |
| dc.subject | Insulin resistance | en |
| dc.subject | Steroidogenesis | en |
| dc.subject | Insulin | en |
| dc.subject | Testis | en |
| dc.title | 外源給予緩釋型胰島素glargine對小鼠萊迪氏細胞類固醇生成作用之影響 | zh_TW |
| dc.title | The effects of exogenous insulin glargine on steroidogenesis in mouse Leydig cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾德憲 | |
| dc.subject.keyword | 胰島素,胰島素阻抗,睪丸,類固醇生合成, | zh_TW |
| dc.subject.keyword | Insulin,Insulin resistance,Testis,Steroidogenesis, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU202000356 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
