Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如(Gong-Ru Lin)
dc.contributor.authorYu-Chieh Chien
dc.contributor.author紀裕傑zh_TW
dc.date.accessioned2021-06-16T23:48:28Z-
dc.date.available2017-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-23
dc.identifier.citation[1] S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett., vol. 30, no. 12, pp. 984-985, Jun. 1994.
[2] D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett., vol. 9, no. 3, pp. 398-400, Mar. 1997.
[3] R. S. Tucker, J. M. Wiesenfeld, A. H. Gnauck, and J. E. Bowers, “8 Gbit/s return-to-zero modulation of a semiconductor laser by gain-switching,” Electron. Lett., vol. 22, no. 25, pp. 1329-1331, Dec. 1986.
[4] J. J. Veselka, S. K. Korotky, P. V. Mamyshev, A. H. Gnauck, G. Raybon, and N. M. Froberg, “A Soliton transmitter using a CW laser and an NRZ driven Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 8, no. 7, pp. 950-952, Jul. 1996.
[5] J. Torregrosa, H. Maestre, J. Capmany, and C. R. Fernández-Pousa, “Return-to-zero pulse generators using overdriven amplitude modulators at one fourth of the data rate,” IEEE Photon. Technol. Lett., vol. 19, no. 22, pp. 1837-1839, Nov, 2007.
[6] P. J. Winzer, C. Dorrer, R. J. Essiambre and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1379-1381, May 2004.
[7] S. K. Kang, D. S. Lee, H. Cho, and J. Ko, “Demonstration of CSRZ signal generator using single-stage Mach-Zehnder modulator and wideband CMOS signal mixer,” ETRI J., vol. 30, no. 2, pp. 249-254, Apr. 2008.
[8] P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1298-1300, Dec. 2001.
[9] L. Chen, Y. F. Shao, and S. C. Wen, “A novel scheme to generate dark-RZ pulse and study on its transmission performance,” Opt. Commun., vol. 269, no. 1, pp. 241-246, Jan. 2007.
[10] Y. F. Shao, L. Chen, and S. C. Wen, “Generation of dark RZ signals by using one delayed line Mach-Zehnder interferometer along with one phase modulator,” Microw. and Opt. Tech. Lett., vol. 49, no. 4, pp. 755-759, Feb. 2007.
[11] C. Peucheret, Y. Geng, M. Svalgaard, B. Zsigri, H. R. Sørensen, N. Chi, H. J. Deyerl, M. Kristensen, and P. Jeppesen, “Direct UV written michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1674-1676, Aug. 2005.
[12] X. Zou and J. Yao, “Repetition-rate-tunable return-to-zero and carrier-suppressed return-to-zero optical pulse train generation using a polarization modulator,” Opt. Lett., vol. 34, no. 3, pp. 313-315, Feb. 2009.
[13] Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express, vol. 12, no. 19, pp. 4449-4456, Sept. 2004.
[14] G.-R. Lin, Y. C. Chang, Y. H. Lin, and J. H. Chen, “All-optical Data format conversion in synchronously modulated single-mode Fabry–Pérot laser diode using external injection-locking-induced nonlinear threshold reduction effect,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1307-1309, Jun. 2005.
[15] C. C. Lin, H. C. Kuo, P. C. Peng, and G.-R. Lin, “Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter”, Opt. Express, vol. 16, no. 7, pp. 4838-4847, Mar. 2008.
[16] G.-R. Lin, K. C. Yu, and Y. C. Chang, “10 Gbit/s All-optical NRZ-to-RZ data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier”, Opt. Lett., vol. 31, no. 10, pp. 1376-1378, May 2006.
[17] K. Ennser, R. I. Laming, and M. N. Zervas, “Analysis of 40 Gb/s TDM-transmission over embedded standard fiber employing chirped fiber grating dispersion compensators,” IEEE J. Lightw. Technol., vol. 16, no. 5, pp. 807-811, May 1998.
[18] C. M. Weinert, R. Ludwig, W. Pieper, H. G. Weber, D. Breuer, K. Petermann, and F. K¨uppers, “40 Gb/s and 4*40 Gb/s TDM/WDM standard fiber transmission,” IEEE J. Lightw. Technol., vol. 17, no. 11, pp. 2276-2284, Nov. 1999.
[19] F. Fresi, M. Scaffardi, N. Amaya, R. Nejabati, D. Simeonidou, and A. Bogoni, “40-Gb/s NRZ-to-RZ and OOK-to-BPSK format and wavelength conversion on a single SOA-MZI for gridless networking operations,” IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 279-281, Feb. 2012.
[20] X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett., vol. 43, no. 16, pp. 890-892, Aug. 2007.
[21] J. Wang, J. Sun, Q. Sun, X. Zhang, and D. Huang, “Experimental demonstration on PPLN-based 40 Gbit/s all-optical NRZ-to-CSRZ, NRZ-to-RZ, and NRZ-DPSK-to-RZ-DPSK format conversions,” in Proc. AOE’08, Nov. 2008, pp. 1-3, paper SaK28.
[22] M. Y. Jeon, Y. A. Leem, D. C. Kim, E. Sim, S.-B. Kim, H. Ko, D. S. Yee, and K. H. Park, “40 Gbps all-optical 3R regeneration and format conversion with related InP-based semiconductor devices,” ETRI J., vol. 29, no 5, pp. 633-640, Oct. 2007.
[23] T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” IEEE J. Lightwave Technol., vol. 21, no. 9, pp. 1933-1943, Sept. 2003.
[24] K. Mishina, A. Maruta, S. Mitani, T. Miyahara, K. Ishida, K. Shimizu, T. Hatta, K. Motoshima, and K. Kitayama, “NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter,” IEEE J. Lightwave Technol., vol. 24, no. 10, pp. 3751-3758, Oct. 2006.
[25] H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” IEEE J. Lightwave Technol., vol. 23, no. 1, pp. 115-130, Jan. 2005.
[26] C. Xu, X. Liu, L. F. Mollenauer, and X. Wei, “Comparison of return-to-zero differential phase-shift keying and ON–OFF keying in long-haul dispersion managed transmission,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 617-619, Apr. 2003.
[27] Y. Yu, X. Zhang, J. B. Rosas-Fernández, D. Huang, R. V. Penty, and I. H. White, “NRZ-DPSK to RZ-BPSK all-optical format conversion using optical filter and SOA-MZI,” Proc. SPIE, vol. 7136, pp. 71362Y-1-71362Y-8, Nov. 2008.
[28] W. Astar and G. M. Carter, “10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver,” Electron. Lett., vol. 44, no. 5, pp. 369-370, Feb. 2008.
[29] C. Yan, T. Ye, and Y. Su, “All-optical regenerative NRZ-OOK-to-RZ-BPSK format conversion using silicon waveguides,” Opt. Lett., vol. 34, no. 1, pp. 58-60, Jan. 2009.
[30] K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber,” Opt. Express, vol. 15, no. 13, pp. 8444-8453, Jan. 2007.
[31] W. Astar, C. C. Wei, Y. J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express, vol. 16, no. 16, pp. 12039-12049, Aug. 2008.
[32] C. C. Wei, W. Astar, J. Chen, Y. J. Chen, and G. M. Carter, “Theoretical investigation of polarization-insensitive data format conversion of RZ-OOK to RZ-BPSK in a nonlinear birefringent fiber,” Opt. Express, vol. 17, no. 6, pp. 4306-4316, Mar. 2009.
[33] J. N. Maran, S. LaRochelle, and P. Besnard, “Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelengths at room temperature,” Opt. Lett., vol. 28, no. 21, pp. 2082-2084, Nov. 2003.
[34] A. Zhang, H. Liu, M. S. Demokan, and H. Y. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2535-2537, Dec. 2005.
[35] G. H. Peng, Y. C. Chi and G.-R. Lin, “DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring,” Opt. Express, vol. 16, no. 17, pp. 13405-13413, Aug. 2008.
[36] Y. C. Lin, G. H. Peng, and G.-R. Lin, “Compression of 200GHz DWDM channelized TDM pulsed carrier from optically mode-locking WRC-FPLD fiber ring at 10 GHz,” Opt. Express, vol. 17, no. 7, pp. 5526-5532, Mar. 2009.
[37] G.-R. Lin and I H. Chiu, “Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz”, Opt. Express, vol. 13, no. 3, pp. 1008-1014, Oct. 2005.
[38] L. Noel, X. Shan, and A.D. Ellis, “Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier,” Electron. Lett., vol. 31, no. 4, pp. 277-278, Feb. 1995.
[39] Y. Yu, X. Zhang, J. B. Rosas-Fernández, D. Huang, R. V. Penty, and I. H. White, “Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles,” Opt. Express, vol. 16, no. 20, pp. 16166-16171, Sept. 2008.
[40] J. Lasri, P. Devgan, V. Grigoryan, and P. Kumar, “Multiwavelength NRZ-to-RZ conversion with timing-jitter suppression,” in Proc. Conf. Lasers and Electro-Optics (CLEO 2004), San Francisco, California, May 2004, Paper CFG2.
[41] Y. Yu, X. Zhang, J. B. Rosas-Fernández, D. Huang, R. V. Pemty, and I. H. White, “Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s,” Opt. Express, vol. 17, no. 5, pp. 3964-3969, Mar. 2009.
[42] L. Xu and H. K. Tsang, “WDM-PON using differential-phase-shift-keying remodulation of dark return-to-zero downstream channel for upstream,” IEEE Photon. Technol. Lett., vol. 20, no. 10, pp. 833-835, May 2008.
[43] J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett., vol. 18, no. 18, pp. 1545-1547, Sept. 2008.
[44] Q. Zhao and C. K. Chan, “A wavelength-division-multiplexed passive optical network with flexible optical network unit internetworking capability,” IEEE J. Lightwave Technol., vol. 25, no. 8, pp. 1970-1977, Aug. 2007.
[45] G.-R. Lin, Y. H. Lin, C. J. Lin, Y. C. Chi, and G. C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” IEEE J. Quantum Electron., vol. 47, no. 5, pp. 676-685, May 2011.
[46] Y. H. Lin, C. J. Lin, G. C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express, vol. 19, no. 5, pp. 4067-4075, Feb. 2011.
[47] W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett., vol. 15, no. 10, pp. 1476-1478, Oct. 2003.
[48] L. Y. Chan, C. K. Chan, D. T. K. Tong, S. Y. Cheung, F. Tong, and L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulator for WDM access networks,” Electron. Lett., vol. 38, no. 1, pp. 43-45, Jan. 2002.
[49] X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Amer. B, vol. 3, no. 8, pp. 1725-1735, Aug. 1996.
[50] X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron., vol. 36, no. 1, pp. 79-84, Jan. 2000.
[51] J. Lasri, P. Devgan, R. Tang, and P. Kumar, “Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10GHz or higher) optical pulses,” Opt. Express, vol. 11, no. 12, pp. 1430-1435, Jun 2003.
[52] H. Hasegawa, Y. Oikawa, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 850 nm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1451-1453, Oct. 2007.
[53] R. Th. Kersten, “Ein optisches Nachrichtensystem mit Bauelementen der integrierten Optik für die Übertragung hoher Bitraten,” Arch. Elektrotech., vol. 60, no. 6, pp. 353-359, Sept. 1978.
[54] H. F. Schlaak, A. Neyer, and W. Sohler, “Electrooptical oscillator using an integrated cutoff modulator,” Opt. Commun., vol. 32, no. 1, pp. 72-74, Oct. 1980.
[55] T. C. Damen and M. A. Duguay, “Optoelectronic regenerative pulser,” Electron. Lett., vol. 16, no. 5, pp. 166-167, Feb. 1980.
[56] C. Lin, P. L. Liu, T. C. Damen, D. J. Eilenberger, and R. L. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett., vol. 16, no. 15, pp. 600-602, Jul. 1980.
[57] H. E. Kotb, A. M. E. Safwat, H. Boghdady, and D. A. M. Khalil, “RF optoelectronic oscillator using a directly modulated semiconductor laser and a fiber optical ring filter,” Microwave Opt. Technol. Lett., vol. 51, no. 2, pp. 470-475, Feb. 2009.
[58] M. Shin, P. S. Devgan, V. S. Grigoryan, P. Kumar, Y. D. Chung, and J. Kim, “Low phase-noise 40GHz optical pulses from a self-starting electroabsorption-modulator-based optoelectronic oscillator,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, Mar. 2006, Paper OFB1.
[59] D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett., vol. 14, no. 2, pp. 191-193, Feb. 2002.
[60] T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation,” Opt. Express, vol. 31, no. 3, pp. 811-813. Mar. 2006.
[61] W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 929-933, Mar. 2005.
[62] S. Pan and J. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett., vol. 21, no. 13, pp. 929-931, Jul. 2009.
[63] M. F. Lewis, “Novel RF oscillator using optical components,” Electron. Lett., vol. 28, no. 1, pp. 31-32, Jan. 1992.
[64] L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett., vol. 15, no. 7, pp. 981-983, Jul. 2003.
[65] C. H. Lee and H. K. Lee, “Passive all-optical clock signal extractor for non-return-to-zero signals,” Electron. Lett., vol. 34, no. 3, pp. 295-297, Feb. 1998.
[66] W. Mao, M. Al-Mumin, X. Wang, and G. Li, “All-optical enhancement of clock and clock-to-data suppression ratio of NRZ data,” IEEE Photon. Technol. Lett., vol. 13, no. 3, pp. 239-241, Mar. 2001.
[67] X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 688-690, May 1996.
[68] C. Lou, L. Huo, G. Chang, and Y. Z. Gao, “Experimental study of clock division using the optoelectronic oscillator,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1178-1180, Aug. 2002.
[69] H. Tsuchida and M. Suzuki, “40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 211-213, Jan 2005.
[70] S. Pan and J. Yao, “Optical clock recovery using a polarization-modulator-based frequency-doubling optoelectronic oscillator,” IEEE J. Lightwave Technol., vol. 27, no. 16, pp. 3531-3539, Aug. 2009.
[71] P. P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications. Artech House, 1995, Ch. 3.
[72] P. S. Devgan, V. J. Urick, J. F. Diehl, and K. J. Williams, “Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain,” IEEE J. Lightwave Technol., vol. 27, no. 15, pp. 3189-3193, Aug. 2009.
[73] S. I. Sohn and S. K. Han, “Linear optical modulation a serially cascaded electroabsorption modulator,” Microw. Opt. Technol. Lett., vol. 27, no. 6, pp. 447-450, Dec. 2000.
[74] M. T. Abuelma’Atti, “Large signal analysis of multiquantum well electroabsorption modulators,” Fiber Integr. Opt., vol. 25, no. 2, pp. 75-86, Mar.-Apr. 2006.
[75] R. Maher, P.M. Anandarajah, and L.P. Barry, “Optimized performance map of an EAM for pulse generation and demultiplexing via FROG characterization,” Opt. Commun., vol. 273 no. 2, pp. 500-505, May 2007.
[76] P. A. Yazaki, K. Komori, S. Arai, A. Endo, and Y. Suematsu, “Chirping compensation using a two-section semiconductor laser amplifier,” IEEE J. Lightwave Technol., vol. 10, no. 9, pp. 1247-1255, Sept. 1992.
[77] K. K. Gupta, D. Novak, and H. F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron., vol. 36, no. 1, pp. 70-78, Jan. 2000.
[78] Y. T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett., vol. 31, no. 10, pp. 1382-1384, May 2006.
[79] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” IEEE Proceedings, vol. 54, no. 2, pp. 329-330, Feb. 1966.
[80] M. J. Connelly, Semiconductor Optical Amplifier, Kluwer Academic Publishers, Boston, 2005, ch. 5.
[81] B. Zhang, X. Zhao, D. Parekh, Y. Yue, W. Hofmann, M. C. Amann, C. J. Chang-Hasnain, and A. E. Willner, “Reconfigurable multifunctional operation using optical injection-locked vertical-cavity surface-emitting lasers,” IEEE J. Lightwave Technol., vol. 27, no. 15, pp. 2958–2963, Aug. 2009.
[82] T. L. Koch and J. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron Lett., vol. 20, no. 25/26, pp. 1038-1040, Dec. 1984.
[83] G. P. Agrawal, Fiber-Optics Communication System, (Third Ed.), New York: Wiley, 2002, ch. 4.
[84] Petermann, Laser Diode Modulation and Noise, Taipei publications trading company, 1992, ch. 7.
[85] H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55um InGaAsP distributed feedback semiconductor laser,” IEEE J. Quantum Electron., vol. 29, no. 6, pp. 1668-1675, Jun. 1993.
[86] S. K. Liaw, S. L. Tzeng, and Y. J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems,” Opt. Commun., vol. 188, no. 1-4, pp. 63-67, Feb. 2001.
[87] C. W. Chow and C. H. Yeh, “Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs,” Opt. Express, vol. 19, no. 6, pp. 4970-4976, Mar. 2011.
[88] S. C. Lin, S. L. Lee, and C. K. Liu, “Simple approach for bidirectional performance enhancement on WDM-PONs with direct modulation lasers and RSOAs,” Opt. Express, vol. 16, no. 6, pp. 3636-3643, Mar. 2008.
[89] Y. C. Chi, P. C. Peng, and G.-R. Lin, “Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator”, IEEE J. Lightwave Technol., vol. 29, no. 11, pp. 1702-1707, Jun. 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65526-
dc.description.abstract自啟動光電振盪回路,由於其能以無須傳統微波訊號源方式同時產生高重複率之微波電訊號與低時基誤差之歸零光脈衝,因此在高速光分時多工傳輸系統中將扮演極為重要角色。本論文主要為探討利用自迴授光電振盪回路啟動無源歸零載波建構高密度分波多工二相位移鍵控與開關鍵控通訊系統。首先,我們分別利用直調增益切換操作之自迴授法布里-玻羅雷射二極體及分佈反饋式雷射二極體來建構無須傳統微波訊號源之10-Gbit/s歸零開關鍵控,藉由微波電訊號在此光電振盪回路中不斷地放大及濾波後的調變,傳統TO-56 can封裝雷射二極體之調變頻寬將可被至少提升至產生重複率為10-GHz之歸零光脈衝。接著針對外調方式,利用自迴授積體化分佈反饋雷射二極體-電吸收調變器以及非線性操作電吸收調變器注入之諧波鎖模半導體光放大器光纖雷射來分別建構單通道與多通道無傳統微波訊號源之10-GHz歸零光脈衝載波、微波電訊號以及歸零二相移相鍵控/開關鍵控,其自啟動非線性操作電吸收調變器與注入諧波鎖模半導體光放大器光纖雷射之理論模型也被以數學方式進行討論以最佳化輸出之歸零光脈衝載波,也同時以理論及實驗方式驗證自迴授光電振盪回路內光纖長度對輸出歸零光載波之時基誤差及微波電訊號之相位雜訊的最佳化。此外針對以此自迴授光電振盪回路所產生之歸零二相移相鍵控,探討了當微調二相移相鍵控解調變器解調窗口來配合歸零二相移相鍵控頻率間隔時之系統傳輸品質。
接著,我們比較自啟動增益切換操作分佈反饋式雷射二極體、非線性操作電吸收調變器及注入諧波鎖模半導體光放大器光纖雷射三種方式產生歸零光脈衝載波驅動之無傳統微波訊號源歸零開關鍵控,可發現由於自啟動增益切換操作分佈反饋式雷射二極體需將雷射設置在臨界操作條件,因此會產生相當強之相對強度雜訊並進一步劣化傳輸訊雜比,因此並不適用於產生無傳統微波訊號源之歸零開關鍵控。此外,雖然自啟動注入諧波鎖模半導體光放大器光纖雷射能同時產生4-6個高密度分波多工通道間距之10-GHz歸零光脈衝,但其脈衝品質會因為在注入過程中不足的調變深度及通道化過程減少鎖模成分而劣化,因此在以上三種產生無傳統微波訊號源之歸零光脈衝的方法中,以自啟動非線性操作電吸收調變器產生之歸零光脈衝載波/開關鍵控具有較佳之時基誤差、脈衝寬、消光比、訊雜比及傳輸品質。此自啟動非線性操作電吸收調變器將為未來之混合式高速率光分時多工與高密度分波多工存取網路提供一個嶄新的選項來產生無傳統微波訊號源之10-GHz歸零光脈衝載波/微波電訊號/歸零二相移相鍵控與開關鍵控。接著在傳輸網路應用方面,我們在頭端分別利用積體化分佈反饋雷射二極體-電吸收調變器及非線性操作Mach-Zehnder強度調變器為基底建構自啟動光電震盪回路產生10及40-GHz之歸零光脈衝,並進而產生無須傳統微波訊號源之10及40-Gbit/s 歸零二相移相鍵控以進行下行傳輸。接著,在光網路單元端再利用其下行歸零光脈衝載波以進行強度調變,並利用產生之歸零開關鍵控進行上行傳輸,便可分別建構無須傳統微波訊號源之10 及40-Gbit/s雙向歸零二相移相鍵控/開關鍵控傳輸。本論文成功探索出自啟動光電振盪回路新應用在於產生無須傳統微波訊號源之歸零二相移相鍵控/開關鍵控,並進一步將其拓展至網路系統應用,即是在於以無傳統微波訊號源方式建構下行二相移相鍵控與上行再利用歸零開關鍵控之混合式高速率光分時多工與高密度分波多工存取網路。
zh_TW
dc.description.abstractThe self-starting optoelectronic oscillator (OEO) simultaneous generating synthesizer-free microwave clock and pulsed carrier with ultra low jitter at high-repetition-rate have emerged as a key component for the high-bit-rate optical time-division multiplexing (OTDM) communication system. In this dissertation, the synthesizer-free 10 and 40-GHz return-to-zero (RZ) carriers self-started by the feedback OEO for dense wavelength division multiplexing (DWDM) access network with 10 and 40-Gbit/s down-stream RZ binary phase-shift keying (BPSK) and reused up-stream RZ on-off-keying (RZ-OOK) data is demonstrated respectively. First, a synthesizer-free 10-Gbit/s RZ-OOK data generator is demonstrated by gain-switching a Fabry-Perot laser diode (FPLD) or a distributed feedback laser diode (DFBLD) with the same self-started OEO feedback loop. By self-feedback triggering the microwave clock with the OEO, the modulation bandwidth of the transistor outline (TO-56) can packaged laser diode can be self-pulsating to generate optical RZ carrier at 10-GHz repetition rate.
In the external modulation scheme, the synthesizer-free self-starting optoelectronic oscillating pulsator based single- and multi-channel optical RZ carrier, microwave clock and data (OOK and BPSK) generator are demonstrated by using an integrated DFBLD and electro-absorption modulator (DFBLD-EAM) link and a injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) respectively. Moreover, the theoretical models of the self-pulsating EAM and the injection mode-locking SOAFL are numerically analyzed respectively to improve the self-pulsating performance of the optical RZ carriers. The jitter of the self-started RZ carrier optimized with the true-time-delay incorporated OEO feedback loop with lowest single sideband (SSB) phase noise is also theoretically and experimentally performed. For synthesizer-free RZ-BPSK data, detuning the Delayed interferometer DC bias to match the frequency comb spacing with the RZ carrier frequency further improves the transmission performance.
Subsequently, the distinguished transmission performances of the 10-Gbit/s RZ-OOK data carried on the gain-switched DFBLD, the nonlinearly modulated EAM, and the injection mode-locked SOAFL pulse-train triggered with the self-feedback OEO are compared. The OEO driven gain-switching DFBLD with insufficient pulse extinction is not particularly suitable for RZ data generation owing to its intense relative intensity noise (RIN) and large timing jitter under threshold operation. In addition, although the self-pulsated harmonic mode-locking SOAFL can simultaneously generate 4-6 DWDM-channel RZ carriers, the self-pulsated RZ carrier/data generated from DFBLD under the OEO-triggered nonlinear-EAM modulation still have the better performances in many aspects such as jitter, pulsewidth, pulse on/off extinction ratio (ER), and signal-to-noise ratio (SNR) because of the sufficient modulating amplitude. Such an integrated DFBLD-EAM link based self-starting OEO is a new approach for the synthesizer-free optical clock and RZ-OOK/BPSK data generation. Finally, the self-started 10 and 40-GHz DFBLD-EAM and Mach-Zehnder intensity modulator (MZM) RZ carriers are performed to demonstrate bi-directional down-stream RZ-BPSK and up-stream re-used RZ-OOK transmissions at 10 and 40 Gbit/s respectively. This study explores the new application of an OEO self-pulsated RZ carrier in further hybrid BPSK-OOK transmission network and its reusing capability.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:48:28Z (GMT). No. of bitstreams: 1
ntu-101-D96941016-1.pdf: 2637028 bytes, checksum: 8d0e49865a8f370f86c05ed1f2c33a99 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Return-to-zero on-off-keying/binary phase-shift-keying data generation 1
1.2 Hybrid dense wavelength division multiplexed/time division multiplexed optical sources 3
1.3 Return-to-zero on-off-keying/binary phase-shift-keying data for bi-directional dense wavelength division multiplexed transmission 5
1.4 Self-started optoelectronic oscillator 6
1.5 Research motivation 7
1.6 Organization of dissertation 8
Chapter 2 Self-pulsated Optoelectronic Oscillator at 10 GHz 11
2.1 Gain-switching laser diode driven self-starting optoelectronic oscillator 11
2.2 Self-pulsation of electro-absorption modulator 19
2.2.1 Parametric analysis and optimization of the self-started electro-absorption modulator based 10-GHz optical pulsator 20
2.3.2 Chirp, noise and jitter analyses of the self-started optoelectronic oscillator triggered distributed feedback laser diode and electro-absorption modulator optical pulsator 27
2.3 Synthesizer-free self-pulsating electro-absorption modulator injection mode-locked semiconductor optical amplifier fiber laser 36
2.4 Distinguished characteristics between pulsed distributed feedback laser diode carriers self-started by gain switching and nonlinear absorption modulation 45
2.5 Comparison on the 10-GHz synthesizer-free single-channel distributed feedback laser diode and electro-absorption modulator and multi-channel injection mode-locked semiconductor optical amplifier fiber laser return-to-zero carriers 51
Chapter 3 Transmission Performance of the Synthesizer-Free Return-to-zero Data Generator 55
3.1 Electro-absorption modulator based synthesizer-free return-to-zero on-off-keying data generator 55
3.2 Distinguished return-to-zero on-off-keying data performances between distributed feedback laser diode pulsed carriers self-started by gain switching and nonlinear absorption modulation 61
3.3 Single- or multi-channel dense wavelength division multiplexing channelized return-to-zero on-off-keying data generator 69
3.3 Clock-free return-to-zero binary phase-shift-keying data generation using self-starting optoelectronic oscillator 71
3.4 A self-started distributed feedback laser diode and electro-absorption modulator pulsed carrier for down-stream return-to-zero binary phase-shift-keying and reused up-stream return-to-zero on-off-keying data transmission at 10 Gbit/s 76
3.5 Self-pulsating electro-absorption modulator injection mode-locked semiconductor optical amplifier fiber laser for 200-GHz dense wavelength division multiplexing channelized 10-Gbit/s return-to-zero binary phase-shift-keying and on-off-keying data transmission 83
Chapter 4 Transmission Performance of the 40-Gbit/s Synthesizer-Free Return-to-zero Data Generator 87
4.1 40-Gbit/s pulsed return-to-zero on-off-keying transmission based on a self-started pulsed modulation using an optoelectronic feedback loop 87
4.2 40-Gbit/s pulsed return-to-zero binary phase-shift-keying data transmission based on a self-started pulsed modulation using an optoelectronic feedback loop 97
4.3 Self-pulsating Mach-Zehnder modulator for synthesizer-free 40-Gbit/s down-stream return-to-zero binary phase-shift-keying and reused up-stream return-to-zero on-off-keying data transmission 102
Chapter 5 Conclusion 110
Reference 113
作者簡介 124
期刊論文與研討會論文投稿及發表紀錄 125
dc.language.isoen
dc.subject歸零開關鍵控zh_TW
dc.subjectMach-Zehnder強度調變器zh_TW
dc.subject光分時多工zh_TW
dc.subject高密度分波多工zh_TW
dc.subject半導體光放大器光纖雷射zh_TW
dc.subject電吸收調變器zh_TW
dc.subject增益切換zh_TW
dc.subject自啟動光電振盪回路zh_TW
dc.subject諧波鎖模zh_TW
dc.subject歸零二相移相鍵控zh_TW
dc.subjectreturn-to-zero on-off-keyingen
dc.subjectgain-switchingen
dc.subjectelectro-absorption modulatoren
dc.subjectharmonic mode-lockingen
dc.subjectsemiconductor optical amplifier fiber laseren
dc.subjectreturn-to-zero binary phase-shift keyingen
dc.subjectself-starting optoelectronic oscillatoren
dc.subjectMach-Zehnder intensity modulatoren
dc.subjectoptical time-division multiplexingen
dc.subjectdense wavelength division multiplexingen
dc.title以自迴授光電振盪回路啟動無源歸零載波高密度分波多工二相位移鍵控與開關鍵控通訊技術zh_TW
dc.titleDWDM BPSK and OOK Communication with Clock-Free RZ Carriers Self-Started by Feedback Optoelectronic Oscillatoren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭木海(Wood-Hi Cheng),陳智弘(Jyehong Chen),郭浩中(Hao-chung Kuo),呂海涵(Hai-Han Lu),李三良(San-Liang Lee)
dc.subject.keyword自啟動光電振盪回路,增益切換,電吸收調變器,諧波鎖模,半導體光放大器光纖雷射,歸零二相移相鍵控,歸零開關鍵控,Mach-Zehnder強度調變器,光分時多工,高密度分波多工,zh_TW
dc.subject.keywordself-starting optoelectronic oscillator,gain-switching,electro-absorption modulator,harmonic mode-locking,semiconductor optical amplifier fiber laser,return-to-zero binary phase-shift keying,return-to-zero on-off-keying,Mach-Zehnder intensity modulator,optical time-division multiplexing,dense wavelength division multiplexing,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2012-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved