請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳清泉(Ching-Churn Chern) | |
| dc.contributor.author | Chia-Yu Lee | en |
| dc.contributor.author | 李佳諭 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:49:16Z | - |
| dc.date.available | 2022-07-20 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-21 | |
| dc.identifier.citation | 一、主要參考文獻:依文中引用先後順序排列
[1] “架空輸電線路設計準則”,台灣電力公司,民國101年3月修訂。 [2] “輸電鐵塔新設計標準”,台灣電力公司輸變電工程處,民國69年10月修訂。 [3] “賽洛瑪颱風超高壓輸電鐵塔受損檢討報告”,台灣電力公司,民國66年12月。 [4] “921大地震震災調查總結報告”,國家地震工程研究中心,民國88年。 [5] “建築物耐震設計規範及解說”,內政部營建署,民國100年7月。 [6] 楊嘉文,“架空輸電線路鐵塔結構及基礎耐震分析研究”,國立臺灣大學土木工程學研究所碩士論文,張國鎮教授指導,民國90年6月。 [7] Applied Technology Council (ATC),”Seismic Evaluation and Retrofit of Concrete Buildings”, Report No.ATC-40, California, USA, 1996. [8] “架空輸電工程作業手冊”,台灣電力公司輸變電工程處。 [9] O’Brien, T. (1967), ‘‘General Solution of Suspended Cable Problems,” J. Structural Div. ASCE 93, pp. 1-26. [10] Peyrot, A. H. and Goulois, A. M. (1979), “Analysis of Flexible Transmission Lines,” J. Structural Div. ASCE 104, pp. 763-779. [11] Peyrot, A. H. and Goulois, A. M. (1979), “Analysis of Cable Structures,” Computers & Structures, Vol.10, pp. 805-813. [12] Jayaraman, H. B. and Knudson, W. C. (1981), “A Curved Element for the Analysis of Cable Structure,” Computers & Structures, Vol.14, No.3-4, pp. 325-333. [13] Desai, Y. M., Popplewell, N., Shah, A. H. and Buragohain, D. N. (1988), “Geometric Nonlinear Static Analysis of Cable Supported Structural,” Computers & Structures, Vol. 29, No. 6, pp. 1001-1009. [14] Yasui, H., Marukawa, H., Momomura, T. and Ohkuma, T. (1999), “Analytical Study on Wind-Induced Vibration of Power Transmission Towers,” Journal of Energy Engineering, Vol. 83, pp. 431-441. [15] Ronaldo, C. B., Rosangela, S. R. and Michele, S. P. (2003), “Dynamic Behavior and Stability of Transmission Line Towers under Wind Force,” Journal of Wind Engineering and Industrial Aerodynamics, 91, pp. 1051-1067. [16] Truesdell, C. (1960), “The Rational Mechanics of Flexible or Elastic Bodies,” 1638-1788, Turici: Orell Fussi. [17] Irvine, H. M. (1981), “Cable Structures”, The MIT Press, Cambridge, Massachusetts, U.S.A. [18] Chern, C. C. and Liao, Y. F. (1989), “Nonlinear Analysis for the Aseismic Strength of High-rise Steel Frame with Semi-rigid Joints by Pseudo-elastic Approach,” Seismic Engineering: Research Practice, Proceedings, Structures Congress’89, ASCE, San Francisco Ca., USA, pp. 576-585. [19] Lee, W. H. and Chern, C. C. (1996), “Aseismic Assessment on Long Period Reinforced Concrete High-rise Frames by Pseudo-elastic Equal Drift Method,” Structural Engineering, Vol. 11, No. 4, pp.5-7. [20] 李文海,“考慮鋼柱非彈性穩定對高層鋼構架耐震能力影響之研究”,國立臺灣大學土木工程學研究所博士論文,陳清泉教授指導,民國91年6月。 [21] 李佳諭、陳清泉,“混合式剛構架耐震能力擬彈性法評估”,結構工程第二十二卷第三期第109-118頁,民國96年。 [22] AlBermani, F. G. A. and Kitipornchai, S. (1993), “Nonlinear Finite Element Analysis of Latticed Transmission Towers,” Engineering Structure, Vol. 15, No. 4, pp. 259-269. [23] Knight, G. M. S. and Santhakumar, A. R. (1993), “Joint Effects on Behavior of Transmission Towers,” Journal of Structural Engineering, Vol. 119, No. 3, pp. 698-712. [24] Kitipornchai, S., AlBermani, F. G. A. and Peyrot A. H. (1994), “Effect of Bolt Slippage on The Ultimate Strength of Latticed Structures,” Journal of Structural Engineering, Vol. 120, No. 8, pp. 2281-2287. [25] Alam, M. J. and Santhakumar, A. R. (1996), “Reliability Analysis and Full-Scale Testing of Transmission Tower,” Journal of Structural Engineering, Vol. 122, No. 3, pp. 338-344. [26] Dagher, H. J., Lu, Q. and Peyrot, A. H. (1998), “Reliability of Transmission Structures Including Nonlinear Effects,” Journal of Structural Engineering, Vol. 24, No. 8, pp. 966-973. [27] Albermani, F. G. A. and Kitipornchai, S. (2003), “Numerical Simulation of Structural Behavior of Transmission Towers,” Thin-Walled Structures, Vol. 41, No. 2-3, pp. 167-177. [28] Wang, Kei-Shyr, “A study on Aseismic for Stability of High-rise Steel Frames with Sidesway,” M.S. thesis (in Chinese) in Department of Civil Engineering at National Taiwan University, directed by Professor Ching-Churn Chern, Jnne 1999. [29] Ching-Churn Chern , Jr-Ren Ke and Wen-Hae Lee, “Ultimate Lateral Capacity for Stability of Multi-story Steel Frame by Pseudo-elastic Approach,” The Seventh East Asia Pacific Conference on Structural Engineering & Construction, pp.152-157, August27-29, 1999, Kochi, Japan. [30] Chia-Yu Lee and Ching-Churn Chern, “Inquisition into The Ultimate Capacity of Steel Transmission Tower” The Seventh East Asia Pacific Conference on Structural Engineering & Construction, November 19-21, 2008, Taipei, Taiwan. [31] Miranda, E., “Seismic Evaluation and Upgrading of Existing Buildings,” Ph. D. Dissertation, University of California at Berkeley (1991). [32] Fajfar, P. and Gaspersic, P., “The N2 Method for the Seismic Damage Analysis of RC Buildings,” Journal of Earthquake Engineering and Structural Dynamics, Vol. 25, pp. 31~46 (1996). [33] Applied Technology Council, “Seismic Evaluation and Retrofit of Concrete Buildings,” ATC-40, Vol. 1, Redwood City, C.A (1996). [34] FEMA-273, “NEHRP Guidelines for Seismic Rehabilitation of Buildings” , Buildings Seismic Safety Council (BSSC) , Second Ballot Version, developed for the Federal Emergency Management Agency, Washington, D. C. , USA. (1997). [35] Tso, W.K. and Moghadam, A.S., “Pushover Procedure for Seismic Analysis of Building,” Structural Engineering and Materials, Vol. 3, pp. 337~344 (1998). [36] Krawinkler, H. and Seneviratna P.K.,“Pros and cons of a pushover analysis of seismic performance evaluation,” Engineering Structures, Vol.20, No.4-6, pp. 452~464 (1998). [37] Andrew C. Guyader and Wilfred D. Iwan, “Determining Equivalent Linear Parameters for Use in a Capacity Spectrum Method of Analysis,” Journal of Structural Engineering, Vol.132, pp.59-67, (2006). [38] Erol Kalkan and Sashi K. Kunnath, “Adaptive Modal Combination Procedure for Nonlinear Static Analysis of Building Structures,” Journal of Structural Engineering, Vol.132, pp.1721-1731, (2006). [39] 何象鏞,“含牆鋼筋混凝土結構側推分析之研究”,國立中央大學土木工程學研究所博士論文,王仲宇教授指導,民國96年1月。 [40] Freeman, S, A., Nicoletti,J. P.,and Tyrell, J. V.,”Evaluations to existing buildings for seismic risk-A case study of Puget Sound Naval Shipyard”, Washingtion, Preoceeding of st1 U.S. National Conference on Earthquake Engineering, EERI, Berkeley,113-112. [41] Mahaney J.A., “Freeman, S.A.., Paret, T, F., and Kehoe, B.E., “The Capacity Spectrum Method of Evaluating Structural Response During the Loma Prieta Earthquake” Proc. 1993 National Earthquake Conference,pp.501~510, Memphis,(1993). [42] Huang, N. E. , Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H. Liu, (1998), “The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis, ” Proc. Roy. Soc. London, A454, pp.903-995. [43] Huang, N. E., Z. Shen, and R. S. Long, (1999), “A new view of nonlinear water waves – the Hilbert spectrum,” Ann. Rev. Fluid Mech., 31, pp.417-457. [44] Wu, Z., and N.E. Huang (2005), “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Center for Ocean-land-Atmosphere Studies, Tech. Rep. No. 193. [45] Long, S.R., N.E. Huang, C.C. Tung, M.L. Wu, R.Q. Lin, E. Mollo-Christensen and Y. Yuan., (1995), “The Hilbert techniques: an alternate approach for non-steady time series analysis,” IEEE Geoscience Remote Sensing Soc. Lett., 3, 6-11. [46] Drazin P.G. (1992) Nonlinear Systems. Cambridge, UK: Cambridge Univ. Press. [47] Wu, Z. and Huang, N. E., (2004), “A study of the characteristics of white noise using the Empirical Mode Decomposition method,” Proceedings of the Royal Society A, Vol. 460, pp. 1597–1611. [48] Zhaohua Wu and Norden E. Huang, (2005), “Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method,” COLA Technical Report 193, pp. 1-49. [49] 劉醇宇,“微振量測餘建立建築物基本振動周期經驗公式及進行耐震評估之應用”,國立臺灣大學土木工程學研究所博士論文,呂良正教授指導,民國92年6月。 [50] 葉祥海、呂良正、陶其駿、劉醇宇、張光甫、林士傑、林智勇,“以微振量測探討鋼筋混凝土建築物之補強成效”,內政部建築研究所報告,民國91年。 [51] Borcherdt, R.D., (1970), “Effects of local geology on ground motion near San Francisco Bay,” Bulletin of the Seismological society of America, 60 (1), 29-61. [52] Chia-Yu Lee, Norden E.Huang, Ching-Churn Chern, Sheng-Chung Su, (2013), “A Study on the Dynamic Characteristics and Ultimate Capacity of Steel Transmission Towers,” Journal of the Chinese Institute of Engineers, Vol.36, (accepted). 二、相關參考文獻:依字母順序排列 [53] American Society of Civil Engineers (ASCE), “Prestandard and Commentary for the Seismic Rehabilitation of Buildings,” FEMA-356, Federal Emergency Management Agency, Washington, D. C. (2000). [54] Battista, R.C., Rodrigues R.S., and Pfeil, M.S., (2003), “Dynamic behavior and stability of transmission line towers under wind forces,” Journal of wind engineering and industrial aerodynamics,91, 1051-1067. [55] Computer and Structure, (2002), Inc., SAP2000: Integrated Finite Element Analysis and Design of Structures, Analysis Reference Volume1, Version 8.0, Berkeley, California, USA. [56] Flandrin, P., Rilling, G. & Gonçalvès, P., (2004), “Empirical mode decomposition as a filterbank,” IEEE Signal Process. Lett. 11, 112-114. [57] Hou, Z., Noori, M., and Amand, R.S., (2000), “Wavelet-based approach for structural damage detection,” Journal of engineering mechanics ASCE, 126 (7), 677-683. [58] Huang, N. E., and Z. Shen, (1997), “Manual for Hilbert Spectral Analysis Programs,” National Aeronautics and Space Administration. [59] Huang, N. E., C. C. Chern, K. Huang, L. Salvino, R. Long, and K. L. Fan, (2001) , “Spectral analysis of the Chi-Chi earthquake data, ” Station TUC129, Taiwan, September 21, Bulletin Seismological Society America, 91, 1310-1338. [60] Huang, N. E., M. L. Wu, S. R. Long, S. S. Shen, W. D. Qu, p. Gloersen, and K. L. Fan, (2003), “A confidence limit for the empirical mode decomposition and the Hilbert spectral analysis, ”Proc. of Roy. Soc. London, 459A, 2317-2345. [61] Lu, L.W., Shen, Z.K., and Hu, H.R. (1983), “Inelastic instability research at Lehigh University,” Proc., M.R. Horne Int. Conf. on instability and Plastic Collapse of steel Struct., Unvi. of Manchester, U.k.,273-282. [62] Pines, D., and Salvino, L. (2001), ‘‘Health monitoring of structures using empirical mode decomposition and phase dereverberation, ’’ Proc.,2001 Mechanics and Materials Summer Conf., University of California at San Diego, San Diego, 228–229. [63] Starossek, U. (1994), ‘‘Cable dynamics—a review, ’’Structural Engineering International 4, pp. 171–176. [64] Triantafyllou, M. S. (1984), ‘‘Linear dynamics of cables and chains”, Shock and Vibration Digest 16, pp. 9–17. [65] Xu, Y.L., Chen, S.W. and Zhang, R.C. (2003), “Modal identification of Di Wang Building under Typhoon York using the Hilbert-Huang transform method, ” The structural design of tall buildings,12(1), 21-47. [66] Xu, Y.L., Chen, S.W. and Zhang, R.C. (2003), “Hilbert Huang based approach for structural damage detection,” Journal of engineering mechanics,130 (1) , 85-95. [67] Yang, J.N. and Lei, Y. (1999), “Identification of natural frequencies and damping ratios of linear structures via Hilbert transform and empirical mode decomposition,” In: proceedings, IASTED international conference on intelligent systems and control, Anaheim, California, IASTED/Acta Press, 310–315. [68] Yang,J. N. and Lei, Y. (2000), “System identification of linear structures using Hilbert transform and empirical mode decomposition,” In: proceedings, 18th international modal analysis conference: A conference on structural dynamics, Bethlehem, Connecticut, Society for experimental mechanics Inc., Vol. 1, 213-219. [69] Yang, J. N., Lei, Y., and Huang, N. (2001), ‘‘Damage identification of civil engineering structures using Hilbert-Huang transform.’’ Structural health monitoring: The demands and challenges, CRC Press, New York, 544–553, Proc. 3rd Int. Workshop on Structural Health. Monitoring, Stanford Univ., Stanford, Calif. [70] Yang, J. N., Lei, Y., Pan, S., Huang, N. E. (2003a), ‘‘System identification of linear structures based on Hilbert–Huang spectral analysis, Part 1: Normal modes, ’’ Earthquake Engineering and Structural Dynamics, v32, n9, 1443–1467. [71] Yang, J. N., Lei, Y., Pan, S., Huang, N. E. (2003b), ‘‘System identification of linear structures based on Hilbert–Huang spectral analysis, Part 2: Complex modes, ’’ Earthquake Engineering and Structural Dynamics, v32, n10, 1533–1554. [72] Yang, J. N., Lei, Y., Lin, S, Huang, N. E. (2004), ”Identification of natural frequencies and dampings of in situ tall buildings using ambient wind vibration data, “Journal of Engineering Mechanics, v130, n5, 570-577. [73] Zhaohua Wu and Norden E. Huang. (2009), “Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method,” Advances in Adaptive Data Analysis, Volume 1, No. 1, pp.1-41. [74] Zui, H., Shinke, T. and Namita, Y. (1996), “Practical formulas for estimation of cable tension by vibration method,” American Society of Civil Engineers Journal of Structural Engineering 122, pp. 651–656. [75] 林裕淵,“功能設計-消能減震結構之位移設計法”,國立臺灣大學土木工程學研究所博士論文,張國鎮教授指導,民國89年6月。 [76] 宋裕祺,“以結構性能為目標的橋梁耐震設計與耐震能力評估”,國立臺灣大學土木工程學研究所博士論文,蔡益超教授指導,民國91年6月。 [77] 宋裕祺,蔡益超,“以結構性能為目標的鋼橋耐震能力評估”,中國土木水利工程學刊,第十四卷,第四期,第603至615頁,民國91年。 [78] 李佳諭,“混合式多層構架耐震能力之擬彈性法評估研究”,國立臺灣大學土木工程學研究所碩士論文,陳清泉教授指導,民國88年6月。 [79] “校舍結構耐震評估與補強技術手冊第二版”,國家地震工程研究中心,民國98年11月。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65539 | - |
| dc.description.abstract | 我國輸電線路絕大部份為架空形式,而鐵塔為輸電線路中不可或缺之重要支持結構。當鐵塔受災害損壞或倒塌時,小區域破壞往往引發大區域範圍斷電連鎖反應。因此,鐵塔安全與否,大大關係著輸電線路的供電系統是否正常運作。本研究特針對台電公司常使用於345kV輸電線路之懸垂型鐵塔(B5型)與耐張型鐵塔(E5型),當受風時其結構動力行為、非線性行為與極限能力等作深入研究與探討。
首先依弛度分析來建置纜索模型,透過纜索動力分析理論,探討纜索受風擾動之動力行為。參考台電公司「輸電鐵塔新設計標準」決定鐵塔之橫向、縱向及垂直載重,以SAP程式進行結構分析,得到各構件之內力,然後逐步放大側向外力。當結構進入非線性反應,假設儲存於結構內之總體應變能不變,依能量守恆原理進行擬彈性結構分析,求取鐵塔之極限基底側向力與頂層側移值,作為能快速評估鐵塔極限能力之重要參考。其次,應用非線性側推分析法所得之容量曲線與擬彈性結構分析法之評估結果作一比較,並於鐵塔耐震能力評估時採用容量震譜法,以功能績效來表示鐵塔之最大位移及所能承受的地震強度,藉以求出鐵塔之耐震能力指標。另外,利用希伯特-黃轉換(HHT)理論新發展的整體技術理論,如統驗模態分解(EEMD)、統驗希伯特頻譜(EHSP)等技術,及應用雙站頻譜比法的HHT改良識別法,將實際量測鐵塔在架線與非架線狀態時所得之速度歷時資料訊號進行處理,進而識別結構系統之動力特性及頻率之變化來探討鐵塔結構安全、穩定或受損情形。 本文研究成果顯示,應用HHT改良識別法及擬彈性結構分析法,加上非線性側推分析法之結合應用,可以準確的綜合研判及評估輸電鐵塔之動力特性及極限承載能力,進而檢定鐵塔結構之受損程度、穩定性及結構安全。本研究之成果可提供日後對輸電鐵塔安全評估、極限能力分析及結構安全健檢之進階研究開發,具有良好之參考。 | zh_TW |
| dc.description.abstract | Almost all transmission installations are designed for overhead transmission, and transmission lines are linked by steel towers as their supports. Once a tower on the line is damaged or becomes unstable, a large-scale power failure will occur, and consequently huge economic losses may occur. Therefore the safety of steel towers strongly influences the reliability of power supply in transmission lines. In this paper, two different types of tower in Taiwan Power Company (TPC) will be studied and discussed, those are composed of suspension towers (Type B5), and strain towers (Type E5). Their dynamic characteristics, non-linear behavior, and ultimate capacity under wind force will be well studied.
The firstly, cable models based on loading and sag condition analysis will be established, and the dynamic characteristics and reactions for cables under wind disturbance will be investigated. According to the specifications of TPC Standard Code, the applied loads on tower in the transverse, longitudinal, and vertical directions will be determined. The secondary, the towers will be analyzed linearly and nonlinearly by using Pseudo-elastic method and nonlinear static pushover analysis associated with SAP program. Finally, the ultimate lateral force, and ultimate drift can be determined. The results presented in this paper for the ultimate capacity of the towers with acceptable accuracy. In addition, our approach is based on the new techniques of Hilbert-Huang Transform (HHT), such as the Ensemble Empirical Mode Decomposition (EEMD), the Ensemble Hilbert Spectrum (EHSP), and the two-station HHT spectral ratio approach. This study is intended to identify the dynamic characteristics from the measured ambient vibration data for the tower, and from which the tower can be assessed to be sound, damaged or unstable from the spectrum appearance after analysis. The new techniques of HHT and nonlinear analysis method associated with pseudo-elastic approach and nonlinear static pushover analysis could be applied to carry out the dynamic characteristics and the ultimate capacity of the towers with acceptable accuracy. The results of this study would be valuable references for the advanced studies in improving design, safety assessment and health monitoring of the transmission towers in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:49:16Z (GMT). No. of bitstreams: 1 ntu-101-D94521001-1.pdf: 12876816 bytes, checksum: 8c57b7d8d8724b5dd8b3bf909705c379 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………………i
誌謝……………………………………………...………….………………………….ii 中文摘要………………………………………………………………………….…….iv 英文摘要…………………………………………………………………………….…..v 第一章 導論…………………………………………………………………………...1 1.1 研究動機及目的………………………………………………………………. 1 1.2 研究範圍及方法……………………………………………………………..…1 1.3 論文構架及內容……………………………………………………..…………2 第二章 輸電鐵塔結構系統介紹……………………………………………………...5 2.1 鐵塔形式………………………………………………………………………..5 2.2 鐵塔構造………………………………………………………………………..6 2.3 鐵塔結構載重…………………………………………………………………..7 2.4 基礎形式………………………………………………………………………..9 第三章 輸電導線應力分析探討………………………………………………….....21 3.1 文獻回顧………………………………………………………………......…..21 3.2 纜索靜力分析………………………………………………………………..22 3.3 纜索線性動力反應分析……………………………………………….…….24 3.3.1 纜索水平面內動力分析………………………………….…………..…26 3.3.2 纜索垂直面內動力分析…………………………………….………..…27 3.3.3 不同高程支點之纜索動力分析………………………….……………..30 3.4 纜索受風作用之線性動力反應分析…………………………………………31 3.5 實例分析………………………………………………………………......…..34 第四章 輸電鐵塔之擬彈性結構分析……………………………………………….41 4.1 文獻回顧………………………………………………………………......…..41 4.2 擬彈性結構分析法概述………………………………………………......…..42 4.3 擬彈性結構分析法之功能等值原理…………………………………………42 4.3.1 鋼構架的降伏彎矩與塑性彎矩………………………………………43 4.3.2 構件之軸力應變能……………….………………………..……………44 4.3.3 構件之彎矩應變能……………….……………..………………………45 4.4 鐵塔構架破壞定義……………………………………………………………51 4.5 非線性行為擬彈性結構分析法之推演………………………………………52 4.6 分析程式流程…………………………………………………………………55 第五章 輸電鐵塔之性能設計……………………………………………………….63 5.1 文獻回顧………………………………………………………………………63 5.2 非線性靜力側推分析法………………………………………………………64 5.2.1基本假設………………………………………………………….………64 5.2.2 側向力垂向分佈……………………………………………….………..66 5.2.3 等值單自由度系統理論簡介…………………………………….……..68 5.2.4 多自由度系統頂層位移之計算…………………………………….…..70 5.3 SAP程式之側推分析………………………………………………………….72 5.4 容量震譜法……………………………………………………………………73 5.4.1容量曲線……………………………………………….…………………73 5.4.2 彈性設計反應譜……………………………………………….………..74 5.4.3 容量震譜與需求震譜ADRS格式之建立………………..……………..76 5.4.4 需求震譜之折減………………………………………………………...78 5.4.5 性能目標之建立………………………………………………………...81 5.4.6 功能績效點之求取…………………………………….………………..81 5.4.7 功能績效點之檢核…………………………..………………………….85 5.5 輸電鐵塔耐震性能曲線之建立………………………………………………85 第六章 輸電鐵塔實例分析………………………………………………………...103 6.1鐵塔構件之材料性質及行為…………………………………………………103 6.1.1 鋼骨之設計降伏強度………………………………………………….103 6.1.2 鋼骨構件之應力計算………………………………………………….103 6.1.3 鋼骨之應力應變關係………………………………………………….104 6.1.4 構件行為……………………………………………………………….105 6.2 B5型鐵塔之實例分析………………………………………………….…….105 6.2.1 B5型鐵塔構架概述……………………………………………….……105 6.2.2 B5型鐵塔設計載重………………………………………….…………105 6.2.3 B5型鐵塔構架分析………………………………………………….…106 6.3 E5型鐵塔之實例分析………………………………………………………..107 6.3.1 E5型鐵塔構架概述…………………………………………………….107 6.3.2 E5型鐵塔設計載重…………………………………………………….107 6.3.3 E5型鐵塔構架分析…………………………………………………….108 6.4分析結果與比較………………………………………………………………109 6.4.1 B5型鐵塔分析結果…………………………………………………….109 6.4.2 E5型鐵塔分析結果…………………………………………………….110 6.4.3 B5型與E5型鐵塔之耐震能力之比較…………………………………111 第七章 希伯特-黃轉換理論概述…………………………………………………..127 7.1 內建模態函數………………………………………………………………..127 7.2 經驗模態分解………………………………………………………………..128 7.3 希伯特頻譜分析……………………………………………………………..132 7.4 統驗模態分解………………………………………………………………..134 7.5 統驗模態分解之作業程序…………………………………………………..135 第八章 微振動量測實例分析……………………………………………………...145 8.1 微振動量測概述……………………………………………………………..145 8.2 微震動量測儀器與配置……………………………………………………..146 8.2.1儀器介紹…………………………………………………………….…..147 8.2.2量測方法……………………………………………………….………..147 8.2.3 儀器配置……………………………………………………………….147 8.3 微振動量測對象……………………………………………………………..147 8.4 HHT新發展的整體技術……………………………………………….……..148 8.4.1 HHT統驗加強訊號處理………………………………………………..148 8.4.2 能量變化之正規化及頻譜圖之平滑化……………………………….149 8.5 微振量測分析………………………………………………………………..149 8.5.1資料處理…………………………………………………………….…..149 8.5.2 鐵塔動力特性分析與識別…………………………………………….150 8.6 實例分析與識別結果………………………………………………………..153 8.6.1 編號#43鐵塔………………………………………………………….153 8.6.2 編號#65鐵塔………………………………………………………….155 8.6.3 編號#16鐵塔………………………………………………………….155 8.6.4 識別結果比較及討論………………………………………………….156 第九章 結論與展望………………………………………………………………...203 9.1 結論…………………………………………………………………………..203 9.2 展望…………………………………………………………………………..204 參考文獻……………………………………………………………………………...207 附錄A 台電公司輸電鐵塔新設計標準.....……………….…..……………………217 附錄B 台電公司弛度分析規定………………….…….…………….…………….229 附錄C 角鋼斷面彎矩曲率計算推導………………………………………………239 附錄D B5型及E5型鐵塔桿件設定之強度表……………………………………249 | |
| dc.language.iso | zh-TW | |
| dc.subject | 動力特性 | zh_TW |
| dc.subject | 希伯特-黃轉換 | zh_TW |
| dc.subject | 擬彈性 | zh_TW |
| dc.subject | 安全評估 | zh_TW |
| dc.subject | 極限能力 | zh_TW |
| dc.subject | 鐵塔 | zh_TW |
| dc.subject | ultimate capacity | en |
| dc.subject | Hilbert-Huang Transform | en |
| dc.subject | pseudo-elastic | en |
| dc.subject | safety assessment | en |
| dc.subject | tower | en |
| dc.subject | dynamic characteristics | en |
| dc.title | 輸電鐵塔極限能力分析與安全評估之研究 | zh_TW |
| dc.title | An Investigation on Ultimate Capacity Analysis and Safety Assessment for Transmission Steel Tower | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃鍔,蔡益超,張國鎮,蔡克銓,李有豐 | |
| dc.subject.keyword | 安全評估,希伯特-黃轉換,動力特性,擬彈性,極限能力,鐵塔, | zh_TW |
| dc.subject.keyword | dynamic characteristics,Hilbert-Huang Transform,pseudo-elastic,safety assessment,tower,ultimate capacity, | en |
| dc.relation.page | 306 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 12.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
