請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張國柱 | |
| dc.contributor.author | Yao-Chen Chuang | en |
| dc.contributor.author | 莊曜禎 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:49:26Z | - |
| dc.date.available | 2012-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-20 | |
| dc.identifier.citation | Alderson, N. L., M. E. Chachich, et al. (2003). 'The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats.' Kidney Int 63(6): 2123-2133.
Amarnath, V., K. Amarnath, et al. (2004). 'Pyridoxamine: an extremely potent scavenger of 1,4-dicarbonyls.' Chem Res Toxicol 17(3): 410-415. Andersen, S. (2004). 'Angiotensin II receptor blockade in diabetic nephropathy.' Dan Med Bull 51(3): 274-294. Aronson, D. (2003). 'Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes.' J Hypertens 21(1): 3-12. Basta, G., A. M. Schmidt, et al. (2004). 'Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes.' Cardiovasc Res 63(4): 582-592. Baynes, J. W. (1991). 'Role of oxidative stress in development of complications in diabetes.' Diabetes 40(4): 405-412. Beisswenger, P. J., Z. Makita, et al. (1995). 'Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes.' Diabetes 44(7): 824-829. Berrou, J., I. Tostivint, et al. (2009). 'Advanced glycation end products regulate extracellular matrix protein and protease expression by human glomerular mesangial cells.' Int J Mol Med 23(4): 513-520. Bethesda, M. (2003). 'Renal Data System: USRDS 2003 Annual report: Atlas of endstage renal disease in the United States.' National Institutes of Health. National Institute of Diabetes and Digestive and Kidney Diseases. Bohlender, J., S. Franke, et al. (2005). 'Advanced glycation end products: a possible link to angiotensin in an animal model.' Ann N Y Acad Sci 1043: 681-684. Bohlender, J. M., S. Franke, et al. (2005). 'Advanced glycation end products and the kidney.' Am J Physiol Renal Physiol 289(4): F645-659. Boulanger, E., F. Puisieux, et al. (2007). '[Aging: role and control of glycation].' Rev Med Interne 28(12): 832-840. Brousil, J. A. and J. M. Burke (2003). 'Olmesartan medoxomil: an angiotensin II-receptor blocker.' Clin Ther 25(4): 1041-1055. Brownlee, M., H. Vlassara, et al. (1986). 'Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking.' Science 232(4758): 1629-1632. Bucala, R., K. J. Tracey, et al. (1991). 'Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes.' J Clin Invest 87(2): 432-438. Busch, M., C. Fleck, et al. (2006). 'Asymmetrical (ADMA) and symmetrical dimethylarginine (SDMA) as potential risk factors for cardiovascular and renal outcome in chronic kidney disease - possible candidates for paradoxical epidemiology?' Amino Acids 30(3): 225-232. Busch, M., S. Franke, et al. (2004). 'Potential cardiovascular risk factors in chronic kidney disease: AGEs, total homocysteine and metabolites, and the C-reactive protein.' Kidney Int 66(1): 338-347. Chang, K. C., K. L. Hsu, et al. (2003). 'Effects of diabetes and gender on mechanical properties of the arterial system in rats: aortic impedance analysis.' Exp Biol Med (Maywood) 228(1): 70-78. Chang, K. C., J. T. Liang, et al. (2009). 'Prevention of arterial stiffening by pyridoxamine in diabetes is associated with inhibition of the pathogenic glycation on aortic collagen.' Br J Pharmacol 157(8): 1419-1426. Chang, K. C., C. D. Tseng, et al. (2006). 'Arterial stiffening and cardiac hypertrophy in a new rat model of type 2 diabetes.' Eur J Clin Invest 36(1): 1-7. Chang, K. C., C. D. Tseng, et al. (2006). 'Aminoguanidine prevents arterial stiffening in a new rat model of type 2 diabetes.' Eur J Clin Invest 36(8): 528-535. Chuang, Y. C., M. S. Wu, et al. (2012). 'Effects of olmesartan on arterial stiffness in rats with chronic renal failure.' Cardiovasc Diabetol 11(1): 66. Chuang, Y. C., M. S. Wu, et al. (2012). 'Pyridoxamine ameliorates the effects of advanced glycation end products on subtotal nephrectomy induced chronic renal failure rats.' Journal of functional foods 4: 679-686. Chue, C. D., J. N. Townend, et al. (2010). 'Arterial stiffness in chronic kidney disease: causes and consequences.' Postgrad Med J 86(1019): 817-823. Chue, C. D., J. N. Townend, et al. (2010). 'Republished paper: Arterial stiffness in chronic kidney disease: causes and consequences.' Postgrad Med J 86(1019): 560-566. Cooper, M. E. (2001). 'Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy.' Diabetologia 44(11): 1957-1972. Corman, B., M. Duriez, et al. (1998). 'Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy.' Proc Natl Acad Sci U S A 95(3): 1301-1306. Coughlan, M. T., A. L. Mibus, et al. (2008). 'Oxidative stress and advanced glycation in diabetic nephropathy.' Ann N Y Acad Sci 1126: 190-193. Degenhardt, T. P., N. L. Alderson, et al. (2002). 'Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat.' Kidney Int 61(3): 939-950. Deuther-Conrad, W., S. Franke, et al. (2001). 'Differences in the modulating potential of advanced glycation end product (AGE) peptides versus AGE proteins.' Kidney Int Suppl 78: S63-66. Fliser, D., K. K. Wagner, et al. (2005). 'Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes.' J Am Soc Nephrol 16(4): 1135-1140. Forbes, J. M., M. T. Coughlan, et al. (2008). 'Oxidative stress as a major culprit in kidney disease in diabetes.' Diabetes 57(6): 1446-1454. Ford, M. L., L. A. Tomlinson, et al. (2010). 'Aortic stiffness is independently associated with rate of renal function decline in chronic kidney disease stages 3 and 4.' Hypertension 55(5): 1110-1115. Fujimoto, S., M. Satoh, et al. (2008). 'Olmesartan ameliorates progressive glomerular injury in subtotal nephrectomized rats through suppression of superoxide production.' Hypertens Res 31(2): 305-313. Fukami, K., M. E. Cooper, et al. (2005). 'Agents in development for the treatment of diabetic nephropathy.' Expert Opin Investig Drugs 14(3): 279-294. Fukami, K., S. Ueda, et al. (2004). 'AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction.' Kidney Int 66(6): 2137-2147. Gaballa, M. A., T. E. Raya, et al. (1999). 'Effects of endothelial and inducible nitric oxide synthases inhibition on circulatory function in rats after myocardial infarction.' Cardiovasc Res 42(3): 627-635. Galle, J. (2001). 'Oxidative stress in chronic renal failure.' Nephrol Dial Transplant 16(11): 2135-2137. Goldin, A., J. A. Beckman, et al. (2006). 'Advanced glycation end products: sparking the development of diabetic vascular injury.' Circulation 114(6): 597-605. Gonzalez Rico, M., M. J. Puchades, et al. (2006). '[Effect of oxidative stress in patients with chronic renal failure].' Nefrologia 26(2): 218-225. Haller, H., S. Ito, et al. (2011). 'Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes.' N Engl J Med 364(10): 907-917. Hartog, J. W., A. J. Smit, et al. (2004). 'Advanced glycation end products in kidney transplant patients: a putative role in the development of chronic renal transplant dysfunction.' Am J Kidney Dis 43(6): 966-975. Henle, T. and T. Miyata (2003). 'Advanced glycation end products in uremia.' Adv Ren Replace Ther 10(4): 321-331. Hobo, A., Y. Yuzawa, et al. (2009). 'The growth factor midkine regulates the renin-angiotensin system in mice.' J Clin Invest 119(6): 1616-1625. Hogan, M., A. Cerami, et al. (1992). 'Advanced glycosylation endproducts block the antiproliferative effect of nitric oxide. Role in the vascular and renal complications of diabetes mellitus.' J Clin Invest 90(3): 1110-1115. Huijberts, M. S., B. H. Wolffenbuttel, et al. (1993). 'Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats.' J Clin Invest 92(3): 1407-1411. Izuhara, Y., M. Nangaku, et al. (2005). 'Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering.' J Am Soc Nephrol 16(12): 3631-3641. Kadowaki, D., M. Anraku, et al. (2009). 'Evaluation for antioxidant and renoprotective activity of olmesartan using nephrectomy rats.' Biol Pharm Bull 32(12): 2041-2045. Kass, D. A., E. P. Shapiro, et al. (2001). 'Improved arterial compliance by a novel advanced glycation end-product crosslink breaker.' Circulation 104(13): 1464-1470. Koobi, P., P. Jolma, et al. (2004). 'Effect of angiotensin II type 1 receptor blockade on conduit artery tone in subtotally nephrectomized rats.' Nephron Physiol 96(3): p91-98. Kopple, J. D., K. Mercurio, et al. (1981). 'Daily requirement for pyridoxine supplements in chronic renal failure.' Kidney Int 19(5): 694-704. Kuo, H. T., M. C. Kuo, et al. (2005). 'Increased glomerular and extracellular malondialdehyde levels in patients and rats with focal segmental glomerulosclerosis.' Eur J Clin Invest 35(4): 245-250. Lapolla, A., F. Piarulli, et al. (2007). 'Advanced glycation end products and antioxidant status in type 2 diabetic patients with and without peripheral artery disease.' Diabetes Care 30(3): 670-676. Laxminarayan, S., P. Sipkema, et al. (1978). 'Characterization of the arterial system in the time domain.' IEEE Trans Biomed Eng 25(2): 177-184. Lin, S. L., Y. M. Chen, et al. (2002). 'Pentoxifylline attenuated the renal disease progression in rats with remnant kidney.' J Am Soc Nephrol 13(12): 2916-2929. Liu, Z., K. P. Brin, et al. (1986). 'Estimation of total arterial compliance: an improved method and evaluation of current methods.' Am J Physiol 251(3 Pt 2): H588-600. Luke, R. G. (1998). 'Chronic renal failure--a vasculopathic state.' N Engl J Med 339(12): 841-843. Ma, W., S. E. Lee, et al. (2007). 'RAGE ligand upregulation of VEGF secretion in ARPE-19 cells.' Invest Ophthalmol Vis Sci 48(3): 1355-1361. Mackie, F. E., D. J. Campbell, et al. (2001). 'Intrarenal angiotensin and bradykinin peptide levels in the remnant kidney model of renal insufficiency.' Kidney Int 59(4): 1458-1465. Meerwaldt, R., T. Links, et al. (2008). 'The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes.' Cardiovasc Diabetol 7: 29. Meerwaldt, R., C. J. Zeebregts, et al. (2009). 'Accumulation of advanced glycation end products and chronic complications in ESRD treated by dialysis.' Am J Kidney Dis 53(1): 138-150. Metz, T. O., N. L. Alderson, et al. (2003). 'Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications.' Arch Biochem Biophys 419(1): 41-49. Milnor, W. R. (1989). Hemodynamics, Baltimore: Williams & Wilkins Co. Mitchell, G. F., M. A. Pfeffer, et al. (1994). 'Measurement of aortic input impedance in rats.' Am J Physiol 267(5 Pt 2): H1907-1915. Miyata, T., Y. Ueda, et al. (1996). 'Accumulation of albumin-linked and free-form pentosidine in the circulation of uremic patients with end-stage renal failure: renal implications in the pathophysiology of pentosidine.' J Am Soc Nephrol 7(8): 1198-1206. Miyata, T. and C. van Ypersele de Strihou (2003). 'Angiotensin II receptor blockers and angiotensin converting enzyme inhibitors: implication of radical scavenging and transition metal chelation in inhibition of advanced glycation end product formation.' Arch Biochem Biophys 419(1): 50-54. Miyata, T., C. van Ypersele de Strihou, et al. (1999). 'Alterations in nonenzymatic biochemistry in uremia: origin and significance of 'carbonyl stress' in long-term uremic complications.' Kidney Int 55(2): 389-399. Miyata, T., C. van Ypersele de Strihou, et al. (2002). 'Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms.' J Am Soc Nephrol 13(10): 2478-2487. Monnier, V. M. and X. Wu (2003). 'Enzymatic deglycation with amadoriase enzymes from Aspergillus sp. as a potential strategy against the complications of diabetes and aging.' Biochem Soc Trans 31(Pt 6): 1349-1353. Mourad, J. J., X. Girerd, et al. (1997). 'Increased stiffness of radial artery wall material in end-stage renal disease.' Hypertension 30(6): 1425-1430. Mydlik, M., K. Derzsiova, et al. (1992). 'Vitamin B6 requirements in chronic renal failure.' Int Urol Nephrol 24(4): 453-457. Mydlik, M., K. Derzsiova, et al. (1997). 'Metabolism of vitamin B6 and its requirement in chronic renal failure.' Kidney Int Suppl 62: S56-59. Nangaku, M., T. Miyata, et al. (2003). 'Anti-hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model.' J Am Soc Nephrol 14(5): 1212-1222. Navar, L. G. (2005). 'The role of the kidneys in hypertension.' J Clin Hypertens (Greenwich) 7(9): 542-549. Nichols, W. W. and M. F. O'Rourke (1998). McDonald's Blood Flow in Arteries, London: Arnold. Onorato, J. M., A. J. Jenkins, et al. (2000). 'Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine.' J Biol Chem 275(28): 21177-21184. Pathak, P., R. Gupta, et al. (2008). 'TRC4149 a novel advanced glycation end product breaker improves hemodynamic status in diabetic spontaneously hypertensive rats.' Eur J Med Res 13(8): 388-398. Paul, M., A. Poyan Mehr, et al. (2006). 'Physiology of local renin-angiotensin systems.' Physiol Rev 86(3): 747-803. Perez-Ruiz, L., S. Ros-Lopez, et al. (2006). 'A forgotten method to induce experimental chronic renal failure in the rat by ligation of the renal parenchyma.' Nephron Exp Nephrol 103(3): e126-130. Rabbani, N., K. Sebekova, et al. (2007). 'Accumulation of free adduct glycation, oxidation, and nitration products follows acute loss of renal function.' Kidney Int 72(9): 1113-1121. Ruiz-Ortega, M., O. Lorenzo, et al. (2000). 'Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms.' Circ Res 86(12): 1266-1272. Schleicher, E. and U. Friess (2007). 'Oxidative stress, AGE, and atherosclerosis.' Kidney Int Suppl(106): S17-26. Sharp, P. S., S. Rainbow, et al. (2003). 'Serum levels of low molecular weight advanced glycation end products in diabetic subjects.' Diabet Med 20(7): 575-579. Soulis-Liparota, T., M. Cooper, et al. (1991). 'Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat.' Diabetes 40(10): 1328-1334. Stitt, A., T. A. Gardiner, et al. (2002). 'The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes.' Diabetes 51(9): 2826-2832. Sviglerova, J., J. Kuncova, et al. (2010). 'Cardiovascular parameters in rat model of chronic renal failure induced by subtotal nephrectomy.' Physiol Res 59 Suppl 1: S81-88. Takahashi, T., T. Konta, et al. (2007). 'An angiotensin II type-I receptor blocker, olmesartan medoxomil, attenuates lipid peroxidation in renal injury induced by subtotal nephrectomy.' Clin Exp Nephrol 11(3): 202-208. Takatori, A., Y. Ishii, et al. (2004). 'Amelioration of the beta-cell dysfunction in diabetic APA hamsters by antioxidants and AGE inhibitor treatments.' Diabetes Metab Res Rev 20(3): 211-218. Tanimoto, M., T. Gohda, et al. (2007). 'Effect of pyridoxamine (K-163), an inhibitor of advanced glycation end products, on type 2 diabetic nephropathy in KK-A(y)/Ta mice.' Metabolism 56(2): 160-167. Teramoto, T., R. Kawamori, et al. (2012). 'Relationship between achieved blood pressure, dietary habits and cardiovascular disease in hypertensive patients treated with olmesartan: the OMEGA study.' Hypertension Research 00: 1-9. Thomas, M. C., C. Tikellis, et al. (2005). 'Interactions between renin angiotensin system and advanced glycation in the kidney.' J Am Soc Nephrol 16(10): 2976-2984. Thomas, M. C., C. Tsalamandris, et al. (2004). 'Low-molecular-weight AGEs are associated with GFR and anemia in patients with type 2 diabetes.' Kidney Int 66(3): 1167-1172. Thornalley, P. J. (2005). 'Glycation free adduct accumulation in renal disease: the new AGE.' Pediatr Nephrol 20(11): 1515-1522. Tiden, A. K., T. Sjogren, et al. (2011). '2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation.' J Biol Chem 286(43): 37578-37589. Turgut, F. and W. K. Bolton (2010). 'Potential new therapeutic agents for diabetic kidney disease.' Am J Kidney Dis 55(5): 928-940. Turk, Z., I. Misur, et al. (1999). 'Rat tissue collagen modified by advanced glycation: correlation with duration of diabetes and glycemic control.' Clin Chem Lab Med 37(8): 813-820. Vaziri, N. D., Y. Bai, et al. (2007). 'Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction.' J Pharmacol Exp Ther 323(1): 85-93. Vaziri, N. D., M. Dicus, et al. (2003). 'Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency.' Kidney Int 63(1): 179-185. Vlachopoulos, C., K. Aznaouridis, et al. (2010). 'Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis.' J Am Coll Cardiol 55(13): 1318-1327. Voziyan, P. A., R. G. Khalifah, et al. (2003). 'Modification of proteins in vitro by physiological levels of glucose: pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation end-products through binding of redox metal ions.' J Biol Chem 278(47): 46616-46624. Voziyan, P. A., T. O. Metz, et al. (2002). 'A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation.' J Biol Chem 277(5): 3397-3403. Waanders, F., E. van den Berg, et al. (2008). 'Renoprotective effects of the AGE-inhibitor pyridoxamine in experimental chronic allograft nephropathy in rats.' Nephrol Dial Transplant 23(2): 518-524. Westerhof, N., P. Sipkema, et al. (1972). 'Forward and backward waves in the arterial system.' Cardiovasc Res 6(6): 648-656. Williams, M. E., W. K. Bolton, et al. (2007). 'Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy.' Am J Nephrol 27(6): 605-614. Wu, E. T., J. T. Liang, et al. (2011). 'Pyridoxamine prevents age-related aortic stiffening and vascular resistance in association with reduced collagen glycation.' Exp Gerontol 46(6): 482-488. Yamagishi, S., K. Fukami, et al. (2007). 'Molecular mechanisms of diabetic nephropathy and its therapeutic intervention.' Curr Drug Targets 8(8): 952-959. Yamagishi, S., Y. Inagaki, et al. (2002). 'Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells.' J Biol Chem 277(23): 20309-20315. Yamagishi, S., T. Matsui, et al. (2008). 'Olmesartan blocks inflammatory reactions in endothelial cells evoked by advanced glycation end products by suppressing generation of reactive oxygen species.' Ophthalmic Res 40(1): 10-15. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65542 | - |
| dc.description.abstract | 慢性腎臟病的病程持續進展,最後終究會演變為慢性腎衰竭或末期腎臟疾病,並會造成比正常人多出十到二十倍的心血管併發症發生率。在慢性腎衰竭的患者中,造成心血管疾病的主要危險因子是動脈硬化,它同時也是高血壓患者或是一般人罹患心血管疾病的發病率與致死率之強力指標。動脈的硬化多半是由於血管收縮素II的刺激,或是活性氧族群,或是醣化蛋白終產物使動脈基質中的膠原蛋白產生交互連結,而造成動脈壁的延展性降低所導致的。醣化蛋白終產物同時也在正常老化或是疾病的情況,扮演促使併發症發生的角色,而其中的病理生理機制,也是近年來透過體外研究、動物以及人體試驗,才更進一步被了解。醣化蛋白終產物已被證實與腎臟疾病發病有關,同時也成為治療腎臟疾病的新治療目標。
在本論文的第一部份研究中,我們針對血管收縮素第一型接受器阻斷劑─Olmesartan (OLM) 進行試驗,以部分腎切除術引發慢性腎衰竭的大鼠為動物模型, 評估該藥物對於動脈硬化的保護作用。慢性腎衰竭大鼠在經過OLM治療八週後,所有血液動力學上的異常,包括心輸出量降低、主動脈壓上升、周邊總阻力升高和左心室重量與體重的比值上升,都獲得改善。OLM的治療對於左心室後負荷的影響包括可以減少主動脈特徵阻抗與波反射係數,並增加主動脈順應性與波傳輸時間,結果顯示OLM可以改善慢性腎衰竭大鼠的左心室收縮負荷與心臟肥大的情況。此外,OLM的功能還包括可以減少慢性腎衰竭大鼠主動脈組織與血漿內的脂質過氧化物─丙二醛,與主動脈組織內醣化蛋白終產物的含量。因此,我們得到的結論是,OLM在慢性腎衰竭大鼠的動物模式中具有抑制主動脈壁的丙二醛與醣化蛋白終產物,同時改善動脈硬化的治療效果。 另外,論文的第二部份研究我們著重在維生素B6之一的吡哆胺─Pyridoxamin (PM),評估其對於部分腎切除術引發之慢性腎衰竭大鼠的疾病預防與治療潛力。研究結果顯示,在接受PM給藥八週後,慢性腎衰竭大鼠的體重與心血管參數,包含左心室肥大與血壓升高的現象,都獲得明顯的改善。同時,肌酸酐及血中尿素氮的清除率,在給予PM治療後也獲得改善。利用主動脈組織的西方墨點法、免疫組織染色及丙二醛分析,進行PM對於慢性腎衰竭大鼠體內醣化蛋白終產物形成的改善程度之評估。結論是對於慢性腎衰竭患者補充PM也許可以緩解醣化蛋白終產物造成的病理過程,及早預防腎臟的損壞,對於慢性腎衰竭的治療提供一個新的藥理策略。至於將來的研究,則應著重在闡明PM的輔助治療對於慢性腎衰竭引發的心血管與腎臟損壞的預防或治療所扮演的潛在角色。 | zh_TW |
| dc.description.abstract | Chronic kidney diseases always develop to chronic renal failure (CRF) or end-stage renal diseases eventually, and associated with 10 to 20-fold increased incidence in cardiovascular complications than normal individuals. The major risk factor for cardiovascular disease in CRF is associated with arterial stiffness, which is a strong predictor of morbidity and mortality among those with hypertension and in the general population. Arterial stiffness results from altered distensibility of aortic walls and is associated with stimulation of angiotensin II, reactive oxygen species (ROS), and advanced glycation end products (AGEs) crosslink of collagen in arteries matrix. AGEs also play important roles in promoting complications of normal aging and diseases. Their pathophysiological implications were disclosed in studies of in vitro, animals and humans and only recently becoming understood in more detail. AGEs contribute to the pathogenesis of renal diseases and have become a new therapeutic target for treatment.
In this study, we investigated whether an angiotensin II type 1 receptor blocker, olmesartan (OLM), could prevent arterial stiffness in rats with CRF induced by 5/6 subtotal nephrectomy. After 8 weeks of OLM treatment, all hemodynamic abnormalities were abrogated in CRF rats, including decreased cardiac output, increased aortic pressure, total peripheral resistance, and the ratio of left ventricular weight to body weight (LVW/BW). Regarding the oscillatory components of the ventricular afterload, OLM decreased the aortic characteristic impedance and wave reflection factor as well as increased the arterial compliance and wave transit time, all of which suggested that OLM attenuated the increased systolic load of the left ventricle and prevented cardiac hypertrophy in CRF rats. In addition to these functional improvements, OLM reduced the levels of malondialdehyde (MDA) equivalents in aortic tissues and serum and the amounts of MDA equivalents and AGEs in the aortic walls of CRF rats. Thus, we concluded that OLM treatment could ameliorate arterial stiffness in CRF rats with concomitant inhibition of MDA and AGEs levels in the aortic wall. Moreover, we also evaluated the therapeutic or preventive potential of pyridoxamine (PM) against CRF in a 5/6 subtotal nephrectomy rat model. Significant and beneficial contributions to body weight and cardiovascular parameters, including left ventricular hypertrophy (LVH) and blood pressure were observed in CRF rats receiving PM for 8 weeks. Clearances of both creatinine and BUN were also significantly improved in the CRF rats following PM administration. The involvement of AGEs in CRF and the profound effects on reducing AGEs of PM treatment were demonstrated by western blotting, immunostaining and MDA assessment for the aortic samples of CRF rats. PM supplementation might be considered as one of pharmacological strategies for preventing AGE-related pathologies and early stages of renal damage. Prospective trials are needed to elucidate a potential role for PM in adjunctive therapy and to confirm the adequate amount on cardiovascular and renal outcomes in CRF. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:49:26Z (GMT). No. of bitstreams: 1 ntu-101-D93441002-1.pdf: 988412 bytes, checksum: ddf06d62dd33755d71dd3fcfd1c034d8 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Certification……………………………………………………...…………………….…I
Acknowledgments……………………………………………………………..………....II Abstract in Chinese………………………………………………………………..…….IV Abstract in English………………………………………………………………………VI Contents…………………………………………………………………………………IX Abbreviation…………………………………………………………………………....XV Chapter 1. Introduction…………………………………………………………………..1 1-1. Epidemiology and cardiovascular complications of chronic renal failure.................2 1-2. Formation of advanced glycation end products…………………………………….3 1-3. Advanced glycation end products in chronic renal failure………………………….5 1-4. Inhibitors of advanced glycation end products…………………………….………..9 1-5. Aim of this study…………………………………………………………………...14 Chapter 2. Materials and Methods………………………...……………………………15 2-1. Animals…………………………………………………………………………….16 2-2. 5/6 subtotal nephrectomy (SNx) for CRF model…………………………………..17 2-3. Assessment of hemodynamics………………..……………………………………18 2-4. Aortic input impedance spectra…………………...……………………………….20 2-5. Sample preparations and renal function measurement…………………………….22 2-6. Immunohistochemical analysis…………………………………………………….23 2-7. Western blot analysis………………………………………………………………24 2-8. Measurement of lipid peroxidation………………………………………………..25 2-9. Statistical analysis………………………………………………………………….26 Chapter 3. Results Part 1. Effects of olmesartan on chronic renal failure…………………………………..27 3-I-1. Effects of OLM on body weight, left ventricular weight and aortic pressure……28 3-I-2. Changes in renal function after OLM treatments……………………….………..30 3-I-3. Effects of OLM on static parameters…………………………………………….32 3-I-4. Effects of OLM on pulsatile parameters…………………………………………34 3-I-5. Effects of OLM on AGE accumulation…………………………….…………….36 3-I-6. Effects of OLM on MDA……………………………………...…………………39 Part 2. Effects of pyridoxamine on chronic renal failure………………………...……..41 3-II-1. Effects of PM on body weight, left ventricular weight and aortic pressure…….42 3-II-2. Changes in renal function after PM treatments…………………………………44 3-II-3. Effects of PM on blood pressure and haemodynamics………………………….46 3-II-4. Effects of PM on AGEs accumulation…………………………………………..48 3-II-5. Effects of PM on MDA………………………………………………………….51 Chapter 4. Discussion Part 1. Effects of olmesartan on chronic renal failure…………………………………..53 4-I-1. Impacts of OLM on cardiovascular functional parameters……………………...55 4-I-2. Effects of OLM treatment on the levels of AGE and MDA……………………..58 Part 2. Effects of pyridoxamine on chronic renal failure……………………………….60 4-II-1. Impacts of PM on cardiovascular functional parameters………………………..62 4-II-2. Effects of PM treatment on the levels of AGE and MDA………………………63 Chapter 5. Conclusion…………………………………………………………………..64 Chapter 6. Reference……………………………………………………………………67 | |
| dc.language.iso | en | |
| dc.subject | 慢性腎衰竭 | zh_TW |
| dc.subject | 5/6部分腎切除術 | zh_TW |
| dc.subject | 哆胺 | zh_TW |
| dc.subject | 吡 | zh_TW |
| dc.subject | olmesartan | zh_TW |
| dc.subject | 醣化蛋白終產物 | zh_TW |
| dc.subject | 主動脈特徵阻抗 | zh_TW |
| dc.subject | pyridoxamine | en |
| dc.subject | 5/6 subtotal nephrectomy | en |
| dc.subject | advanced glycation end products | en |
| dc.subject | aortic characteristic impedance | en |
| dc.subject | olmesartan | en |
| dc.subject | chronic renal failure | en |
| dc.title | 抑制醣化終產物對慢性腎衰竭大鼠動脈硬化之影響 | zh_TW |
| dc.title | Effectiveness of advanced glycation end products inhibition
on the arterial stiffness in rat model of chronic renal failure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊玲玲,鍾景光,賴義雄,蔡巨才,林松水 | |
| dc.subject.keyword | 慢性腎衰竭,5/6部分腎切除術,醣化蛋白終產物,主動脈特徵阻抗,olmesartan,吡,哆胺, | zh_TW |
| dc.subject.keyword | chronic renal failure,5/6 subtotal nephrectomy,advanced glycation end products,aortic characteristic impedance,olmesartan,pyridoxamine, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 965.25 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
